83 research outputs found

    Migration energy aware reconfigurations of virtual network function instances in NFV architectures

    Get PDF
    Network function virtualization (NFV) is a new network architecture framework that implements network functions in software running on a pool of shared commodity servers. NFV can provide the infrastructure flexibility and agility needed to successfully compete in today's evolving communications landscape. Any service is represented by a service function chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFIs) that are software modules executed on virtual machines. This paper deals with the migration problem of the VNFIs needed in the low traffic periods to turn OFF servers and consequently to save energy consumption. Though the consolidation allows for energy saving, it has also negative effects as the quality of service degradation or the energy consumption needed for moving the memories associated to the VNFI to be migrated. We focus on cold migration in which virtual machines are redundant and suspended before performing migration. We propose a migration policy that determines when and where to migrate VNFI in response to changes to SFC request intensity. The objective is to minimize the total energy consumption given by the sum of the consolidation and migration energies. We formulate the energy aware VNFI migration problem and after proving that it is NP-hard, we propose a heuristic based on the Viterbi algorithm able to determine the migration policy with low computational complexity. The results obtained by the proposed heuristic show how the introduced policy allows for a reduction of the migration energy and consequently lower total energy consumption with respect to the traditional policies. The energy saving can be on the order of 40% with respect to a policy in which migration is not performed

    A New Mechanism for Tracking a Mobile Target Using Grid Sensor Networks

    Get PDF
    Tracking moving targets is one of the important problems of wireless sensor networks. We have considered a sensor network where numerous sensor nodes are spread in a grid like manner. These sensor nodes are capable of storing data and thus act as a separate datasets. The entire network of these sensors act as a set of distributed datasets. Each of these datasets has its local temporal dataset along with spatial data and the geographical coordinates of a given object or target. In this paper an algorithm is introduced that mines global temporal patterns from these datasets and results in the discovery of linear or nonlinear trajectories of moving objects under supervision. The main objective here is to perform in-network aggregation between the data contained in the various datasets to discover global spatio-temporal patterns; the main constraint is that there should be minimal communication among the participating nodes. We present the algorithm and analyze it in terms of the communication costs

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    GSAR: Greedy Stand-Alone Position-Based Routing protocol to avoid hole problem occurance in Mobile Ad Hoc Networks

    Get PDF
    The routing process in a Mobile Ad Hoc Network (MANET) poses critical challenges because of its features such as frequent topology changes and resource limitations. Hence, designing a reliable and dynamic routing protocol that satisfies MANET requirements is highly demanded. The Greedy Forwarding Strategy (GFS) has been the most used strategy in position-based routing protocols. The GFS algorithm was designed as a high-performance protocol that adopts hop count in soliciting shortest path. However, the GFS does not consider MANET needs and is therefore insufficient in computing reliable routes. Hence, this study aims to improve the existing GFS by transforming it into a dynamic stand-alone routing protocol that responds swiftly to MANET needs, and provides reliable routes among the communicating nodes. To achieve the aim, two mechanisms were proposed as extensions to the current GFS, namely the Dynamic Beaconing Updates Mechanism (DBUM) and the Dynamic and Reactive Reliability Estimation with Selective Metrics Mechanism (DRESM). The DBUM algorithm is mainly responsible for providing a node with up-to-date status information about its neighbours. The DRESM algorithm is responsible for making forwarding decisions based on multiple routing metrics. Both mechanisms were integrated into the conventional GFS to form Greedy Stand-Alone Routing (GSAR) protocol. Evaluations of GSAR were performed using network simulator Ns2 based upon a defined set of performance metrics, scenarios and topologies. The results demonstrate that GSAR eliminates recovery mode mechanism in GFS and consequently improve overall network performance. Under various mobility conditions, GSAR avoids hole problem by about 87% and 79% over Greedy Perimeter Stateless Routing and Position-based Opportunistic Routing Protocol respectively. Therefore, the GSAR protocol is a reasonable alternative to position-based unicast routing protocol in MANET

    A cross layer framework to mitigate a joint MAC and routing attack in multihop wireless networks

    Get PDF
    It is well known that security threats, in wireless ad hoc networks, are becoming a serious problem which may lead to harmful consequences on network performance. Despite that, many routing protocols still not resilient to such threats or their countermeasures are not efficient. Moreover, the vulnerability of MAC layer protocols to some attacks exacerbates the damage caused by the threats at higher layers. Therefore, cooperation between layers in compulsory to face such devastating threats. In this paper, we address a cross-layer attack targeting proactive routing protocols, which is launched at the routing level and reinforced at the MAC layer in order to amplify the resulted damage. We demonstrate that this attack can severely compromise the routing protocols and lead to large data packets loss. We particularly analyze it under the Optimized Link State Routing (OLSR) protocol in detail and propose a lightweight solution to cope with it. The simulation results confirm the efficiency of this solution. ©2009 IEEE

    Some requirements for autonomic routing in self-organizing networks

    Get PDF
    International audienceThis paper addresses some requirements of self-organizing networks as well as interoperability problems due to merges and splits phenomena. In a mobile environment, merges and splits characterize the spatial overlap between two self-organized networks. While merge refers to the time when two disjoint networks meet and overlap, split refers to the time of partition. In a dynamic environment, AutoComm (AC) principles bring a new support for interoperability since current protocol heterogeneity is observed at all stack layers from the radio interface to applications. In this paper, we reconsider the formalization of a community and its requirements. We then characterize the split and merge phenomena and their implications. We give some requirements that must fulfill solutions to merging (high context-awareness) in order for AC groups to self-scale. Finally, we propose a merging solution for overlapping wireless self-organized networks using heterogeneous routing protocols
    • …
    corecore