37 research outputs found

    Spatial and temporal-based query disambiguation for improving web search

    Get PDF
    Queries submitted to search engines are ambiguous in nature due to users’ irrelevant input which poses real challenges to web search engines both towards understanding a query and giving results. A lot of irrelevant and ambiguous information creates disappointment among users. Thus, this research proposes an ambiguity evolvement process followed by an integrated use of spatial and temporal features to alleviate the search results imprecision. To enhance the effectiveness of web information retrieval the study develops an enhanced Adaptive Disambiguation Approach for web search queries to overcome the problems caused by ambiguous queries. A query classification method was used to filter search results to overcome the imprecision. An algorithm was utilized for finding the similarity of the search results based on spatial and temporal features. Users’ selection based on web results facilitated recording of implicit feedback which was then utilized for web search improvement. Performance evaluation was conducted on data sets GISQC_DS, AMBIENT and MORESQUE comprising of ambiguous queries to certify the effectiveness of the proposed approach in comparison to a well-known temporal evaluation and two-box search methods. The implemented prototype is focused on ambiguous queries to be classified by spatial or temporal features. Spatial queries focus on targeting the location information whereas temporal queries target time in years. In conclusion, the study used search results in the context of Spatial Information Retrieval (S-IR) along with temporal information. Experiments results show that the use of spatial and temporal features in combination can significantly improve the performance in terms of precision (92%), accuracy (93%), recall (95%), and f-measure (93%). Moreover, the use of implicit feedback has a significant impact on the search results which has been demonstrated through experimental evaluation.SHAHID KAMA

    An explainable recommender system based on semantically-aware matrix factorization.

    Get PDF
    Collaborative Filtering techniques provide the ability to handle big and sparse data to predict the ratings for unseen items with high accuracy. Matrix factorization is an accurate collaborative filtering method used to predict user preferences. However, it is a black box system that recommends items to users without being able to explain why. This is due to the type of information these systems use to build models. Although rich in information, user ratings do not adequately satisfy the need for explanation in certain domains. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of big data and machine learning methods to a mass audience without a compromise in trust. Explanations can take a variety of formats, depending on the recommendation domain and the machine learning model used to make predictions. Semantic Web (SW) technologies have been exploited increasingly in recommender systems in recent years. The SW consists of knowledge graphs (KGs) providing valuable information that can help improve the performance of recommender systems. Yet KGs, have not been used to explain recommendations in black box systems. In this dissertation, we exploit the power of the SW to build new explainable recommender systems. We use the SW\u27s rich expressive power of linked data, along with structured information search and understanding tools to explain predictions. More specifically, we take advantage of semantic data to learn a semantically aware latent space of users and items in the matrix factorization model-learning process to build richer, explainable recommendation models. Our off-line and on-line evaluation experiments show that our approach achieves accurate prediction with the additional ability to explain recommendations, in comparison to baseline approaches. By fostering explainability, we hope that our work contributes to more transparent, ethical machine learning without sacrificing accuracy

    Utilizing Multi-modal Weak Signals to Improve User Stance Inference in Social Media

    Get PDF
    Social media has become an integral component of the daily life. There are millions of various types of content being released into social networks daily. This allows for an interesting view into a users\u27 view on everyday life. Exploring the opinions of users in social media networks has always been an interesting subject for the Natural Language Processing researchers. Knowing the social opinions of a mass will allow anyone to make informed policy or marketing related decisions. This is exactly why it is desirable to find comprehensive social opinions. The nature of social media is complex and therefore obtaining the social opinion becomes a challenging task. Because of how diverse and complex social media networks are, they typically resonate with the actual social connections but in a digital platform. Similar to how users make friends and companions in the real world, the digital platforms enable users to mimic similar social connections. This work mainly looks at how to obtain a comprehensive social opinion out of social media network. Typical social opinion quantifiers will look at text contributions made by users to find the opinions. Currently, it is challenging because the majority of users on social media will be consuming content rather than expressing their opinions out into the world. This makes natural language processing based methods impractical due to not having linguistic features. In our work we look to improve a method named stance inference which can utilize multi-domain features to extract the social opinion. We also introduce a method which can expose users opinions even though they do not have on-topical content. We also note how by introducing weak supervision to an unsupervised task of stance inference we can improve the performance. The weak supervision we bring into the pipeline is through hashtags. We show how hashtags are contextual indicators added by humans which will be much likelier to be related than a topic model. Lastly we introduce disentanglement methods for chronological social media networks which allows one to utilize the methods we introduce above to be applied in these type of platforms

    Web Archive Services Framework for Tighter Integration Between the Past and Present Web

    Get PDF
    Web archives have contained the cultural history of the web for many years, but they still have a limited capability for access. Most of the web archiving research has focused on crawling and preservation activities, with little focus on the delivery methods. The current access methods are tightly coupled with web archive infrastructure, hard to replicate or integrate with other web archives, and do not cover all the users\u27 needs. In this dissertation, we focus on the access methods for archived web data to enable users, third-party developers, researchers, and others to gain knowledge from the web archives. We build ArcSys, a new service framework that extracts, preserves, and exposes APIs for the web archive corpus. The dissertation introduces a novel categorization technique to divide the archived corpus into four levels. For each level, we will propose suitable services and APIs that enable both users and third-party developers to build new interfaces. The first level is the content level that extracts the content from the archived web data. We develop ArcContent to expose the web archive content processed through various filters. The second level is the metadata level; we extract the metadata from the archived web data and make it available to users. We implement two services, ArcLink for temporal web graph and ArcThumb for optimizing the thumbnail creation in the web archives. The third level is the URI level that focuses on using the URI HTTP redirection status to enhance the user query. Finally, the highest level in the web archiving service framework pyramid is the archive level. In this level, we define the web archive by the characteristics of its corpus and building Web Archive Profiles. The profiles are used by the Memento Aggregator for query optimization

    FIN-DM: finantsteenuste andmekaeve protsessi mudel

    Get PDF
    Andmekaeve hõlmab reeglite kogumit, protsesse ja algoritme, mis võimaldavad ettevõtetel iga päev kogutud andmetest rakendatavaid teadmisi ammutades suurendada tulusid, vähendada kulusid, optimeerida tooteid ja kliendisuhteid ning saavutada teisi eesmärke. Andmekaeves ja -analüütikas on vaja hästi määratletud metoodikat ja protsesse. Saadaval on mitu andmekaeve ja -analüütika standardset protsessimudelit. Kõige märkimisväärsem ja laialdaselt kasutusele võetud standardmudel on CRISP-DM. Tegu on tegevusalast sõltumatu protsessimudeliga, mida kohandatakse sageli sektorite erinõuetega. CRISP-DMi tegevusalast lähtuvaid kohandusi on pakutud mitmes valdkonnas, kaasa arvatud meditsiini-, haridus-, tööstus-, tarkvaraarendus- ja logistikavaldkonnas. Seni pole aga mudelit kohandatud finantsteenuste sektoris, millel on omad valdkonnapõhised erinõuded. Doktoritöös käsitletakse seda lünka finantsteenuste sektoripõhise andmekaeveprotsessi (FIN-DM) kavandamise, arendamise ja hindamise kaudu. Samuti uuritakse, kuidas kasutatakse andmekaeve standardprotsesse eri tegevussektorites ja finantsteenustes. Uurimise käigus tuvastati mitu tavapärase raamistiku kohandamise stsenaariumit. Lisaks ilmnes, et need meetodid ei keskendu piisavalt sellele, kuidas muuta andmekaevemudelid tarkvaratoodeteks, mida saab integreerida organisatsioonide IT-arhitektuuri ja äriprotsessi. Peamised finantsteenuste valdkonnas tuvastatud kohandamisstsenaariumid olid seotud andmekaeve tehnoloogiakesksete (skaleeritavus), ärikesksete (tegutsemisvõime) ja inimkesksete (diskrimineeriva mõju leevendus) aspektidega. Seejärel korraldati tegelikus finantsteenuste organisatsioonis juhtumiuuring, mis paljastas 18 tajutavat puudujääki CRISP- DMi protsessis. Uuringu andmete ja tulemuste abil esitatakse doktoritöös finantsvaldkonnale kohandatud CRISP-DM nimega FIN-DM ehk finantssektori andmekaeve protsess (Financial Industry Process for Data Mining). FIN-DM laiendab CRISP-DMi nii, et see toetab privaatsust säilitavat andmekaevet, ohjab tehisintellekti eetilisi ohte, täidab riskijuhtimisnõudeid ja hõlmab kvaliteedi tagamist kui osa andmekaeve elutsüklisData mining is a set of rules, processes, and algorithms that allow companies to increase revenues, reduce costs, optimize products and customer relationships, and achieve other business goals, by extracting actionable insights from the data they collect on a day-to-day basis. Data mining and analytics projects require well-defined methodology and processes. Several standard process models for conducting data mining and analytics projects are available. Among them, the most notable and widely adopted standard model is CRISP-DM. It is industry-agnostic and often is adapted to meet sector-specific requirements. Industry- specific adaptations of CRISP-DM have been proposed across several domains, including healthcare, education, industrial and software engineering, logistics, etc. However, until now, there is no existing adaptation of CRISP-DM for the financial services industry, which has its own set of domain-specific requirements. This PhD Thesis addresses this gap by designing, developing, and evaluating a sector-specific data mining process for financial services (FIN-DM). The PhD thesis investigates how standard data mining processes are used across various industry sectors and in financial services. The examination identified number of adaptations scenarios of traditional frameworks. It also suggested that these approaches do not pay sufficient attention to turning data mining models into software products integrated into the organizations' IT architectures and business processes. In the financial services domain, the main discovered adaptation scenarios concerned technology-centric aspects (scalability), business-centric aspects (actionability), and human-centric aspects (mitigating discriminatory effects) of data mining. Next, an examination by means of a case study in the actual financial services organization revealed 18 perceived gaps in the CRISP-DM process. Using the data and results from these studies, the PhD thesis outlines an adaptation of CRISP-DM for the financial sector, named the Financial Industry Process for Data Mining (FIN-DM). FIN-DM extends CRISP-DM to support privacy-compliant data mining, to tackle AI ethics risks, to fulfill risk management requirements, and to embed quality assurance as part of the data mining life-cyclehttps://www.ester.ee/record=b547227

    Post Processing Wrapper Generated Tables For Labeling Anonymous Datasets

    Get PDF
    A large number of wrappers generate tables without column names for human consumption because the meaning of the columns are apparent from the context and easy for humans to understand, but in emerging applications, labels are needed for autonomous assignment and schema mapping where machine tries to understand the tables. Autonomous label assignment is critical in volume data processing where ad hoc mediation, extraction and querying is involved. We propose an algorithm Lads for Labeling Anonymous Datasets, which can holistically label/annotate tabular Web document. The algorithm has been tested on anonymous datasets from a number of sites, yielding very promising results. We report here our experimental results on anonymous datasets from a number of sites e.g., music, movie, watch, political, automobile, synthetic obtained through different search engine such as Google, Yahoo and MSN. The comparative probabilities of attributes being candidate labels are presented which seem to be very promising, achieved as high as 98% probability of assigning good label to anonymous attribute. To the best of our knowledge, this is the first of its kind for label assignment based on multiple search engines\u27 recommendation. We have introduced a new paradigm, Web search engine based annotator which can holistically label tabular Web document. We categorize column into three types: disjoint set column (DSC), repeated prefix/suffix column (RPS) and numeric column (NUM). For labeling DSC column, our method rely on hit counts from Web search engine (e.g., Google, Yahoo and MSN). We formulate speculative queries to Web search engine and use the principle of disambiguation by maximal evidence to come up with our solution. Our algorithm Lads is guaranteed to work for the disjoint set column. Experimental results from large number of sites in different domains and subjective evaluation of our approach show that the proposed algorithm Lads works fairly well. In this line we claim that our algorithm Lads is robust. In order to assign label for the Disjoint Set Column, we need a candidate set of labels (e.g., label library) which can be collected on-the-fly from user SQL query variable as well as from Web Form label tag. We classify a set of homogeneous anonymous datasets into meaningful label and at the same time cluster those labels into a label library by learning user expectation and materialization of her expectation from a site. Previous work in this field rely on extraction ontologies, we eliminate the need for domain specific ontologies as we could extract label from the Web form. Our system is novel in the sense that we accommodate label from the user query variable. We hypothesize that our proposed algorithm Lads will do a good job for autonomous label assignment. We bridge the gap between two orthogonal research directions: wrapper generation and ontology generation from Web site (i.e., label extraction). We are NOT aware of any such prior work that address to connect these two orthogonal research for value added services such as online comparison shopping

    Language representations for computational argumentation

    Full text link
    Argumentation is an essential feature and, arguably, one of the most exciting phenomena of natural language use. Accordingly, it has fascinated scholars and researchers in various fields, such as linguistics and philosophy, for long. Its computational analysis, falling under the notion of computational argumentation, is useful in a variety of domains of text for a range of applications. For instance, it can help to understand users’ stances in online discussion forums towards certain controversies, to provide targeted feedback to users for argumentative writing support, and to automatically summarize scientific publications. As in all natural language processing pipelines, the text we would like to analyze has to be introduced to computational argumentation models in the form of numeric features. Choosing such suitable semantic representations is considered a core challenge in natural language processing. In this context, research employing static and contextualized pretrained text embedding models has recently shown to reach state-of-the-art performances for a range of natural language processing tasks. However, previous work has noted the specific difficulty of computational argumentation scenarios with language representations as one of the main bottlenecks and called for targeted research on the intersection of the two fields. Still, the efforts focusing on the interplay between computational argumentation and representation learning have been few and far apart. This is despite (a) the fast-growing body of work in both computational argumentation and representation learning in general and (b) the fact that some of the open challenges are well known in the natural language processing community. In this thesis, we address this research gap and acknowledge the specific importance of research on the intersection of representation learning and computational argumentation. To this end, we (1) identify a series of challenges driven by inherent characteristics of argumentation in natural language and (2) present new analyses, corpora, and methods to address and mitigate each of the identified issues. Concretely, we focus on five main challenges pertaining to the current state-of-the-art in computational argumentation: (C1) External knowledge: static and contextualized language representations encode distributional knowledge only. We propose two approaches to complement this knowledge with knowledge from external resources. First, we inject lexico-semantic knowledge through an additional prediction objective in the pretraining stage. In a second study, we demonstrate how to inject conceptual knowledge post hoc employing the adapter framework. We show the effectiveness of these approaches on general natural language understanding and argumentative reasoning tasks. (C2) Domain knowledge: pretrained language representations are typically trained on big and general-domain corpora. We study the trade-off between employing such large and general-domain corpora versus smaller and domain-specific corpora for training static word embeddings which we evaluate in the analysis of scientific arguments. (C3) Complementarity of knowledge across tasks: many computational argumentation tasks are interrelated but are typically studied in isolation. In two case studies, we show the effectiveness of sharing knowledge across tasks. First, based on a corpus of scientific texts, which we extend with a new annotation layer reflecting fine-grained argumentative structures, we show that coupling the argumentative analysis with other rhetorical analysis tasks leads to performance improvements for the higher-level tasks. In the second case study, we focus on assessing the argumentative quality of texts. To this end, we present a new multi-domain corpus annotated with ratings reflecting different dimensions of argument quality. We then demonstrate the effectiveness of sharing knowledge across the different quality dimensions in multi-task learning setups. (C4) Multilinguality: argumentation arguably exists in all cultures and languages around the globe. To foster inclusive computational argumentation technologies, we dissect the current state-of-the-art in zero-shot cross-lingual transfer. We show big drops in performance when it comes to resource-lean and typologically distant target languages. Based on this finding, we analyze the reasons for these losses and propose to move to inexpensive few-shot target-language transfer, leading to consistent performance improvements in higher-level semantic tasks, e.g., argumentative reasoning. (C5) Ethical considerations: envisioned computational argumentation applications, e.g., systems for self-determined opinion formation, are highly sensitive. We first discuss which ethical aspects should be considered when representing natural language for computational argumentation tasks. Focusing on the issue of unfair stereotypical bias, we then conduct a multi-dimensional analysis of the amount of bias in monolingual and cross-lingual embedding spaces. In the next step, we devise a general framework for implicit and explicit bias evaluation and debiasing. Employing intrinsic bias measures and benchmarks reflecting the semantic quality of the embeddings, we demonstrate the effectiveness of new debiasing methods, which we propose. Finally, we complement this analysis by testing the original as well as the debiased language representations for stereotypically unfair bias in argumentative inferences. We hope that our contributions in language representations for computational argumentation fuel more research on the intersection of the two fields and contribute to fair, efficient, and effective natural language processing technologies
    corecore