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ABSTRACT

AN EXPLAINABLE RECOMMENDER SYSTEM BASED ON

SEMANTICALLY-AWARE MATRIX FACTORIZATION

Mohammed Sanad Alshammari

July 15, 2019

Collaborative Filtering techniques provide the ability to handle big and sparse data to predict

the ratings for unseen items with high accuracy. Matrix factorization is an accurate collaborative

filtering method used to predict user preferences. However, it is a black box system that recom-

mends items to users without being able to explain why. This is due to the type of information these

systems use to build models. Although rich in information, user ratings do not adequately satisfy

the need for explanation in certain domains. White box systems, in contrast, can, by nature, easily

generate explanations. However, their predictions are less accurate than sophisticated black box

models. Recent research has demonstrated that explanations are an essential component in bringing

the powerful predictions of big data and machine learning methods to a mass audience without a

compromise in trust. Explanations can take a variety of formats, depending on the recommendation

domain and the machine learning model used to make predictions. Semantic Web (SW) technolo-

gies have been exploited increasingly in recommender systems in recent years. The SW consists

of knowledge graphs (KGs) providing valuable information that can help improve the performance

of recommender systems. Yet KGs, have not been used to explain recommendations in black box

systems. In this dissertation, we exploit the power of the SW to build new explainable recommender

systems. We use the SW’s rich expressive power of linked data, along with structured information

search and understanding tools to explain predictions. More specifically, we take advantage of se-

mantic data to learn a semantically aware latent space of users and items in the matrix factorization

vi



model-learning process to build richer, explainable recommendation models. Our off-line and on-

line evaluation experiments show that our approach achieves accurate prediction with the additional

ability to explain recommendations, in comparison to baseline approaches. By fostering explain-

ability, we hope that our work contributes to more transparent, ethical machine learning without

sacrificing accuracy.

vii



TABLE OF CONTENTS

Page

DEDICATION iii

ACKNOWLEDGMENT iv

ABSTRACT vi

LIST OF TABLES xi

LIST OF FIGURES xiii

1 INTRODUCTION AND MOTIVATION 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Assumptions and Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND AND LITERATURE REVIEW 5

2.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Early use of the Semantic Web in User Profile Building . . . . . . . . 5

2.1.2 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Recommendation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 10

viii



2.2.3 Semantic-Aware Content-based Recommender Systems . . . . . . . . . . 11

2.2.4 Collaborative Filtering (CF) . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.6 Inference of Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 PROPOSED WORK 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Semantic Knowledge Graphs (KGs) . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 The Semantic Web’s Effect in Latent Space . . . . . . . . . . . . . . . . . 42

3.2 Asymmetric Semantic Explainable Matrix Factorization (ASEMF) . . . . . . . . . 43

3.2.1 ASEMF Semantic KGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Explanation Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Semantic Explainable Matrix Factorization (SemEMF) . . . . . . . . . . . . . . . 50

3.3.1 SemEMF Semantic KGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Explanation Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Merged Semantic Explainable Matrix Factorization (MergedSemEMF) . . . . . . . 53

3.4.1 MergedSemEMF Semantic KGs . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Explanation Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Linked Data Semantic Distance Matrix Factorization (LDSDMF) . . . . . . . . . . 55

3.5.1 Linked Data Semantic Distance (LDSD) . . . . . . . . . . . . . . . . . . . 56

3.5.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.3 Explanation Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Inferred Fact Style Explanation (IFSE) . . . . . . . . . . . . . . . . . . . . . . . . 61

4 EXPERIMENTAL EVALUATION 63

4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



4.3 Recommendation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Explainability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Semantic Explainability Metrics . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Neighborhood Explainability Metrics . . . . . . . . . . . . . . . . . . . . 74

4.5 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Real User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.3 Subject Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.4 Sample Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.5 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.6 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.7 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Summary of Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 95

5 CONCLUSION AND FUTURE WORK 96

REFERENCES 98

CURRICULUM VITAE 115

x



LIST OF TABLES

2.1 Explanation Styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 A comparison of some recommender systems based on the (a) domain, (b) RS style,

(c) availability of explanation, (d) system awareness of semantics, (e) user study,

and (f) CSP solution to the cold start problem. . . . . . . . . . . . . . . . . . . . . 26

2.3 Explanation objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The effect of applying the inferred fact mechanism on the semantic KGs’ sizes in

the movie domain; the first and second rows show the sizes before and after the

application, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The effect of applying the inferred fact mechanism to the semantic KGs’ sizes in

the book domain; the first and second rows show the sizes before and after the

application, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 RMSE versus the number of latent factors K in the movie domain. SemEMF,

MergedSemEMF, ASEMF_UIB, and LDSDMF denote our proposed methods. . . 66

4.4 RMSE versus the number of latent factors K in the book domain. SemEMF, MergedSe-

mEMF, ASEMF_UIB, and LDSDMF denote our proposed methods. . . . . . . . . 66

4.5 RMSE significance test results in the movie domain (K = 10). . . . . . . . . . . . . 67

4.6 RMSE significance test results in the book domain (K = 50). . . . . . . . . . . . . 67

4.7 MAP significance test results in the movie domain (K = 10). . . . . . . . . . . . . 68

4.8 MEP@10 significance test results in the movie domain (K = 10 and θ s = 0.25)

using semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . 70

4.9 MER@10 significance test results in the movie domain (K = 10 and θ s = 0.25)

using semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . 70

xi



4.10 xF-score@10 significance test results in the movie domain (K = 10 and θ s = 0.25)

using semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . 72

4.11 MEP@10 significance test results in the book domain (K = 50 and θ s = 0.25) using

semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . . . . 72

4.12 MER@10 significance test results in the book domain (K = 50 and θ s = 0.25) using

semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . . . . 72

4.13 xF-score@10 significance test results in the book domain (K = 50 and θ s = 0.25)

using semantic KGs to calculate explainability metrics. . . . . . . . . . . . . . . . 72

4.14 MEP@10 significance test results in the movie domain (K = 10 and θ n = 0.25)

using the neighborhood based explainability metrics. . . . . . . . . . . . . . . . . 74

4.15 MER@10 significance test results in the movie domain (K = 10 and θ n = 0.25)

using the neighborhood based explainability metrics. . . . . . . . . . . . . . . . . 74

4.16 xF-score@10 significance test results in the movie domain (K = 10 and θ n = 0.25)

using the neighborhood based explainability metrics. . . . . . . . . . . . . . . . . 76

4.17 Likert scale survey questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.18 Demographic questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.19 Mean and standard deviation for all groups for regarding all three explanation aspects. 93

4.20 Categorization of the survey questions from Table 4.17 according to the research

questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 Tukey multiple comparisons of means at 95% family-wise confidence interval for

satisfaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.22 Tukey multiple comparisons of means at 95% family-wise confidence interval for

transparency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.23 Tukey multiple comparisons of means at 95% family-wise confidence interval for

effectiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



LIST OF FIGURES

1.1 Black Box Matrix Factorization on the left and Explainable Semantic Matrix Fac-

torization on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 A simple RDF graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The high level architecture of a content-based recommender [1]. . . . . . . . . . . 11

2.3 Matrix Factorization Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 An Example of dbrec’s Output, Source: [2]. . . . . . . . . . . . . . . . . . . . . . 28

2.5 An Example of TasteWeight’s Output, Source: [3]. . . . . . . . . . . . . . . . . . 28

2.6 An Example of Entity-based RS’ Output, Source: [4]. . . . . . . . . . . . . . . . . 28

2.7 An Example of SEP’s Output, Source: [5]. . . . . . . . . . . . . . . . . . . . . . . 29

2.8 An Example of RecExp’s Output, Source: [6]. . . . . . . . . . . . . . . . . . . . . 29

2.9 An Example of LOD-TRS’ Output, Source: [7]. . . . . . . . . . . . . . . . . . . . 30

2.10 An Example of SemAuto’s Output, Source: [8]. . . . . . . . . . . . . . . . . . . . 31

2.11 An Example of MovieExplain’s Output, Source: [9]. . . . . . . . . . . . . . . . . 32

2.12 An example of Tagsplanation’s Output, Source: [10]. . . . . . . . . . . . . . . . . 32

2.13 An Example of Hybrid-RS’ Output, Source: [11]. . . . . . . . . . . . . . . . . . . 33

2.14 An Example of Embedding-RS’ Output, Source: [12]. . . . . . . . . . . . . . . . . 33

2.15 EMF, Source: [13] [14] [15] neighborhood style explanation examples; the example

on the left is user-based, and the example on the right is item-based. . . . . . . . . 37

2.16 Snapshot of the camera recommender system, Source: [16]. . . . . . . . . . . . . . 40

3.1 Proposed methods and other approaches. . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Asymmetric Semantic Explainable Matrix Factorization (ASEMF). . . . . . . . . . 44

xiii



3.3 A histogram-like semantic ISE (left) and a plain text semantic ISE (right) recom-

mendation for sample user 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 A histogram-like semantic ISE (left) and a plain text semantic ISE (right) recom-

mendation for sample user 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Semantic Explainable Matrix Factorization. . . . . . . . . . . . . . . . . . . . . . 51

3.6 Merged Semantic Explainable Matrix Factorization. . . . . . . . . . . . . . . . . . 54

3.7 LDSDMF flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 A Generic Semantic Knowledge Graph. . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Inferred Facts: Movie Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The mapping process for the movie domain. . . . . . . . . . . . . . . . . . . . . 64

4.2 The mapping process for the book domain. . . . . . . . . . . . . . . . . . . . . . 64

4.3 The graph shows the MAP@10 results of all methods while varying K in the movie

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 This graph shows the MAP@10 results of all methods while varying K in the book

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 The upper graph shows the results of MEP@10 for all methods, while the middle

one shows MER@10 for all methods, and the lower graph illustrates the results of

all methods using the xF-score metric. All explainability metrics utilize semantic

KGs. All the results are in the movie domain. . . . . . . . . . . . . . . . . . . . . 71

4.6 The upper graph shows the results of MEP@10 for all methods, while the middle

one shows MER@10 for all methods, and the lower graph illustrates the results

of all methods using the xF-score metric. All explainability metrics utilize utilizes

semantic KGs. All the results are in the book domain. . . . . . . . . . . . . . . . . 73

4.7 The upper graph shows the results of MEP@10 for all methods, while the middle

one shows the MER@10 results for all methods, and the lower graph illustrates the

results of all methods. All explainability metrics are based on the neighborhood

explainability graph. All the results are in the movie domain. . . . . . . . . . . . . 75

xiv



4.8 The upper graph shows the results of MEP@10 for all methods, while the middle

one shows MER@10 for all methods, and the lower graph illustrates the results of

all methods using the xF-score metric. All explainability metrics use semantic KGs.

All the results are in the book domain. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 A comparison of two explanations, high on the left and low on the right, that are

exposed to the user during the experiment. The explanation on the left shows more

semantic attributes than the one on the right. . . . . . . . . . . . . . . . . . . . . . 79

4.10 A snapshot of the recommender system app showing a list of movies for the user to

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 A snapshot of a recommendation and its semantic explanation presented to a user.

The share of interest is the likeability degree computed using Equation 3.2 . . . . . 83

4.12 A Vertical bar chart of the answers to the questions in Table 4.17 for all participants. 85

4.13 A Vertical bar chart of the answers to the questions in Table 4.17 for participants in

the group "High". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 A Vertical bar chart of the answers to the questions in Table 4.17 for participants in

the group "Medium". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.15 A Vertical bar chart of the answers to the questions in Table 4.17 for participants in

the group "Low". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.16 A Heat-map plot of the answers to the questions in Table 4.17 for all participants. . 86

4.17 A Heat-map plot of the answers to the questions in Table 4.17 for participants in the

group "High". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.18 A Heat-map plot of the answers to the questions in Table 4.17 for participants in the

group "Medium". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.19 A Heat-map plot of the answers to the questions in Table 4.17 for participants in the

group "Low". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.20 Distribution of the participants’ satisfaction with the explanation. . . . . . . . . . . 88

4.21 Distribution of the participants’ gender. . . . . . . . . . . . . . . . . . . . . . . . 89

4.22 Distribution of the participants’ age. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.23 Distribution of the participants’ major of study. . . . . . . . . . . . . . . . . . . . 89

4.24 Distribution of the participants’ weekly hours watching movies. . . . . . . . . . . 89

xv



4.25 Distribution of the participants’ favorite movies’ attributes. . . . . . . . . . . . . . 90

4.26 Distribution of the participants’ familiarity with recommender systems. . . . . . . 90

4.27 Distribution of the participants’ most used online entertainment services. . . . . . . 90

4.28 Visualization of differences of mean levels of pairs of groups for satisfaction. . . . 92

4.29 Visualization of differences of mean levels of pairs of groups for transparency. . . 93

4.30 Visualization of differences of mean levels of pairs of groups for effectiveness. . . 94

xvi



CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

Collaborative filtering (CF) is a recommender system technique that uses the explicit prefer-

ences of users, such as ratings, to recommend items [17]. In contrast, content-based filtering (CBF)

techniques rely only on detailed information about an item’s content or description to make recom-

mendations [18], which is a major advantage in complex domains. However, the most accurate CF

methods, such as matrix factorization (MF) [19], lack transparency. Hence, despite its efficient in

handling of large data sets and a high degree of accuracy in predicting unseen items’ ratings, MF

fails to justify its output. This is because MF only utilizes users’ explicit preferences or ratings to

build a prediction model. For this reason, MF is considered a black box recommender system (see

the left side of Figure 1.1).

In addition to the lack of explainability, users’ explicit preferences or ratings of past items may

not be sufficient for the model to be able to recommend new items for which there is no rating data.

This problem is known as the cold start problem.

Figure 1.1: Black Box Matrix Factorization on the left and Explainable Semantic Matrix Factoriza-
tion on the right.
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There is, therefore, a need to overcome both the black box and cold start problems. One way to

cope with these two problems involves leveraging the semantic web. More specifically, linked open

data (LOD) [20] is a project where data is linked, structured, and connected on the web. In recent

years, the web has been saturated with data and is a good source of rich information. The goal of

LOD is to make this information machine processable and semantically linked. For example, in the

movie domain, information about movie stars, such as related producers and writers, is available in

a linked manner. When an actor has starred in two movies, these two movies are considered linked.

This linkage of information can help infer relationships between movies.

1.2 Problem Statement

The research questions that we attempt to answer are as follows: Can we build a recommender

system using matrix factorization (MF) that, in addition to being accurate, succeeds in explaining

the recommendations using Semantic Web resources? Are the semantics of users and items effec-

tive in building an explainable low dimensional (latent factor) space? Will the recommendations,

after exploiting the semantics, be accurate? Do more semantic properties increase the explanation

effectiveness?

1.3 Assumptions and Research Scope

The focus of this research is on the matrix factorization technique in addition to the semantic

KGs that we rely on for justification purposes. We assume that the recommender system is a black

box algorithm that relies on matrix factorization to build the model. We also assume that there

is a sophisticated overlap between all knowledge sources. This means that all items (e.g., movies

or books) in the dataset that contains users’ explicit preferences also exist in the semantic web

knowledge source (e.g., DBpedia).

The scope of our research is limited to the collaborative filtering technique for recommendations

and to semantic web technologies for explanation generation. Users’ preferences are their ratings

of movies, whereas the semantic web technology that we incorporate is the simple protocol and

resource description framework query language (SPARQL) [21]. We query DBpedia to extract

semantic knowledge graphs that link items, such as movies or books to semantic properties, and
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then use this information to generate an explanation while simultaneously building the model. This

semantic data is expected to cause some items to be projected closer to some users based on how

many properties the items and users share based on semantics.

1.4 Research Contribution

Our work contributes to the recommender system and semantic web fields by:

1. Designing semantic Knowledge Graphs (KGs) that can be used to interpret and justify big

data black box predictors, such as matrix factorization, while preserving prediction accuracy

as illustrated in the right side of Figure 1.1.

2. Proposing a two-step model that uses the designed semantic KGs to learn semantically-aware

latent spaces of users and items Asymmetric Semantic Explainable Matrix Factorization

(ASEMF).

3. Proposing a one-step model that incorporates the semantic KGs in learning the low dimen-

sional latent spaces Semantic Explainable Matrix Factorization (SemEMF).

4. Proposing a model that combines multiple explanation styles, semantics (SemEMF) and

neighborhood style Explainable Matrix Factorization (EMF), in learning explanation-aware

latent spaces Merged Semantic Explainable Matrix Factorization (MergedSemEMF).

5. Proposing a model that takes advantage of two algorithms Linked Data Semantic Distance

(LDSD) and Joint Matrix Factorization (JMF) for building a semantically more comprehen-

sive model Linked Data Semantic Distance Matrix Factorization (LDSDMF).

6. Proposing a model that augments the semantic explanations based on inferred facts about

users and semantic attributes, (IFSE) Inferred Fact Style Explanation.

7. Presenting offline evaluation for the proposed models.

8. Performing a user study to evaluate our proposed model (LDSDMF) and proposed explana-

tion style Inferred Fact Style Explanation (IFSE) for online evaluation.
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1.5 Document Organization

In the following chapters, we first review previous work that has used the semantic web in the

recommendation process in Chapter 2, focusing specifically on user profile building and matrix

factorization. Then, we describe our proposed methods in Chapter 3, and present their experimental

evaluation in Chapter 4. Finally we present our final conclusions and future work in Chapter 5.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Semantic Web

The goal behind the semantic web is to allow systems to intelligently search, combine, process,

and interact [22]. It is important to mention that the contents of these systems must be systemati-

cally processable by machines [22]. Specifically, content, like media, is processed, combined, and

aggregated by humans with no help from systems. The goal of the semantic web is to make systems

do these jobs by themselves by converting the information on the web into data that is machine

readable and understandable using a specific schema and format [23]. The semantic web enables

us to utilize not only keywords when searching on the web but also the underlying semantics, such

as synonyms and homonyms, to enrich the user’s experience [23]. These technologies are designed

to make more data available for systems to process without human intervention. “Anyone can say

anything about anything” [23] on the web, which implicitly means that there is a vast amount of data

on the web. Therefore, an intelligent way to organize this data is required to help humans manage

data more rapidly, accurately, and efficiently. Notably, the semantic web could be referred to as

’linked data’ [20], which means structured and connected data on the web.

In the following sections, the resource description framework (RDF) and SPARQL concepts,

which are two technologies of the semantic web, are explored in greater detail.

2.1.1 The Early use of the Semantic Web in User Profile Building

In this section, we shed light on some previous studies that have sought to mine user profiles

and compare them with our focus in this research. The interaction between the semantic web and
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web mining was discussed previously by [24] and [25]. They stated that discovering the meaning

of web content could be easier with the help of the semantic web. Moreover, usage mining is a

considerable source of knowledge and could be used to present more meaningful information on

the web. A survey was conducted by [26], who described the development of the semantic web and

web mining. They also aimed to clarify web space evaluation, where multiple factors, including

semantic web mining, software agents, and human agents interact. They concluded the survey by

predicting that semantics will be more attractive in the research area of web mining because of its

ability to make information on the web machine processable and understandable. The combination

of the semantic web and web mining is also studied by [27], who found semantic web mining can

successfully enhance the output of web mining after taking advantage of semantic web technologies.

Building user profiles is a fundamental task in the recommender systems field. For this reason and

because the semantic web is a platform of linked data, considerable effort has gone into using the

semantic web in this area.

Usage data is one of the most important sources for understanding user interests and desires,

which will help in building user profiles [28], [29]. Furthermore, [30] emphasized that it is crucial

to utilize both website usage data and the ontological content of items to build richer user profiles.

In their work, they built user profiles by integrating semantics obtained from ontologies, website

structures, and user activity. However, in this study, the focus was on users’ ratings of items and the

underlying semantics to increase the accuracy of recommendations and generate explanations.

[31] used webpage textual content data and WordNet ontology [32] to build a semantically-

enhanced user model that can help achieve personalization and understand user needs in information

retrieval.

In another study, [33] exploited the power of the semantic web for personalized information

retrieval within the e-learning domain [34], where they leveraged learning content, such as lectures,

and semantic user profiles.

Finally, [35] attempted to create a more robust user profile by preprocessing user usage data as

performed earlier in [36], [37], and [38]. This process includes robust knowledge discovery algo-

rithms that result in noise and outlier resistance. The study concluded that although a preprocessing

stage may reduce the quality of user profiles, it allows the data mining process to be performed more

rapidly.
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Figure 2.1: A simple RDF graph.

2.1.2 RDF

The web currently relies on languages, such as HTML, which allow anyone to publish a doc-

ument and make it available online. However, since the number of documents and amount of data

published on the web have increased rapidly, the need for an intelligent mechanism to handle them

arose, and hence, RDF was developed [23]. This language outputs structured information in a for-

mal manner [22]. The original objective of this language was to allow applications, such as travel

agents’ websites, to exchange data while maintaining their rules [22]. Since HTML is limited, ex-

tensible markup language (XML) was developed to organize semantics on the web. This means that

XML is the foundation language for RDF. Although RDF has a specific syntax and structure, it is

the basic language for semantic web development [22]. A simple RDF graph is visualized in Figure

2.1.

2.1.2.1 RDF Data Model

RDF components are [23]:

1. Resources:

Resources, in this context, means objects or things, such as players, machines, notebooks, or

mountains, and they each have a unique uniform resource identifier (URI) for identification

purpose on the web when pointing to them.

2. Properties:

Properties represent the relationship between resources. For example, in Figure 2.1, Mo-

hammed is the father of Jood. ’Father of,’ in this case, is the property that illustrates the

relationship between Mohammed and Jood.
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3. Statements:

Statements are a combination of resources, properties, and values.

4. Graph:

Figure 2.1 shows how a statement is represented in a graph.

In conclusion, RDF basically enables data to be formatted in a machine-understandable format.

Briefly, RDF works by dividing the concepts contained in web documents into a relationship that

includes a subject, predicate, and object, for example, ’Fahad isWorkingAt T-mobile.’ This rela-

tionship yields additional information regarding Fahad. Since he works at T-mobile, other people

who work at the same company could benefit from Fahad’s other relationships when conducting an

online search. Specifically, the search engine will consider the content of Fahad’s profile and then

make suggestions to his colleagues.

2.1.3 SPARQL

SPARQL is a query language inspired by structured query language (SQL), and it is used to

query information organized using RDF syntax. There are many similarities between these two

languages [23]. However, the structure of data that SQL and SPARQL query is completely different

[22].

RDF is stored in a database called a triple store so that SPARQL can perform its queries on RDF

files. An example of a triple store that provides the service of a SPARQL endpoint is DBpedia 1

[23].

As mentioned previously, triple RDF consists of a subject, predicate, and object. These three

components are substantial when querying RDF files [23]. SPARQL is similar to SQL in terms

of syntax. For example, SELECT has the same functionality in both technologies. Moreover, a

WHERE clause in SPARQL acts like pattern matching for the triple. For instance, consider the

following triple: ’?person dbo:birthPlace :London.’ If this is in the WHERE clause, it will return

all persons whose birthplace is London. It is important to define the abbreviations such as rdf, foaf,

dbpedia, and others at the beginning of the query [23].

1dbpedia.org/sparql
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2.2 Recommender Systems

2.2.1 Introduction

Recommender Systems aim to help individual users select the next item based on their previous

preferences and choices [39]. For example, the amazon.com e-commerce website personalizes items

for each customer, and if we consider books as an example, each customer will see different book

suggestions [40]. It is worth mentioning that if two or more users share similar interests, they may

see similar item suggestions. In addition, there are non-personalized recommendations, where the

recommendation is based on other criteria, such as popularity (e.g., the top five movies based on

the number of views). In terms of implementation, these are easier than personalized suggestions

[41], and are used in magazines and newspapers since they may not have enough information about

the user to make a personalized recommendation. They thus use other factors, such as the number

of views or clicks, to rank the recommendations. These type of recommendations are distinct from

modern intelligent RSs that are personalized and data-driven, which we consider in this research

work [41].

RSs use the ratings of products, which users explicitly express through feedback, to make rec-

ommendations. The system may also consider visiting some pages as a sign of interest and, based

on this information, RSs take action [41].

Recently, RSs have become important for the following reasons [41]:

• Websites like Amazon, YouTube, Netflix, and others need RSs so they can improve their

ability to help a very large number of users navigate and discover relevant objects among

many options.

• Conferences and workshops have been dedicated to RSs research.

• University courses have been dedicated to RSs.

• Famous scientific journals have covered the development of RSs.

In addition, there are several benefits that service providers look for when exploiting RSs [41]:

• Increase sales.
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• Sell more diverse items.

• Increase users satisfaction.

• Strengthen fidelity.

• Understand user’s needs.

2.2.2 Recommendation Techniques

Predicting the utility of items that RSs should recommend to the user is important; some items

are not worth recommending to users [42], [43]. To model the degree of utility of item i for user

u as a function R(u, i), we consider user ratings. Then, collaborative filtering predicts the utility of

items for each user [42], [43].

It is important to note that the utility of items for some users can be influenced by their knowl-

edge level (i.e., expert versus beginner) in a specific field [43], which will have an impact on rec-

ommendations.

There are six different classes of recommendation approaches [44]:

• Content-based: The system learns to recommend items that are similar to the ones that the

user liked in the past.

• Collaborative filtering: Recommends items to the user that other users with similar pref-

erences have liked in the past. The degree of similarity between two users’ preferences is

calculated based on the degree of similarity in their rating history. It is the most popular RS

technique.

• Demographic: Recommends items based on the user’s demographic profile.

• Knowledge-based: Recommends items based on specific domain knowledge; how certain

item features meet the user’s needs and preferences. Specifically, how the item is preferable

for the user.

• Community-based: Recommends items based on the preferences of the user’s friends.
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Figure 2.2: The high level architecture of a content-based recommender [1].

• Hybrid recommender systems: These RSs are based on a combination of the above tech-

niques.

2.2.3 Semantic-Aware Content-based Recommender Systems

Content-based recommender systems (CBRS) consider all documents and item descriptions that

a user has previously shown an interest in via ratings and then builds a user profile that matches the

user’s interest in such items. Once the user explicitly shows interest in an item, the algorithm ana-

lyzes the item’s features and then recommends similar items to the user [45], [46], [1]. For example,

when a user purchases a pillow from amazon.com, the recommender system will suggest a pillow

cover as it is a closely related item. Unfortunately, this keyword-based technique faces problems,

such as polysemy, synonymy, multi-word expressions, and others. Semantic technologies are a way

to overcome these obstacles [1]. Knowledge sources, such as DBpedia and Freebase, assist in the

switch from keyword-based techniques to concept-based techniques used to build items and pro-

files. There are two approaches to the use of semantic technologies in content-based recommender

systems: top-down and bottom-up [1]. We will elaborate on them in this chapter. Figure 2.2 shows

the high-level architecture of a content-based recommender system.

In the following sections, we discuss how data are represented in content-based RS and which

algorithms are used. Then, we describe some strengths and weaknesses of these methods.
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2.2.3.1 Content-based Recommender Systems

Item Representation and algorithms Since many early content-based RSs dealt with textual

content [46], [45], retrieval models come into play. A vector space model (VSM) is commonly used

to match documents based on keywords. It uses the term frequency-inverse document frequency

(TF-IDF) technique. Let D = {d1,d2, ...dN} represent a set of documents and T = {t1, t2, ...tn} de-

note the dictionary. T is obtained through processing operations, such as tokenization and stemming

[47]. Each document is represented as d = {w1 j,w1 j, ...,wn j} where wk j is the weight for term tk in

document d j. The definition of TF-IDF [48] is as follows:

T F− IDF (tk,d j) = T F (tk,d j) · log
N
nk

(2.1)

The first part represents the term frequency and the log term denotes the inverse document

frequency. N is the number of documents, and nk represents the number of documents in which tk is

found at least once. A normalization formula is needed, thus cosine normalization is typically used

[48]. This results in the following weight wk, j for a term k in document j:

wk, j =
T F_IDF(tk,d j)√
∑
|T |
s=1 T FIDF (ts,d j)

2
(2.2)

To compute the similarity between documents, the cosine similarity measure is commonly used,

which is given by

sim(di,d j) =
∑k wki.wk j√

∑k w2
ki.
√

∑k w2
k j

(2.3)

After documents are processed, algorithms are needed to perform the task of learning the profile of

the user. The following list is a summary of some of these algorithms and how they work:

1. Naive Bayes (NB): NB classifies data based on the posterior probability of belonging to a

class, given by

P(c | d) = P(c)P(d | c)
P(d)

(2.4)
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P(c|d) denotes the probability of document d belonging to class c, while P(c) means the prob-

ability of observing a document in class c, P(d) is the probability of observing the instance d,

and P(d|c) represents the probability of observing the document d given c. In Content-Based

Filtering the class c can correspond to relevance or non-relevance to a particular user.

2. Rocchio’s Algorithm:

The Rocchio’s algorithm is used to refine and thus personalize the user’s query q by consid-

ering the relevance of feedback obtained from the user [49]:

qki = β . ∑
(d j∈POSi)

wk j

|POSi|
− γ. ∑

(d j∈NEGi)

wk j

| NEGi |
(2.5)

wk j represents the weight of term tk in document d j using TF-IDF. POSi and NEGi denote the

set of positives and negatives instances for class ci in the training set. β and γ are controlling

parameters to set the importance of positive and negative instances.

3. Nearest Neighbor:

The nearest neighbor technique stores the training data and then classifies new items based

on nearest neighbors from the stored training data using a similarity function, such as the

cosine similarity [50]. Like the Naive Bayes classifier above, classes of interest here are the

relevance and the non-relevance to a user.

Advantages and Disadvantages of Content-based RS The advantages of content-based RSs

(CBRSs) include user independence, transparency, and handling new items. The disadvantages

include limited content analysis, over-specialization, and new-user cold -start problems [1].

2.2.3.2 Top-Down Approach

In this approach, the idea is to utilize knowledge resources together to form the user profile and

then find the information that the user needs [1].

There are three aspects that CBRSs incorporate to increase the accuracy of recommendations:

• Ontological knowledge use [51].
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• Unstructured or semi-structured encyclopedic knowledge source utilization [52].

• Linked open data cloud incorporation [53].

These aspects are discussed in the following paragraph.

1. Ontological Resources:

WordNet [54] introduced linguistic knowledge to the public and the research field. The in-

terpretation of the semantic meaning of the content of WordNet was obtained by algorithms

of word sense disambiguation (WSD) [55],[56, 57]. Both technologies are utilized to build a

user profile [1]. Nonetheless, WordNet is still limited in terms of entities’ names, events, and

specific knowledge [1]. Thus, the need for better technology arises. One such technology is

the semantic web [58]. One of the powerful technologies of the semantic web is ontology, and

its role is to handle the domain knowledge in a specific syntax. In RSs-ontology integration,

user and item profiles are built using concepts from ontology [1]. Examples of this type of

recommendation are explored in a later section.

Although the use of ontologies in the recommendation process results in more relevant recom-

mendations and less ambiguous user profiles [1], ontology needs experts in the design, which

consequently means time consumption, in addition to required maintenance efforts [59].

2. Unstructured or semi-structured:

Since the early years of artificial intelligence, the major role of knowledge resources was rec-

ognized [60]. For this reason, many knowledge resources, either structured or unstructured,

became available on the web, such as the Wikipedia encyclopedia and Yahoo! web directory.

These types of knowledge resources have been exploited in the field of CBRSs by finding

more related concepts and features [1]. It is not surprising that Wikipedia is the most widely

used knowledge resource for several reasons and features: it is free, it covers a wide range of

topics, it is multilingual [1] and highly accurate [61]. Wikify [62] and Tagme [63] are two

projects that exploit Wikipedia to perform the feature selection task.

Explicit semantic analysis (ESA) is a technique used to improve an item’s representation by

utilizing Wikipedia to create new features [64]. ESA works by giving weighted vectors to the

concepts contained in documents retrieved from the encyclopedia. The difference between
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this technique and LSA [65] is that LSA deals with latent features, whereas ESA deals with

explicit features derived from Wikipedia [1].

Lastly, BabelNet is an encyclopedic dictionary that integrates Wikipedia and WordNet to

generate a huge multilingual semantic network [66].

3. Linked Open Data

Linked open data became popular in recent years due to the collaborative efforts of the seman-

tic web community [67]. The structure of this enormous amount of data follows the standard

of an RDF, as well as the query language SPARQL 2, which is used to extract information

from RDF files [22]. [68], who developed the dbrec system, were some of the first researchers

to use semantic web technologies in the field of recommender systems. Their recommender

system takes advantage of an the linked data semantic distance (LDSD) algorithm [69], as

well as DBpedia, the ontological version of Wikipedia, to retrieve more details about artists.

Another study [70] exploited user and item connections performed by [71] by converting

the resulting RDF graph into a matrix of users-items using recommendation techniques. Di

Noia et al. [53] utilized multiple semantically structured data from DBpedia [67], Freebase

[72], and LinkedMDB [73] to produce movie recommendations by generating a matrix of

subjects-predicates-objects, with the row being the subject and the column representing the

object, whereas the cell is filled with the property, weighted using a genetic algorithm, if one

exists. The TF-IDF technique is used to give weights for all matrix elements. The similarity

measurement used to determine whether any two movies are related is cosine. Afterward,

the similarity between the user profile and new movies is calculated and, hence, a movie is

recommended.

Following are some projects inspired by the entity linking technique to represent data:

(a) Babelfy3:[74] an integration of word sense disambiguation and entity linking.

(b) DBpedia Spotlight: this project uses DBpedia to link unstructured text to an LOD cloud

[75].

2https://www.w3.org/TR/rdf-sparql-query/
3http://babelfy.org
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(c) Alchemy4: provides the ability to utilize NLP for the sake of analyzing different types

of documents to reach entity recognition.

(d) Open Calais5: Analyzes documents using both the ML and NLP technique to locate

entities.

(e) NERD: An ontology used to merge the above-listed types of entity-linking projects [76].

2.2.3.3 Bottom-Up Approach:

This approach relies on the distributional hypothesis, where words and documents are dis-

tributed in the space as vectors, and every two words that are close in meaning in the context are

also close in the corresponding vector space [1]. Discriminative models (DMs) inspired the notion

that any word can be understood by humans by looking at the context where that particular word

occurs [1] (e.g., leash, dog, animal [77]. Similarly, words that occur in similar contexts are more

likely to also be closer in meaning (e.g., leash, muzzle) this approach is called the distributional

hypothesis [78]. The word-context matrix technique is used in DMs instead of the word-document

matrix technique presented by VSM [1]. Moreover, [79] explained how vector space models (VSM)

can be used to illustrate semantics in the following:

• A term-document matrix.

• A word-context matrix.

• A pair-pattern matrix.

Since DMs utilize similarity measurements, such as cosine, euclidean, and relative entropy-

based measurements, these models are known as geometrical models [80]. [81] introduced WordSpace,

where similarity depends on an unsupervised method that leads to an expansion in the number of

dimensions of the vector space. Hence, a dimensionality reduction technique is needed.

1. Dimensionality reduction techniques:

The idea behind this technique is to reduce the number of dimensions in the vector space [1].

[65] stated that a dimensionality reduction technique is applied to latent semantic indexing

4http://www.alchemyapi.com/
5http://www.opencalais.com/
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(LSI), which is a method of creating a semantic vector space by using the singular value

decomposition (SVD) technique. First, a matrix is formed in which the rows represent words

and columns represent documents. Then, it is decomposed into two matrices to reduce the

number of dimensions. The LSI technique outperforms other techniques, and this is proven in

[82, 83]. Moreover, [84] used a dimensionality reduction technique to refine the user profile

in CBRSs by reducing the number of features of the user’s profile, which produced better

recommendations. Nevertheless, this technique could be outperformed by other techniques

when working with a small dataset or short texts [85].

2. Modeling Negation:

The VSM technique suffers from the problem of not considering negative feedback when

building a user profile [1]. However, works such as [86, 87] overcame the issue of negative

relevance feedback by subtracting irrelevant vectors to refine the user profile.

3. Conclusion and Comparison of approaches:

The two methods aim to solve problems that occur in CBRSs, such as limited content analysis

and over-capitalization. The top-down approach tends to use external knowledge sources such

as ontology, encyclopedias, and LOD clouds to better understand the user’s interests to make

more accurate recommendations. In contrast, the bottom-up technique starts by analyzing

individual terms in a broad context to extract the underlying semantics [1].

Transparency is one factor that differentiates the two approaches. In the top-down technique,

user profiles and items are explicitly represented, which decreases ambiguity, resulting in a

better estimation of the semantic similarities between an item and a user profile. This will

help in making good explanations. However, the bottom-up approach lacks transparency

since it analyzes the meaning of a word by looking at its co-occurrences throughout a set of

documents [1].

Another difference between the two approaches is that the bottom-up method is superior

because it utilizes a dimensionality reduction technique [1]. Lastly, the two methodologies’

pros and cons are presented in Table 4.1 [1].
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2.2.4 Collaborative Filtering (CF)

2.2.4.1 Introduction

Collaborative filtering focuses more on rating data than the content descriptions of items [17].

In contrast with content-based techniques, there is no need for detailed information about both users

and items, which is a major advantage of this method. Consequently, computation complexity will

be much lower.

The Netflix competition conducted in 2006 led to major developments in the field of recom-

mender systems, especially collaborative filtering [88], because huge datasets became available to

the research community (around 100 million movie rating).

Recommender systems rely on two types of feedback. One is explicit feedback, where users

clearly declare their opinion on an item, such as rating a movie [88]. The other type is implicit

feedback; although it is less accurate, it is still important. Examples of implicit feedback are the

user’s search history, purchase history, and mouse movement [89].

Collaborative filtering depends on two approaches when making recommendations: latent factor

models, such as SVD, and neighborhood methods [88].

2.2.4.2 Neighborhood-based Recommendation Methods

In recent years, the online shopping rate has increased rapidly, creating retailer websites, such

as amazon.com, with a wide variety of items. In recommendations, the ratings of other users are

considered in the process of building the RS model, in contrast to content-based models, which

rely on an item’s specifications [17]. Some advantages of neighborhood-based recommendations

include: [90]:

• Simplicity.

• Justifiability.

• Efficiency.

• Stability.

In the following sections, we explore different types of neighborhood styles:
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2.2.4.3 User-based Rating Prediction

When a user rates an item, the most similar users’ interests are considered when recommending

the next item. This technique is called the nearest neighbor [50] [91]:

r̂ui =
1

| Ni(u) | ∑
V∈Ni(u)

rvi (2.6)

Ni(u) is the k-nearest neighbors of user u who rated item i, while wuv is the similarity between

u and k users v. rui is the rating of item i by user u. Normalization results in

r̂ui =
∑V∈Ni(u) wuvrvi

∑V∈Ni(u) | wuv |
(2.7)

Note that the denominator, an absolute value, is used to ensure a positive number.

2.2.4.4 Item-based Recommendation

In this approach, items that are similar to the item the user has liked are considered in the process

of [92]. The formula is expressed as follows:

r̂ui =
∑ j∈Nu(i) wi jru j

∑ j∈Nu(i) | wi j |
(2.8)

j and i are items, and Nu(i) denotes the items that are rated by user u and similar to item i. wi j

is the similarity between item i and k items j.

2.2.4.5 Matrix Factorization Models

Matrix factorization (MF) is a powerful family of techniques used to build recommender sys-

tems [19]. MF aims to learn latent space vectors p and q for each user and item, respectively. Figure

2.3 shows a flowchart of the MF method in making recommendations.

The idea is to factorize the rating matrix into lower dimensional spaces using a given number of

latent features such that the dot product of the two latent space representations should approximate

the original ratings, in addition to predicting the ratings of unseen items, as shown in Equation 2.9

r̂i j = piqT
j (2.9)
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Figure 2.3: Matrix Factorization Flow Chart.

r̂ denotes the training set of known ratings, where i and j represent a user and an item, respectively.

Latent space vectors p and q are found by minimizing the following objective function over known

ratings [19]:

J = ∑
i, j∈R

(
ri j− piqT

j
)2

+β (‖ pi ‖2 + ‖ q j ‖2) (2.10)

A regularization term exists for each unknown parameter (latent vector) to avoid over-fitting, with

β being a regularization coefficient that controls the smoothness of the newly added term. J is not

convex with respect to all the unknown parameters, but it is convex with respect to either p or q

alone. Therefore, stochastic gradient descent [93] is used to solve for the optimal parameters. The

update rules for the user and item latent factor parameters p and q are given by

p(t+1)
u ← p(t)u +α(2(Ru,i− p(t)u (q(t)i )T )q(t)i −β p(t)u ) (2.11)

q(t+1)
i ← q(t)i +α(2(Ru,i− p(t)u (q(t)i )T )p(t)u −βq(t)i ) (2.12)

Next, we will explore two matrix factorization approaches presented by [94, 95], who improved

the basic matrix factorization technique, which we described above, and came up with new ap-

proaches, JMF and SemJMF. Then, we will explain three other types of matrix factorization models

used in the field: the SVD, SVD++, and time-aware factor models.

1. Joint Matrix Factorization:
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[94] extended [19]’s work by incorporating not only known ratings but also information that

comes in two forms, from the user’s side and the item’s side. Side information, such as age and

gender, come from the user side, although they are not always available due to privacy issues.

Genre, size, color, and movie stars are item-side information, and they are almost always

available. [94] took advantage of this additional information to enhance the accuracy of

recommendations. They extended the basic matrix factorization cost function to create a joint

MF (JMF) that includes additional terms for item-side information. Since they conducted

their experiments in the movie domain, they used two types of movie information, mood and

plot keyword. Two movie-by-movie similarity matrices were constructed using two similarity

methods to be added as new terms to the cost function. They compared their work to several

non-context aware approaches and showed that their approach outperformed other approaches

by 10

2. Semantic Joint Matrix Factorization :

[95] extended [94]’s idea of using item-side information to exploit the power of the semantic

web. Working in two domains, music and movies, they extracted semantic information from

the DBpedia 6 dataset, which is a semantic version of Wikipedia. They retrieved artist cat-

egory information from DBpedia using SPARQL to enrich the item-side information. Like

[94], they constructed a new matrix for the semantic information, added a new term to the

JMF cost function, and obtained better results in comparison to JMF and other techniques.

3. Asymmetric Matrix Factorization :

Building low dimensional representations of users and items using multiple sources of knowl-

edge was explored by [96]. In their work, they succeeded in building a model to annotate

images using the so-called bag-of-features that belong to images and non-negative matrix

factorization (NMF) to build a low dimensional latent vector representation. Later, this ap-

proach was used in [97] to propose a solution for the item cold-start problem in collaborative

filtering using matrix factorization and utilize multiple domains in the process of building the

model. More specifically, item content features, such as genre, are used to build the items’

latent space before learning the user’s latent space using another domain, namely the known

6dbpedia.org
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ratings. Although this approach integrated two sources of data to overcome the cold-start

problem, it did not provide explainable recommendations.

4. SVD:

SVD works by mapping items and users to a joint latent factor space within dimensionality

f , making this interaction between users and items modeled as inner products [88].

The rule that is used to predict the rating is expressed as follows:

r̂ui = u+bi +bu +qT
i pu (2.13)

where r̂ui is the estimated rating for item i by user u. bi, bu, pu, and qi are the model param-

eters. The regularized squared error is minimized to learn the model parameters determined

by cross-validation:

min
b∗,q∗,p∗

∑
(u,i)∈K

(
rui−u−bi−bu−qT

i pu
)2

+λ (b2
i +b2

u+ ‖ qi ‖2 + ‖ pu ‖2)λ (2.14)

λ is a parameter that controls the regularization term. The optimization technique used is

stochastic gradient descent [93].

2.2.5 Explanations

2.2.5.1 Introduction

Recommendations, by themselves, aim to guide the user’s next move (e.g., which movie to

watch next or what item to purchase). [98] has stated that the recommendation process happens

inside a black box, meaning that users are not aware of why certain items are recommended to

them. Thus, adding more clarifying details is desirable. When a website, such as Netflix.com,

recommends a movie to a user and attaches a sentence such as "People who watched this movie also

watched . . . )," the user will be encouraged to watch the recommended movie [99]. It is proven that

explanations play a major role in gaining user trust and enhancing scrutability, which verifies the

recommendation’s validity [13].
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In the 1990s, explanations were used by so-called expert systems. However, there were no

satisfying evaluation techniques for these explanations [100].

2.2.5.2 Explanation Styles and Related Approaches

[101] and [99] proposed several explanation styles. Table 2.1 summarizes them.

Table 2.1: Explanation Styles.
[101]’s Styles [99]’s Styles

Neighbor Style Explanation Collaborative-based Style Explanation
Influence Style Explanation Content-based Style Explanation
Keyword Style Explanation Case-based Reasoning Style Explanation

Knowledge and Utility-based Style Explanation
Demographic Style Explanation

Following is a review of some existing systems that use different types of explanation styles

in addition to an elaboration of the related studies mentioned in Table 2.2. Herlocher et al. [98]

stated that explanations enhance the performance of collaborative filtering recommender systems.

In their work, they explored 21 explanation interfaces where they eliminated the recommended

items and only retained the explanations for users to choose from and found that, from a promotion

point of view, the best interface was the histogram-like explanation interface according to the users’

feedback. Other interfaces include past performance, a table of neighbors’ ratings, similarity to

other movies rated, and other information.

Pineda and Brusilovsky [102] discuss the transparency issue in the educational domain. The

concentration is not on the interest of the user, such as in the movie or e-commerce domain, but

it is in the level of education, which makes it more challenging. Therefore, the recommendation

and explanation process requires more effort to estimate the skill level of the students. The focus

of this paper [103] is on the transparency of the hybrid recommender systems. They attempt to

overcome this issue by generating visualized and personalized explanations for the outputs. The

music domain was used to test the approach by conducting a user study. Sato et al. [104] claim

that current explanation styles take advantage of similarities between users, items, items’ contents,

and demographics. However, context like accompanying persons and usage scenarios are used to

generate a different explanation style.

Another study [10] used community tags to explain recommendations. They categorized expla-
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nations into three types: 1) item-based, where explanations were created based on similar items, 2)

user-based, where the system relied on similar users to explain its recommendations, and 3) feature-

based, where various features, such as genre, were used to justify the output. The authors of this

work used the KSE explanation style. An example of an explanation could look like "This movie is

being recommended to you because it is tagged with mystery , which exists in movies you’ve liked

previously". In a similar study that also used KSE as the explanation style [105], a CBF model was

designed for recommending digital cameras. They used specific characteristics of cameras, such as

memory size and resolution, and allowed each user to choose which set of features met his or her

requirements. [106] built a CF recommender system that relies on the latent factor model technique

to produce accurate recommendations, along with explanations that are generated using a sentiment

analysis of users reviews.

[101] defined the three explanation types mentioned in Table 2.1. In their work, they produced a

book recommender system, called LIBRA, which was an extension of [107]’s work that used a CBF

technique. A hybrid model was created using user ratings and item content data. Explanation effec-

tiveness was measured by promotion and satisfaction. Promotion refers to an explanation’s ability

to convince users to choose the recommended items, while satisfaction means that an explanation

allows users to check an item’s quality. In their study, they used all three explanation styles listed in

the left-hand column of Table 2.1.

[108] evaluated the effectiveness of explanations in terms of how well they helped users make

better decisions. They concluded that personalizing feature-based explanations is unfavorable from

an effectiveness perspective, although it may increase satisfaction. In contrast to [98], [101] argued

that KSE and ISE are better than NSE because the latter suffers from a bias toward top recommended

items, which causes an overestimation of the recommended items. This issue does not exist in KSE

and ISE.

In [109], the authors designed a recommender system that recommends places for tourists to

visit. They grouped users demographically based on their age (e.g., children, adults, and the elderly)

and suggested places to each group with justifications that suit their interests. [110] proposed a

new recommender system that reads news articles to users using synthesized speech. The system

receives voice feedback from users to improve its performance and generate explanations using

the KSE explanation style. Symeonidis et al. [111] proposed a system that leverages explanations
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aimed toward increasing transparency without sacrificing accuracy. They were motivated by the

limitations of some e-commerce recommender systems that depend on ratings and user behavior to

explain recommendations but ignore item features. To overcome this limitation, they constructed a

feature-based user profile where each user’s interests are represented by item content features. They

also created biclusters, which are groups of users who exhibit similar ratings of groups of similarly

rated items and used the clusters to find possible patterns of interests and preferences between test

users and the group of users. A user study was conducted to show that their approach resulted in

higher satisfaction compared to other approaches after showing the justification.

The approaches listed in Table 2.2 are reviewed in this section. First, eight studies are both

explainable and semantic-aware, whereas the next seven research items are only explainable with no

semantic-awareness (i.e., do not use semantic web technologies, such as RDF, OWL, or SPARQL).

The next eight studies in Table 2.2 use semantics but omit explanations. Lastly, the four remaining

works in this table are neither non-explainable nor semantic-aware.

The first work was conducted by [2], who used a linked data semantic distance (LDSD) algo-

rithm [69] to build a model that recommends movies. More details about this method were presented

in the previous subsection 3. [68] used property values to explain why a certain artist was recom-

mended. Following is an example of their explanation: Johnny Cash and Elvis Presley share the

same value for ’death place’: Tennessee.. Also, Figure 2.4 shows a snapshot of an example.

The approach utilized by [112] exploited linked open data (LOD) to build a movie recommender

system, and Section 3 presents additional details of this system. Similar to [2], the values of proper-

ties of recommended items are used for explanations. Di Noia et al. emphasized that CBF systems

provide more transparency than CF systems. However, in the current study, we are proposing a

Hybrid CF system using MF that is accurate and transparent enough for users to accept recom-

mendations by generating explanations through semantic web technologies. TasteWeights [3] is

an interactive hybrid recommender system designed for the music domain 7. Several sources of

information, such as Twitter, Facebook, and Wikipedia, are utilized as a data source for the recom-

mendation process. In addition to generating a visual interactive interface that provides justifications

to users, the explanation interface allows users to choose the source of the explanation. If the user

chooses to see an explanation based on Facebook data, then users will see their friends who liked

7A demo video is available at http://bit.ly/TasteWeights
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the recommended item as an explanation. The same output happens when Wikipedia or Twitter is

chosen. The system consists of three layers. The first one contains users’ liked music gathered from

the user’s Facebook page. The second layer is the content layer where items’ features are listed

from all three information sources (i.e., Wikipedia, Facebook, and Twitter). The third layer is the

recommendation layer that shows the top recommended items. When retrieving information from

Wikipedia, the semantic version of it, DBpedia, is used to perform the task using the query language

SPARQL. The authors indicate that as Herlocker [98] and Middleton [130] emphasized previously,

an explanation increases the acceptance of a recommendation, and an explanatory interface also

helps users understand why certain recommendations are shown for them. It also encourages users

to get educated and involved in the recommendation process. Thirty-two real users participated in

a user study to evaluate the system’s performance and how well the explanation interface helped

them understand the recommendation process; see Figure 2.5. The authors concluded that although

Wikipedia, when it was the source of the explanation, was more accurate than both Facebook and

Twitter, explanations based on Facebook friends was favored by users due to trust in their friends’

interests and tastes.

Catherine et al. [4] proposed a white box recommender system that explains its output by using

predefined rules. For example, if user U likes movie M, and movie M is linked to entity E then,

user U likes entity E. The ProPPR [131] technique is used to rank both items and their entities for

recommendations and explanations. They argued that knowledge graphs, in addition to increasing

accuracy, helped generate more convincing explanations. An example is shown in Figure 2.6.

Another approach that is explainable and semantic-aware is [5], where they proposed a post-

hoc mechanism to generate explanations. After building the recommender system, a unified het-

erogeneous information network (HIN) is built to provide justification for the recommended items.

Explanation paths between the target user and other system components are established and ranked

then used to show the explanations. To rank the explanation paths candidates, three ranking metrics

are used, Credibility, readability, and diversity. An example of the explanation is shown in Figure

2.7.

Hu et al. [6] emphasized the importance of explanations in recommender systems. In their

approach, they relied on HIN [132] to generate semantic and justifiable recommendations. Fig-

ure 2.8 illustrates the explanation style. Another study that relied on the HIN technique to build a
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Figure 2.4: An Example of dbrec’s Output, Source: [2].

Figure 2.5: An Example of TasteWeight’s Output, Source: [3].

Figure 2.6: An Example of Entity-based RS’ Output, Source: [4].
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Figure 2.7: An Example of SEP’s Output, Source: [5].

Figure 2.8: An Example of RecExp’s Output, Source: [6].

recommender system is SemRec [113]. In this work, the meta-paths obtained from the HIN are per-

sonalized and prioritized to accommodate users’ preferences. The cold-start problem is resolved in

this work, and they stated that their model outperformed other baseline methods in terms of produc-

ing a lower error rate. A study conducted by [7] shed light on the significance of natural language

explanations in recommender systems and how linked open data can empower them by linking the

user’s previously preferred items and items’ attributes to the new recommendations. The explana-

tion mechanism is based on the notion that descriptive properties that describe the items that the user

liked in the past can serve as explanations for the outputs of the recommender system. A user study

was conducted to evaluate the system, and the results show that the proposed system succeeded in
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Figure 2.9: An Example of LOD-TRS’ Output, Source: [7].

producing transparent recommendations and explanations. An example of their explanation style is

shown in Figure 2.9.

The study of [8] focuses on the issue of explaining the output of a black box recommender

system. In this work, the recommender system is built using Autoencoder Neural Network tech-

nique that is also aware of the Knowledge Graphs retrieved from the Semantic Web. The KGs are

also adopted for the explanation generation. The authors claim that explanations increase the users’

satisfaction, loyalty, and trust in the system. In this study, three explanation styles are proposed,

popularity-based, pointwise personalized, and pairwise personalized. Figure 2.10 depicts an exam-

ple of the explanation styles. For evaluation, an A/B test was conducted to measure transparency,

trust, satisfaction, persuasiveness, and effectiveness of the proposed explanations. The pairwise

method was preferable by most users more than pointwise method.

All of the previous studies involved white box systems; however, [15], a Ph.D. thesis, involved

a black box system. This doctoral thesis investigated whether it is possible to generate explanations

four the output of a black box system using a neighborhood technique based on cosine similarity. An

MF system recommends items without being able to explain why due to its complete dependency

on explicit user preferences. However, the proposed method succeeded in generating explanations

using the above-mentioned technique. This allows explanation generation using the three styles

listed in the right-hand column of Table 2.1. Because this study was used for comparison to our

proposed work, we elaborate on the technical issues of this study in Section 2.2.5.3. MoviExplain
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Figure 2.10: An Example of SemAuto’s Output, Source: [8].

8 is a project created by Symeonidis et al. [9]. It utilizes the idea of [111] where users are grouped

into biclusters, which means each set of users are assigned to a set of movies. One benefit of this

technique is that a feature, such as a genre, could be extracted from this assignment, leading to

explaining the recommendation to users based on this feature. The styles of explanation used in

this study were KSE and ISE in addition to a mixed style of the two previous styles, which they

called KISE. An example of this system is shown in Figure 2.11. A user study was conducted

in an attempt to justify their assumption that KISE’s explanation style is better than the other two

styles; they reached the conclusion that their proposed style was preferable by users more than the

other two styles using various statistical metrics, such as mean, standard deviation, and Pearson

correlation.

Tagsplanation [10] is elaborated on in Section 2.2.5.2 and Figure 2.12, which presents an exam-

ple. The next study is a Master’s thesis written by Raza Ul Haq [11]. The author proposed a hybrid,

white box, and explainable approach for recommending movies. In this study, both collaborative

8http://delab.csd.auth.gr/MoviExplain
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Figure 2.11: An Example of MovieExplain’s Output, Source: [9].

Figure 2.12: An example of Tagsplanation’s Output, Source: [10].

and content-based filtering techniques were used and relied on additional information obtained from

items and users. The author emphasized that interpretations are crucial in gaining customers’ trust

and satisfaction. A user study was conducted that included fifty participants to test the system. The

results show that most participants preferred to see justifications alongside the recommendations;

see Figure 2.13 for an example recommendation. Wang et al. [114] discussed the necessity of

side information in generating explanations. In this study, a combination of embedding-based and

tree-based models was used to take advantage of good recommendations from the embedding-based

model and transparency from the tree-based model. The evaluation showed that their system was

superior to other baseline approaches.

The research of [12] focused on adding explanations to a black box recommender system by

using structured knowledge bases. The system takes advantage of historical user preferences for

producing accurate recommendations and structured knowledge bases about users and items for

generating justifications. After the model recommends items, a soft matching algorithm is used,

using the knowledge bases, to serve personalized explanations for the recommendations. They argue

that their model outperforms other baseline methods. An example of the explanation is illustrated

in Figure 2.14
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Figure 2.13: An Example of Hybrid-RS’ Output, Source: [11].

Figure 2.14: An Example of Embedding-RS’ Output, Source: [12].
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RippleNet [115] is an approach that used Knowledge Graphs in collaborative filtering to provide

side information to the system in order to overcome the dilemma of sparsity and cold start. This

black box system takes advantage of KGs, which are constructed using Microsoft Satori 9 , to better

enhance the recommendation accuracy and transparency. They stimulate the idea of water ripple

propagation on understanding the user preferences by iteratively considering more side information

and propagating the user interests and showed that their model performed better than state-of-the-art

models. In section 2, we discussed study number 15 [95] in Table 2.2 in detail. This study proposed

a black box system that utilizes the semantic web to increase the system’s accuracy. However, it

lacks transparency due to the failure to generate explanations during the process of building the

model.

MORE [116] is a Facebook application that recommends movies. The system leverages linked

data from DBpedia to calculate movie similarities for use in the recommendation process, and by

doing so, helping with the cold-start issue. They exploited the semantic version of the vector space

model (sVSM) for similarity calculations, then used precision and recall to test the proposed model

against baseline approaches. They claimed that the validity of their system is higher than other

approaches.

Bocanegra [117] focused on building a semantic content-based recommender system for the

health domain. The authors argued that the internet has an abundance of health-related videos that

need to be managed correctly so customers can gain the most benefit from them. The proposed

method exploits a couple of ontologies in the health domain to provide extra information for the

recommendation process. The system was evaluated in a study of 26 health professionals, who

agreed on the relevance of the recommended videos to their desires.

Zhou [118] extended the recommender system to explore not only historical user preferences but

also the semantics of different items. They adopted the path technique of heterogeneous information

network (HIN) to measure the relatedness of different objects. The system succeeded in providing

semantic-aware recommendations in addition to recommending related items of same and different

object types. Another study that used semantic web technologies in enriching the recommendation

process is [119]. In this work, semantic information was used to determine the similarity of users

and items as a step toward producing more accurate recommendations. The cold-start problem was

9https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
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resolved in this work, and the results show that their technique outperformed similar baseline tech-

niques. A HIN is also used in [120] as a regularization term in matrix factorization. In addition to

users’ previous ratings, additional related information obtained from the HIN is effective in enhanc-

ing the recommendation process, leading to more accurate output. The evaluation process ensures

the quality of the system in comparison to other approaches.

A doctoral study was conducted by Alfarhood [121] that investigated how the work of Passant

[69] could be improved. Alfarhood stated that one drawback of an LDSD algorithm is that it mea-

sures the similarity of two resources based only on their direct or indirect links. The author argued

that engaging more indirect links could lead to a better result. Floyd-Warshall, an all pair shortest

path algorithm [133], was employed to enrich the resources’ similarity matrix by including more

indirect links in the calculation of the semantic distance between resources. The system is called

propagating linked data semantic distance (PLDSD). The final results confirmed that the proposed

LOD-based recommender system produced more accurate recommendations than baseline methods.

Semantic web technologies increase the effectiveness of a recommender system [122]. Current

syntactic-based recommender systems could improve their performances by considering semantics.

The authors of [122] proposed a hybrid recommender system that leverages social networks in the

recommendation process. The results reveal the proposed system performed more effectively in

comparison to other baselines.

A black box approach was proposed by [123], who aimed to exploit social information and

use it to improve the recommender system. The technique they used is the well-known matrix

factorization algorithm [19], to which they added a new social regularization term. This new term

introduces social information to MF as a social constraint. The authors stated that the system is

domain free. The results of their experiments show that their system was superior to other baseline

approaches. Another early black box approach was proposed by [96]. This approach was described

previously in section 3.

Moreover, [124] emphasized that sparsity is a well-known problem in matrix factorization-based

recommender systems, and existing approaches in the literature exploit external information, such

as reviews and synopses to tackle this issue. However, this approach affects the understandability

of the system. To overcome this issue, a convolutional neural network (CNN) and probabilistic

matrix factorization were integrated, resulting in a context-aware recommender system (ConvMF).
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This technique allows for capturing the side information that plays a major role in enhancing the

accuracy of the system. With datasets from MovieLens and Amazon, the authors claimed that their

system significantly outperformed other baseline systems.

The last study listed in Table 2.2 is [125]. This study focused on learning the semantic related-

ness of concepts in the field of e-learning. The information was obtained from semantic versions

of some encyclopedias and then the skip-gram model was applied to create concept vectors that

allow the system to measure the semantic relatedness of concepts. Thus, recommendations could

be offered to the user accordingly. The authors stated that the model is domain free and does not

rely on historical data regarding users’ preferences.

In the next subsection, we elaborate further on the details of EMF as described in [13] [14] [15],

a doctoral study conducted by Behnoush Abdollahi of the University of Louisville.

2.2.5.3 Explainable Matrix Factorization (EMF)

In this section, EMF [13] [14] [15] is reviewed. This study introduced a solution to a known

problem in matrix factorization, the black box, which means recommending items to users without

the ability to explain the recommendations. Explaining recommendations encourages users to ac-

cept the recommendation. Therefore, the authors proposed a solution to this problem in the form of

an explainable matrix factorization approach. They managed to explain the recommendations that

matrix factorization produces while simultaneously calculating the predictions of missing values.

They did this by constructing a new graph that represents the explainability score for each user for

each item using the neighborhood technique, which bases explanations on the fact that items liked

by close neighbors are more likely to be also liked by the target user. Hence, the recommendation

comes with an explanation. They explained recommendations using two styles: user-based and

item-based neighborhood style explanations (NSEs) as illustrated in Figure 2.15. [13] calculated an

explainability score as follows

Wi j =


|N′ (i)|
|Nk(i)| i f |N′ (i)|

|Nk(i)| > θ n

0 otherwise
(2.15)
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Figure 2.15: EMF, Source: [13] [14] [15] neighborhood style explanation examples; the example
on the left is user-based, and the example on the right is item-based.

where N
′
(i) is the set of neighbors of user i who rated item j, and Nk(i) represents the list of k

nearest neighbors of i. θ n is a threshold that determines whether item j is an explainable item for

user i. The authors used the cosine similarity to calculate distances between users.

The objective function is as follows:

J = ∑
i, j∈R

(
ri j− piqT

j
)2

+
β

2
(
‖ pi ‖2 + ‖ q j ‖2)+ λ

2
(pi−q j)

2Wi j (2.16)

Here, ri j is the rating of item j by user i and R is the matrix of user-item ratings, pi is the user latent

space, q j is the item latent space, and β

2

(
‖ pi ‖2 + ‖ q j ‖2

)
is a regularization term with coefficient

β for weighting, and λ denotes the explainability regularization coefficient that insures a smooth

inclusion of the new term to prevent over-fitting. Wi j is the explainability matrix.

For optimization, the stochastic gradient descent [93] technique is used to minimize the objec-

tive function. Hence, the update rules for p and q are as follows:

pi← pi +α(2
(
ri j− piqT

j
)

q j−β pi−λ (pi−q j)Wi j (2.17)

q j← q j +α(2
(
ri j− piqT

j
)

pi−βq j−λ (pi−q j)Wi j (2.18)

They conducted the experiment using the MovieLens 100k dataset, which consists of 943 users and

1,682 movies. Two evaluation metrics were used, RMSE and nDCG@10. Moreover, they compared

the result with four collaborative filtering methodologies: standard NMF [19], probabilistic MF

[126], user-based top-n CF [134], and item-based top-n CF [135]. The outcomes of EMF [13] [14]

[15] outperformed most of the techniques. To evaluate explainability, they used mean explainability

precision (MEP) and mean explainability recall (MER) metrics. Comparisons to the five baseline
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techniques showed that EMF outperformed the other techniques. The explanation style was in the

form of a bar chart showing the number of neighbors who rated the recommended item with a high

score.

2.2.5.4 Goals and Metrics

Table 2.3 contains the explanatory goals and their definition [99]. In our study, we focus on

increasing the effectiveness of the explanation, which helps users make better decisions.

Table 2.3: Explanation objectives.
Aim Definition

Transparency Explain how the system works
Scrutability Allow users to tell the system is wrong

Trust Increase users’ confidence in the system
Effectiveness Help users make good decisions

Persuasiveness Convince users to try or buy
Efficiency Help users make decisions faster

Satisfaction Increase the ease of use or enjoyment

2.2.5.5 Explanation Evaluation

Three types of metrics are used to evaluate recommendation explanations [13, 15]: MEP, MER,

and EF1 scores:

MEP =
1
|U | ∑u∈U

|R∩W |
|R|

(2.19)

MER =
1
|U | ∑u∈U

|R∩W |
|W |

(2.20)

xF− score = 2∗ MEP∗MER
MEP+MER

(2.21)

U represents the total number of users, while R is the set of recommended items, and W denotes

the set of explainable items. MEP computes the ratio of the number of simultaneously recommended

and explainable items to the total number of recommended items across all users. Similarly, MER

calculates the ratio of the number of simultaneously recommended and explainable items across the

total number of explainable items and, again, across all users.
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2.2.6 Inference of Facts

In this section, we review the literature of inference of facts and rules that have been applied in

the field. In artificial intelligence, inference means deriving new facts from historical ones [136].

When the system asks the knowledge base a question or sends a query, the knowledge base of the

system that is built on historical knowledge should answer based on what it already knows. Inferring

the right answer is like finding a needle in a haystack [136]. Uncertainty in AI means acting while

having an incomplete observation or less determinism, which will cause the system to be in an

uncertainty state. If a student is planning to graduate in four years G4, this does not imply that he or

she will certainly graduate as planned because other factors, such as financial difficulties, physical

and mental health issues, and other factors, may cause a delay [136].

In the semantic web, inference rules are used to derive new knowledge from known facts [137].

For example, if A is of type B, while B is of type C, then consequently, A is of type C. This

example shows complete certainty; however, uncertainty is impossible in some cases. To handle

the uncertainty issue, Bayesian inference is applied to compute P(A∩B) = P(A/B) ∗P(B). For

example, if a person has the f lu, and the f lu is a disease, then the person may have a disease.

The inference concept has been adopted in various studies involving recommender systems.

Users’ preferences are captured either explicitly via ratings or implicitly by inferring them [138]. In

this study, the inference technique is applied using a weighted ordered weighted average (WOWA)

operator [139] where concepts are given weights according to their distances from each other. [140]

stated that collaborative filtering-based recommender systems produce subjective predictions be-

cause they rely solely on ratings. Therefore, the use of inference rules that take advantage of

objective metadata leads to more personalized and context-aware recommendations. One of the

objectives of this study is to increase the accuracy of the recommendations using inference rules.

The following is an example of an inference rule: If the rating of aspect A of the rated item i is 5 and

the aspect of item j is the same as that of the rated item i then increase the predicted rating of item

j. This example illustrates that if the user likes an item, then he or she may also like specific aspects

of that item, resulting in an increase in the predicted rating of items that share these aspects. [16]

adapted the notion of inferred rules by designing a recommender system that infers the desire of

the user using input data from the user and then recommending a possible match. The system was
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Figure 2.16: Snapshot of the camera recommender system, Source: [16].

designed to recommend the best camera for a user. The system asks the user for the desired features,

such as the price, weight, and length and then calculates the distance between each product in the

dataset and the specifications given by the user. Based on this calculation, a list of recommendations

is shown to the user and divided into three categories, very recommendable, recommendable, and

less recommendable. Figure 2.16 depicts a snapshot of the system.

2.3 Summary

To summarize, in this chapter, we summarized the techniques commonly used in recommender

systems, such as collaborative, content-based, and others, as well as the role of the semantic web

in the field of recommender systems. Lastly, a review of explanations’ impact on recommender

systems was presented.
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CHAPTER 3

PROPOSED WORK

3.1 Introduction

Our goal is to integrate semantic web technologies into the process of building a recommender

system model that uses a matrix factorization technique to produce more meaningful explanations.

Thus, we propose four approaches that aim to enrich user- and item-side information by leverag-

ing data from the semantic web: asymmetric semantic explainable matrix factorization (ASEMF)

[128] (sec. 3.2), semantic explainable matrix factorization (SemEMF)(sec.3.3), merged semantic

explainable matrix factorization (MergedSemEMF)(sec. 3.4), and linked data semantic distance

matrix factorization (LDSDMF) (sec. 3.5). See Figure 3.1 for an illustration and a comparison of

the proposed methods to other approaches. We published some of this research in KDIR 2018 [128]

and KDIR 2019 (to appair in Proceedings of KDIR 2019).

3.1.1 Semantic Knowledge Graphs (KGs)

The web is abundant with information that is being harvested and structured into (Knowledge

Graphs). KGs are extensive networks of objects, along with their properties, their semantic types,

and the relationships between objects representing factual information in a specific domain [141].

Examples of KGs are DBpedia [142], Freebase [72], Wikidata [143], YAGO [144], NELL [145],

and the Google Knowledge Graph [146]. In this work, DBpedia is used to build the desired KGs

about users, items, and semantic attributes. In order to study the effect of one item semantic at-

tribute or semantic feature (e.g. actor, author, etc) when building the semantic KG in increasing

the transparency of the system, one semantic feature information is used in the three proposed
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Figure 3.1: Proposed methods and other approaches.

models ASEMF [128] (3.2), SemEMF (3.3), and MergedSemEMF (3.4). However, in the last pro-

posed model, LDSDMF (3.5), more influential semantic attributes (subject(s), actor(s), director(s),

writer(s), author(s), publisher(s), etc) are added in the process of building the semantic KGs to bet-

ter capture the semantic similarity between items. The LDSD algorithm [69] is used to weigh the

similarity between items. Then, Matrix Factorization (MF), [19] with the added regularization term

in Joint MF (JMF) [94], is used for building the explainable model.

3.1.2 The Semantic Web’s Effect in Latent Space

The semantic web or, as it is sometimes referred to, linked open data (LOD), is an online plat-

form for data that is linked using semantics. A prime example of LOD is DBpedia, which is the

semantic web version of Wikipedia. The semantic web allows us to infer closeness or similarities

between entities based on their shared semantic properties even when these entities are not directly

comparable (e.g. different types of entities, different format, etc). This great advantage drives us to

build semantically-rich latent spaces for both users and items in the matrix factorization process. We

42



will initially consider only one item semantic attribute (e.g., the starring actor or actress property in

the movie domain or the author property in the book domain) to design the first three models. Then

we will use multiple semantic attributes or semantic features to design the fourth model. Matrix

factorization allows us to predict how likely each actor is to star in a movie or an author to write a

book and the probability of each user liking or disliking a certain semantic attribute. Our approach

will create semantic knowledge graphs about each item (e.g., a movie or book) and each user before

using the users’ prior explicit preferences/ratings to predict unseen items’ ratings. In addition to

providing explainable recommendations, our approach overcomes the cold-start problem because

the semantic properties help recommend new items that have not been rated or seen yet by any user.

3.2 Asymmetric Semantic Explainable Matrix Factorization (ASEMF)

Asymmetric factorization [96] handles more than one domain in the process of building a het-

erogeneous matrix factorization model. In this work, the items’ semantic data are the first domain,

whereas users’ known ratings are the second domain. A flow chart of this method is shown in Figure

3.2. There are two sources of knowledge, the users’ explicit preferences and items’ semantic data

retrieved via SPARQL 1 queries.

3.2.1 ASEMF Semantic KGs

Figure 3.2 shows a flowchart of our proposed methodology. First, knowledge sources are pre-

processed and prepared to be used as inputs to our algorithm. Explicit preferences are the users’

known ratings, whereas semantic data consists of the items’ additional information, retrieved from

DBpedia using a SPARQL endpoint. To calculate a semantic explainability score for each user

with respect to each item, we need to transform the semantic data from its categorical format into

a quantitative format by, for example, giving identification numbers to semantic features. We used

three types of relationships to construct three explainability graphs. The first graph is item-based,

namely the relationship between each item (e.g., a movie or book) and each semantic feature (e.g.,

an actor or author). The second graph is user-based, namely the relationship between each user and

each semantic feature. The last graph is computed using the dot product of the two previous graphs

1https://www.w3.org/TR/rdf-sparql-query/
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Figure 3.2: Asymmetric Semantic Explainable Matrix Factorization (ASEMF).
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and results in a semantic KG for each user and item based on the semantic feature that was chosen

at the beginning of the process. As shown in Figure 3.2, three different semantic graphs are thus

constructed during the knowledge source stage:

1. An item-based semantic KG (SI).

2. A user-based semantic KG (SU ).

3. A user-item-based semantic KG (SUI).

The first graph is a binary graph that consists of items (e.g., movies 2 or books 3 and semantic

features retrieved via SPARQL endnote 4). This graph, SI , is defined as follows:

SI
f ,i =


1 i f f possessed byi

0 otherwise
(3.1)

where f represents a semantic feature, and i denotes a movie.

The user-based graph SU is a user-by-semantic-feature graph. This graph is constructed based

on the following formula:

SU
f ,u =


N i f f possessed byitemsrated byu

0 otherwise
(3.2)

f is a semantic feature, and u represents a user. N is, for example, the number of times each

actor f had starred in movies that user u has rated in the past.

The final graph SUI , the user-item graph, is the product of the two previous graphs:

SUI
u,i =


SU

f ,u ·SI
f ,i i f SU

f ,u ·SI
f ,i > θ s

0 otherwise
(3.3)

2https://grouplens.org/datasets/movielens/
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/
4http://dbpedia.org/sparql
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3.2.2 Model Building

Figure 3.2 shows that after all graphs are constructed, the algorithm handles the rest of the

process to compute a model using an asymmetric matrix factorization framework. The model is

built in two steps:

1. The first step is the factorization of the semantic graph using a number of latent features k to

learn the semantic latent spaces. The following is the matrix factorization for the semantic

graph:

(a) Item-based semantic KG:

SI
f xi ' PF

f xkXQT
ixk (3.4)

(b) User-based semantic KG:

SU
ux f ' PuxkXQF,T

f xk (3.5)

(c) User-Item-based semantic KG:

SUI
uxi ' PuxkXQT

ixk (3.6)

SI , SU , and SUI are the semantic KGs, either item-based, user-based, or user-item based,

respectively. f is the semantic feature (e.g., the starring actor or author), while i denotes the

item (e.g., a movie or book), and u is the user. PA
f xk represents the semantic feature lower-rank

dimensional space, where Qt
ixk denotes the item’s lower-rank dimensional space. F denotes

the semantic feature name (e.g. actor), and T denotes the matrix transpose. The objective

functions to be minimized over either of the constructed semantic KGs are as follows:

J1 = ∑
f ,i∈S

(SI
f ,i− pF

f qT
i )

2 +
β

2
(‖ pF

f ‖2 + ‖ qi ‖2) (3.7)

J2 = ∑
u, f∈S

(SU
u, f − puqF,T

f )2 +
β

2
(‖ pu ‖2 + ‖ qF

f ‖2) (3.8)
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J3 = ∑
u,i∈S

(SUI
u,i − puqT

i )
2 +

β

2
(‖ pu ‖2 + ‖ qi ‖2) (3.9)

The L2 regularization term β

2 (‖ pF
f ‖2 + ‖ qi ‖2) in Equation 3.7 is added to prevent overfitting

and weighted using coefficient β , which is responsible for the smoothness of the new term.

While J1 is a non-convex function, it is convex with respect to either the p or the q vectors

individually. Therefore, we can optimize this function by updating p and q alternatively

using stochastic gradient descent [93], which will allow updating p and q iteratively until the

objective function J1 converges. Considering Equation 3.7, the gradient of J1 with respect to

pA
f is

∂J1

∂ pF
f
=−2(SI

f ,i− pF
f qT

i )qi +β pF
f (3.10)

The gradient of J1 with respect to qi is

∂J1

∂qi
=−2(SI

f ,i− pF
f qT

i )pF
f +βqi (3.11)

The gradients of J2 and J3 are similar to J1’s gradient. The gradient-based update rules when

considering the item-based semantic KG in J1 are given by

pF,(t+1)
f ← pF,(t)

f +α(2(SI
f ,i− pF,(t)

f (q(t)i )T )q(t)i −β pF,(t)
f ) (3.12)

and

q(t+1)
i ← q(t)i +α(2(SI

f ,i− pF,(t)
f (q(t)i )T )pF,(t)

f −βq(t)i ), (3.13)

where α is the learning rate.

When considering the user-based semantic KG in J2, the update rules are given by

p(t+1)
u ← p(t)u +α(2(SU

u, f − p(t)u (qF,(t)
f )T )qF,(t)

f −β p(t)u ) (3.14)

and

47



qF,(t+1)
f ← qF,(t)

f +α(2(SU
u, f − p(t)u (qF,(t)

f )T )p(t)f −βqF,(t)
u ), (3.15)

When considering the user-item-based semantic KG in J3, the update rules are

p(t+1)
u ← p(t)u +α(2(SUI

u,i − p(t)u (q(t)i )T )q(t)i −β p(t)u ) (3.16)

and

q(t+1)
i ← q(t)i +α(2(SUI

u,i − p(t)u (q(t)i )T )p(t)u −βq(t)i ) (3.17)

2. During the second step, the algorithm performs factorization depending on which semantic

KG is chosen. First, we perform the matrix factorization on known ratings:

Ruxi ' PuxkXQT
ixk (3.18)

Ruxi is the matrix of known ratings, while Pu represents the user’s lower-rank latent space, and

Qi is the item’s lower-rank latent space. The idea here is that, instead of using a randomized p

and q for the factorization process, we will initialize them using semantic data during the first

step, which will give meaningful values for p and q. Then, we transfer them to the second

step and update them again using the known ratings. The objective function to be minimized

over the given ratings is:

J4 = ∑
u,i∈R

(Ru,i− puqT
i )

2 +
β

2
(‖ pu ‖2 + ‖ qi ‖2) (3.19)

During the updating stage, depending on which KG is used in the first step, there will be three

cases:

(a) Item-based semantic KG (in J1): From the first step, the user’s latent space p will be

discarded and randomized, while the item’s latent space q will be transferred to the

second step and updated using the known ratings as follows:
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p(t+1)
u ← p(t)u +α(2(Ru,i− p(t)u (q(t)i )T )q(t)i −β p(t)u ) (3.20)

q(t+1)
i ← q(t)i +α(2(Ru,i− p(t)u (q(t)i )T )p(t)u −βq(t)i ) (3.21)

(b) User-based semantic KG (in J2): From the first step, the user latent space p will be

transferred to the second step and updated using the known ratings while the Item latent

space q will be discarded and randomized. The update rules are the same as in 3.20 and

3.21.

(c) User-item semantic KG (in J3): From the first step, both the user’s latent space p and the

item’s latent space q are transferred to the second step and updated using known ratings.

Again, the update rules are the same as in 3.20 and 3.21.

3.2.3 Explanation Style

When the model recommends a movie, it attaches an explanation. As [101] stated, three expla-

nation styles are used in recommender systems: NSE, ISE, and KSE. In this method, we use ISE

style explanation to show the influence of users’ semantic property preferences on making recom-

mendations. Since [98] found that a histogram-like explanation interface was the most preferred by

users, we adopt this format for our explanation. Another possible style is to show a plain text inter-

face on which the most influential semantic property in the recommendation is mentioned. Figures

3.3 and 3.4 show examples of semantic ISE explanations for two sample users.
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Figure 3.3: A histogram-like semantic ISE (left) and a plain text semantic ISE (right) recommenda-
tion for sample user 1.

Figure 3.4: A histogram-like semantic ISE (left) and a plain text semantic ISE (right) recommenda-
tion for sample user 2.

3.3 Semantic Explainable Matrix Factorization (SemEMF)

In Section 2.2.5.3, we reviewed explainable matrix factorization, which was proposed by [13]

[14] [15] to produce explanations for recommendations using the neighborhood technique. Items

that are liked by neighbors are more likely to be liked by the target user. Hence, the explanation, in

the latent space, is in the form of a matrix of explainability scores for each user and each item. This

matrix contributes to the process of building the latent space for both vectors, users, and items.
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Figure 3.5: Semantic Explainable Matrix Factorization.

The data used in constructing the explainability score are merely the known ratings. For this

reason, we propose a new method that calculates the explainability score using semantic data, which

will allow a greater variety in the explanations. Figure 3.5 shows a flow chart of our proposed

method.

3.3.1 SemEMF Semantic KGs

Figure 3.5 shows that preparing the knowledge source is the first step in building the model.

The user-item-based semantic KG (SUI) that we discussed in sec. 3.2.1 is used to compute the

explainability scores based on the semantics to train our model. This process is discussed in detail

in the next section.

3.3.2 Model Building

Unlike [13] [14] [15] which used the neighborhood technique in producing the explainability

scores, we use semantic data. Therefore, after computing the ratings and semantic explainability
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graphs, we introduce the following objective function to be minimized:

minJ = ∑
u,i∈R

(Ru,i− puqT
i )

2 +
β

2
(‖ pu ‖2 + ‖ qi ‖2)+

γ

2
‖ pu−qi ‖2 SUI

u,i (3.22)

The first two terms of the formula were used in [19], and include a regularization term for each

unknown parameter (latent vector) to avoid over-fitting, with β being a regularization coefficient

that controls the smoothness of this newly added term. The third term incorporates the new term

that handles the semantic explainability graph. γ is a coefficient that ensures the smoothness of

the newly added term, while SUI
u,i is the semantic explainability score of user u for item i. The

construction of SUI is detailed in sec. 3.2.1

We can utilize stochastic gradient descent to update p and q iteratively until the convergence of

J.

The gradient of J with respect to pu is calculated as follows:

∂J
∂ pu

=−2(Ru,i− puqT
i )qi +β pu− γ(pu−qi)SUI

u,i (3.23)

The gradient of J with respect to qi is

∂J
∂qi

=−2(Ru,i− puqT
i )pu +βqi + γ(pu−qi)SUI

u,i (3.24)

Using the gradients, the formulation of the updating rules will be

p(t+1)
u ← p(t)u +α(2(Ru,i− p(t)u (q(t)i )T )q(t)i −β p(t)u − γ(p(t)u −q(t)i )SUI

u,i ) (3.25)

q(t+1)
i ← q(t)i +α(2(Ru,i− p(t)u (q(t)i )T )p(t)u −βq(t)i + γ(p(t)u −q(t)i )SUI

u,i ) (3.26)

The main difference between our method and the basic matrix factorization method [19] is that

our method builds a model that can generate recommendations and explanations simultaneously.

Our model also differs from [13] [14] [15] because we exploit the semantic data in the process of

generating explanations. Furthermore, this method differs from the ASEMF method, which was

presented in sec. 3.2, by virtue of requiring only one step to build the model.
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3.3.3 Explanation Style

The explanation style in this method is similar to the first explanation style in the previous

method, which was semantic ISE (see sec. 3.2.3). Examples of plain text and histogram-like expla-

nations can be seen in Figures 3.3 and 3.4.

3.4 Merged Semantic Explainable Matrix Factorization (MergedSe-

mEMF)

In this section, we propose a new method that incorporates EMF and SemEMF methods in

one approach. The intuition here is that since EMF and SemEMF are both designed to generate

explanations by adding a new regularization term to the MF, combining both techniques may result

in better performance. Once the model is built, and to generate explanations, there will be three

available options. One is to allow the target user to choose between the two explainability graphs

as the explanation generation base. The second option is to display both styles, and the third option

is to automatically choose the better style based on the explainability score. A flow chart of this

method is shown in Figure 3.6.

As seen in Figure 3.6, the first step is to have the input data, which are the known ratings,

neighborhood explainability score graph, and semantic explainability score graph. Then, p and

q will be iteratively updated using stochastic gradient descent. Finally, the recommendation and

explanation will be provided.

3.4.1 MergedSemEMF Semantic KGs

The semantic KG follows the user-item-based style, which we explained in Section 3.2.1.

3.4.2 Model Building

In the model building stage, since we are including both explainability score graphs in the

process of building the user and item latent space vectors, the following objective function is for-

mulated:
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Figure 3.6: Merged Semantic Explainable Matrix Factorization.

J = ∑
u,i∈R

(Ru,i− puqT
i )

2 +
β

2
(‖ pu ‖2 + ‖ qi ‖2)+

λ

2
‖ pu−qi ‖2 Wu,i +

γ

2
‖ pu−qi ‖2 SUI

u,i (3.27)

The first three terms are the explainable matrix factorization (EMF) objective [13] [14] [15],

which was described in Section 2.2.5.3. The last term is where the semantic explainability scores

graph, SUI , is handled. SUI is the semantic explainability score graph, which was detailed in Section

3.2.1. γ is a coefficient used to control the smoothness of the new term.

We can apply stochastic gradient descent to update p and q iteratively until the convergence.

The derivative of J with respect to pu is

∂J
∂ pu

=−2(Ru,i− puqT
i )qi +β pu−λ (pu−qi)Wu,i− γ(pu−qi)SUI

u,i (3.28)

The derivative of J with respect to qi is
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∂J
∂qi

=−2(Ru,i− puqT
i )pu +βqi +λ (pu−qi)Wu,i + γ(pu−qi)SUI

u,i (3.29)

Using the gradient, the formulation of the updating rules is given by

p(t+1)
u ← p(t)u +α(2(Ru,i− p(t)u (q(t)i )T )q(t)i −β p(t)u −λ (p(t)u −q(t)i )Wu,i− γ(p(t)u −q(t)i )SUI

u,i ) (3.30)

q(t+1)
i ← q(t)i +α(2(Ru,i− p(t)u (q(t)i )T )p(t)u −βq(t)i +λ (p(t)u −q(t)i )Wu,i + γ(p(t)u −q(t)i )SUI

u,i ) (3.31)

3.4.3 Explanation Style

As discussed previously at the beginning of this section, there will be three options for showing

explanations. The first option is to allow the target user to choose which explainability graph to rely

on to generate the explanation. The second option is to allow the algorithm to decide, and the third

option is to display both explanations. In this work, we use the simple option and show the semantic

ISE as done in sections 3.2 and 3.3. An example of a neighborhood-based style explanation can be

seen in Figure 2.15. For an example of a semantic explanation, please refer to Figures 3.3 and 3.4.

3.5 Linked Data Semantic Distance Matrix Factorization (LDSDMF)

In the previous three methods, we relied on one property to construct the semantic explainability

graph. However, in this section, we utilize LDSD [69] to build a multi-property semantic explain-

able graph to be used within our explainability regularization term. Stochastic gradient descent is

used, as in the previous methods, to update the user and item latent space vectors. Figure 3.7 shows

a flowchart of this new method.

The flowchart starts with data preprocessing, where two input items, the known ratings and the

new constructed semantic explainability graph, are prepared. Then, the model is learned based on

these graphs using SGD. Predictions are then computed, and hence, recommendations with expla-

nations are presented to the target user. In the following sections, the semantic graph and model

building are discussed in greater detail.
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Figure 3.7: LDSDMF flowchart.

3.5.1 Linked Data Semantic Distance (LDSD)

Passant [2] proposed a method to build a music recommender system using Semantic Web

resources. The proposed algorithm captures both in-going and out-going as well as direct and

indirect links between entities. Figure 3.8 shows a generic example of a semantic KG containing

entities and links. ri in Figure 3.8, represents a resource (e.g. movie, actor, etc). l j is a link or

property (e.g. starring, directedBy, etc). Out of ri and l j we can extract six RDF triples that exist in

this graph and they are:

E = {(l1 : r1 : r2), (l1 : r2 : r1), (l2 : r1 : r2), (l2 : r1 : r3), (l3 : r1 : r4), (l3 : r2 : r4)}.

As mention earlier, there are in-going and out-going, as well as direct and indirect relation-

ships between resources, which in total, represent the Linked Open Data (LOD). [2] proposed three

semantic similarities in such data:

1. Direct similarity:

If there exists a property (lx) that directly links two resources (ry and rz), then the value C(d)
lx,ry,rz
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Figure 3.8: A Generic Semantic Knowledge Graph.

is 1, otherwise 0:

C(d)
lx,ry,rz

=


1 i f exists(lx : ry : rz)

0 otherwise
(3.32)

C(d) denotes a triple of semantic data, where superscript (d) means direct. Looking back to

Figure 3.8, there exist six direct relationships between the four resources. Therefore, using

equation 3.32, we have the following C(d) values:

C(d)
l1:r1:r2 = 1

C(d)
l1:r2:r1 = 1

C(d)
l2:r1:r2 = 1

Similarly, we can aggregate similarities over many properties as in equation 3.33,

C(d)
n,ry,rz =


∑lx Clx,ry,rz i f exists(lx : ry : rz)

0 otherwise
(3.33)

C(d)
n:r1:r2 = 2
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also we can aggregate similarities over many target resources as in equation 3.34

C(d)
lx,ry,n =


∑rz Clx,ry,rz i f exists(lx : ry : rz)

0 otherwise
(3.34)

C(d)
l2:r1:n = 2

The first similarity function is obtained:

LDSD(d)(ry,rz) =
1

1+C(d)(n,ry,rz)+C(d)(n,rz,ry)
(3.35)

A weighted version of this function is introduced using weighting methodology in [147]:

LDSD(wd)(ry,rz) =
1

1+∑x
C(d)(lx,ry,rz)

1+log(C(d)(lx,ry,n)
+∑x

C(d)(lx,rz,ry)

1+log(C(d)(lx,rz,n)

(3.36)

2. Indirect in and out similarity:

Another LDSD algorithm is designed to handle the indirect, in and out, RDF triples. Looking

at the following formula:

C(ii)
lx,ry,rz

=


1 i f exists n in (lx : n : ry) and (lx : n : rz)

0 otherwise
(3.37)

C(io)
lx,ry,rz

=


1 i f exists n in (lx : ry : n) and (lx : rz : n)

0 otherwise
(3.38)

We can compute the following indirect in and out similarities values respectively:

C(ii)
l2,r2,r3

= 1 (3.39)

C(io)
l3,r1,r2

= 1 (3.40)
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The idea basically is that if there exists a resource that is in both triples with the same property,

then the value is 1, otherwise 0. Using this assumption, we can infer the following relation-

ships from Figure 3.8: (note that Superscript (ii) indicates indirect in and (io) indicates indirect

out).

C(io)
l3,r1,r2

= 1 means that both r1 and r2 are indirectly linked by outgoing link l3 from both

resources to r4. For indirect incoming relationship, here is an example from the same Figure:

C(ii)
l2,r2,r3

= 1 where we can see that the link l2 is ingoing into both resources r2 and r3 from one

resource r1.

Finally the equation for the LDSD similarity is given by combining both ingoing and outgoing

similarities:

LDSD(i)(ry,rz) =
1

1+C(ii)(n,ry,rz)+C(io)(n,ry,rz)
(3.41)

A weighted version is given by:

LDSD(wi)(ry,rz) =
1

1+∑x
C(ii)(lx,ry,rz)

1+log(C(ii)(lx,ry,n)
+∑x

C(io)(lx,ry,rz)

1+log(C(io)(lx,n,rz)

(3.42)

3. Combined similarity:

Lastly, a final combined and weighted version of LDSD is formulated as follows:

LDSD(wc)(ry,rz) =

1

1+∑x
C(d)(lx,ry,rz)

1+log(C(d)(lx,ry,n)
+∑x

C(d)(lx,rz,ry)

1+log(C(d)(lx,rz,n)
+∑x

C(ii)(lx,ry,rz)

1+log(C(ii)(lx,ry,n)
+∑x

C(io)(lx,ry,rz)

1+log(C(io)(lx,n,rz)

(3.43)

It combines both weighted, direct and indirect, LDSD equations mentioned earlier.

To sum up, the similarity measures allow us to construct an item by item semantic similarity graph

using semantic data in order to use it as an explanation regularization term in our proposed method.

In our research, since we work on movie and book item domains, we focused on the indirect, in-

going and out-going, relationships. The reason is that there are almost no direct links between items.
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However, actors, as an example in the movie domain, can indirectly, both in and out, link different

items to each other. Equation 3.43 allows us to construct a semantic KG that captures direct and

indirect semantic relationships between items.

3.5.2 Model Building

The proposed loss function is inspired by the work of [19] and [94]. It is defined as follows:

J = ∑
u,i∈R

(Ru,i− puqT
i )

2 +
γ

2 ∑
i, j∈Sldsd

(Sldsd
i, j −qiqT

j )
2 +

β

2
(‖ pu ‖2 + ‖ qi ‖2) (3.44)

Ru,i represents the rating for item i by user u. pu and qi represent the low dimensional latent

factor vectors of users and items, respectively. Sldsd is the semantic KG constructed using equation

3.42. qi and q j indicate two items in the KG, Sldsd , and γ is a coefficient that weighs the contribution

of the new term, Sldsd . Stochastic gradient descent [93] is employed to update p and q iteratively

until J converges.

The gradient of J with respect to pu is given by:

∂J
∂ pu

=−2(Ru,i− puqT
i )qi +β pu. (3.45)

The gradient of J with respect to qi is given by

∂J
∂qi

=−2(Ru,i− puqT
i )pu +2γ(Si, j−qiqT

j )q j +βqi. (3.46)

The updating rules are given by:

p(t+1)
u ← p(t)u +α(2(Ru,i− p(t)u (q(t)i )T )q(t)i −β p(t)u ) (3.47)

q(t+1)
i ← q(t)i + α(2(Ru,i − p(t)u (q(t)i )T )p(t)u + 2γ(Sldsd

i, j − q(t)i (q(t)j )T )q(t)j − βq(t)i ). (3.48)
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3.5.3 Explanation Style

The semantic explanation KGs are constructed using the approach described in section 3.2.1 for

all semantic attributes, and hence explanations. In addition to the known ratings used to update qi,

the semantic explanation KGs also contribute to the final predicted rating of item i by user u.

3.6 Inferred Fact Style Explanation (IFSE)

In this work, a new explanation style we propose that utilizes the previously constructed KGs

on users and semantic attributes. In this style, the uncertainty degree of the users’ preferences for

semantic attributes is employed to justify a recommendation. Inference rules are used to derive new

knowledge from known facts [137]. For example, if A is of type B while B is of type C, then A

must be of type C. This example indicates complete certainty; however, in our work, we obtained

the uncertainty degree from the constructed user by semantic attribute matrix based on the work of

[128] which was presented in section 3.2. For example, if a user, u watched, interacted with, or

rated a certain item, i, and this item is linked to a certain semantic attribute, a, a new inferred fact is

derived: user u likes semantic attribute a to a certain degree (see Equations 3.1 and 3.2).

The likability degree depends on the number of times the user interacts with items that are linked

to that specific semantic attribute (see Equation 3.2). The item’s rating itself does not necessarily

reflect the user opinion about the underlying semantic attributes, he or she may dislike the item

but may still like some of the semantic attributes. For example, in the movie domain, if the user

rates a movie with 1 out of 5, this may happen because of bad directing, poor picture quality, etc,

not necessarily because of bad acting or a bad story. Thus, once the user rates a movie, this tells

us that he or she is showing an interest somehow towards the semantic attributes. Only through

accumulating the likes and dislikes over many items, we can infer a likeability degree towards a

particular semantic attribute. Figure 3.9 illustrates an example of an inferred fact in the movie

domain. In Chapter 4, we will show an example of this explanation style (see Figure 4.11) when we

describe the user study that we conducted in this study. Algorithm 1 below shows the steps of this

technique with referral to the corresponding equations.
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Algorithm 1 IFSE-based Explanation Generation Algorithm
Input: Active user (u), semantic Knowledge Graphs constructed using equations 3.1 and 3.2,

knowledge graphs originally retrieved from DBpedia using SPARQL
Output: IFSE-based histogram explanation
1. Use one of the proposed models in sections 3.2, 3.3, 3.4, or 3.5) to recommend the top n items

(i).
2. Find the similarities between user (u) and each selected semantic attribute ( f ) that exists in

the recommended item (i) based on the semantic KGs defined in the input section.
3. Generate the IFSE histogram using the similarities between the user (u) and each semantic

attribute ( f ) found in step 2.

Figure 3.9: Inferred Facts: Movie Example.
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CHAPTER 4

EXPERIMENTAL EVALUATION

In this chapter, we report the experimental results of our proposed methods. The evaluation

process focuses on evaluating our proposed methods against baseline approaches in terms of pre-

diction error rates, top-n recommendations, and the explainability of the recommended items using

appropriate measurements. The experimental setting and the three evaluation mechanisms, as well

as the results of a user study, are also presented.

4.1 Experimental Setting

Two different domains are used in this study to test the proposed methods: movies using the

100K MovieLens benchmark dataset 1, which includes 943 users, 1,682 movies, and 100K ratings,

and books using the book-crossing dataset 2, which includes 278,858 users, 271,379 books, and 1M

ratings. We mapped the movies and books to the DBpedia KG, which resulted in a reduction in the

total number of movies from 1,682 to 1,012 and books from 271,3798 to 2,217. Furthermore, in

the book domain, only users with at least 6 ratings and books that have been rated at least 6 times

were kept to reduce the sparsity and computational complexity. This is due to either the absence of

some movies or books in DBpedia or different spellings of some movie or book titles in the datasets.

Movie and book titles are used in the mapping process due to differences in IDs in all datasets. The

total number of ratings were reduced to 60K in the movie domain and 25K in the book domain after

mapping. Ratings in both datasets were normalized to the highest rating in the dataset. See Figures

4.1 and 4.2 for more details.
1https://grouplens.org/datasets/movielens/
2http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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Figure 4.1: The mapping process for the movie domain.

Figure 4.2: The mapping process for the book domain.

The semantic KGs’ sizes are shown in Tables 4.1 and 4.2. The first row shows the size of

the graphs of the already existed information about both movies and books before applying the

inferred fact mechanism, meaning that the relationship is direct between the items and the semantic

attributes. The second row shows the semantic KGs sizes after applying the IF mechanism, meaning

that new relationships now have been inferred between the user and the semantic attributes. Here

we used the new information to feed the semantic KGs, and hence build the models.

Only five semantic attributes were used in the movie domain and four in the book domain that

we believe are the most important and influential for the users. In other specialized domains, such

as medicine and education, a domain expert would be required in the process of choosing the proper

semantic properties. Other semantic attributes, such as music composer and budget in the movie

domain, and the type in the book domain, were judged to be less important factors from the user

prospective when justifying recommended movie to watch or book to read.

The data were split into two sets, and 90% of each user’s ratings were designated to be the

training set, while the remaining 10% was designated as the testing set. Parameters α , β , λ , and γ
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Table 4.1: The effect of applying the inferred fact mechanism on the semantic KGs’ sizes in the
movie domain; the first and second rows show the sizes before and after the application, respectively.

Preferences Ratings Subjects Actors Directors Producers Writers
Movies (Before IF) 60K 19983 6770 1577 1868 1944
Movies (After IF) 60K 818784 332484 92008 103943 110692

Table 4.2: The effect of applying the inferred fact mechanism to the semantic KGs’ sizes in the
book domain; the first and second rows show the sizes before and after the application, respectively.

Preferences Ratings Subjects Authors Publisher Literary Genre
Books (Before IF) 25K 3375 968 408 274
Books (After IF) 25K 2007447 213535 629067 888011

were tuned to their best values using cross-validation. The optimal values are α = 0.01, β = 0.1,

λ = 0.005, and γ = 0.1. Recall that α is the learning rate, β is the coefficient for the regularization

term, λ and γ are the controlling coefficient used to weight the contribution of the new terms, the

explainability graphs. Stochastic Gradient Descent was used to find the optimal solution.

We compared our methods to the following baseline methods: basic matrix factorization (MF)

[19], explainable matrix factorization (EMF) [13] [14] [15], basic asymmetric matrix factorization

(AMF) [96], and probabilistic matrix factorization (PMF) [126].

The hypothesis is that the mean of all metrics for all models are equal. We are trying to prove

that this is false by conducting a t-test experiments for all methods using all metrics. The models

were each executed 10 times while randomly initializing the user and item latent factors. Then we

calculated all metrics and performed the significance tests which are reported in this chapter.

4.2 Accuracy Evaluation

In order to evaluate our proposed methods in terms of accuracy, we used the root mean square

error equation as follows:

RMSE =

√
1
| T | ∑

(u,i)∈T

(
r′ui− rui

)2
. (4.1)

T represents the total number of predictions, while r
′
ui is the predicted rating for item i by user

u, and rui is the actual rating of item i by user u. Tables 4.3 and 4.4 show the error rate against the

number of latent features K in movie and book domains.
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Table 4.3: RMSE versus the number of latent factors K in the movie domain. SemEMF, MergedSe-
mEMF, ASEMF_UIB, and LDSDMF denote our proposed methods.

RMSE
K MF PMF AMF EMF SemEMF MergedSemEMF ASEMFUIB LDSDMF
10 0.205 0.698 0.236 0.205 0.207 0.207 0.205 0.204
20 0.212 0.698 0.27 0.211 0.213 0.213 0.204 0.204
30 0.214 0.698 0.309 0.215 0.216 0.216 0.204 0.204
40 0.216 0.7 0.344 0.217 0.217 0.218 0.203 0.205
50 0.217 0.7 0.374 0.217 0.218 0.219 0.203 0.206

Table 4.4: RMSE versus the number of latent factors K in the book domain. SemEMF, MergedSe-
mEMF, ASEMF_UIB, and LDSDMF denote our proposed methods.

RMSE
K MF PMF AMF EMF SemEMF MergedSemEMF ASEMFUIB LDSDMF
10 0.345 0.803 0.187 0.346 0.338 0.342 0.333 0.410
20 0.598 0.804 0.239 0.603 0.574 0.576 0.333 0.576
30 0.833 0.805 0.315 0.841 0.771 0.780 0.334 0.734
40 1.062 0.805 0.405 1.054 0.952 0.951 0.333 0.883
50 1.273 0.806 0.496 1.264 1.102 1.099 0.332 1.033

Table 4.3 shows a comparison of the proposed models and the baseline approaches in the movie

domain based on the prediction error rate for 10 runs for each method against each number of fea-

tures K. We conducted a significance test on LDSDMF in comparison to all the baseline approaches

at K = 10. We ran each method, as mentioned previously, 10 times while randomly initializing

the user latent factors p and item latent factors q each time. The results in Table 4.5 show that

LDSDMF’s p-value were significantly lower than all the baseline models indicating that there is a

significant difference between the compared models, and our proposed model significantly outper-

forms the baseline approaches. Overall, ASEMF_UIB and LDSDMF produced lower error rates as

K increases. However, SemEMF and MergedSemEMF were competing with MF and EMF with an

increasing error rate as K increases. The AMF and PMF models produced higher error rates than

all other approaches.

Table 4.4 shows the error rate of all approaches in the book domain. While K is small, the

baseline AMF is the winner. However, by including more hidden features, our proposed model

ASEMF_UIB tended to give a lower error rate than all the other approaches. A significance test

was conducted, and at K = 50 between ASEMF_UIB against all baseline methods, the p-value, as
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shown in Table 4.6, is small, meaning that our model significantly outperformed all baseline models.

LDSDMF, SemEMF, and MergedSemEMF, alongside the baseline MF and EMF, were competing

at an increasing rate as K increased. PMF was stable at a high error rate.

Table 4.5: RMSE significance test results in the movie domain (K = 10).
Model 1 Model 2 p-value

MF LDSDMF 2.3e-07
EMF LDSDMF 4.8e-08
PMF LDSDMF 4.04e-54
AMF LDSDMF 6.6e-22

ASEMF_UIB LDSDMF 1.3e-07

Table 4.6: RMSE significance test results in the book domain (K = 50).
Model 1 Model 2 p-value

MF ASEMF_UIB 8.02e-32
EMF ASEMF_UIB 1.4e-30
PMF ASEMF_UIB 5.2e-43
AMF ASEMF_UIB 6.8e-23

LDSDMF ASEMF_UIB 1.8e-28

4.3 Recommendation Evaluation

We will now explore how our proposed methods performed against the baseline methods using

mean average precision (MAP), defined as follows:

MAP@N =
1
|U |

U

∑
u=1

1
m

N

∑
n=1

Pu(n) · relu(n). (4.2)

U denotes the total number of users, while m is the number of relevant items, and N is the number

of desired recommendations. P is the precision, which is the ratio of simultaneously recommended

and relevant items to the total number of recommended items (n). rel(n) is either 0 or 1, indicating

whether the nth item is relevant.

Figure 4.3 shows the MAP at top 10 performances of the proposed and baseline approaches in

the movie domain. The results indicate that LDSDMF significantly outperformed all other models

with a decreasing rate as K increased (see Table 4.7 for significance values), followed by PMF and

then ASEMF_UIB and AMF interchangeably who performed better when K is high. SemEMF,
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Figure 4.3: The graph shows the MAP@10 results of all methods while varying K in the movie
domain.

MergedSemEMF, MF, and EMF performed similarly at a low rate, just above zero.

Table 4.7: MAP significance test results in the movie domain (K = 10).
Model 1 Model 2 p-value

MF LDSDMF 1.6e-15
EMF LDSDMF 1.6e-15
PMF LDSDMF 7.3e-09
AMF LDSDMF 6.5e-11

ASEMF_UIB LDSDMF 1.3e-12

Figure 4.4 depicts the MAP at top 10 results of the proposed methods and the baseline ap-

proaches. While varying K, our proposed methods ASEMF_UIB, SemEMF, MergedSemEMF, and

LDSDMF, alongside the baseline methods MF and EMF, mutually compete in being the best model,

followed by AMF and PMF, respectively.

4.4 Explainability Evaluation

Next, we measured our models using explainability metrics, MEP, MER, and xF-score, as fol-

lows [13] [14] [15]:
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Figure 4.4: This graph shows the MAP@10 results of all methods while varying K in the book
domain.

MEP =
1
|U | ∑u∈U

|R∩W |
|R|

(4.3)

MER =
1
|U | ∑u∈U

|R∩W |
|W |

(4.4)

xF− score = 2∗ MEP∗MER
MEP+MER

(4.5)

U represents the set of users, while R is the set of recommended items, and W denotes the set of

explainable items. MEP computes the proportion of simultaneously recommended and explainable

items to the total number of recommended items across all users. Similarly, MER calculates the

proportion of simultaneously recommended and explainable items to the total number of explainable

items, averaged again, across all the users. xF-score is the harmonic mean of MEP and MER.

We computed the above explainability metrics using the semantic and neighborhood explainability

graphs as explained next, which capture what items are considered to be "explainable" in order to

compute the explainability metrics.
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4.4.1 Semantic Explainability Metrics

We calculated the MEP, MER, and xF-score performance of the baseline methods and our pro-

posed methods while varying θ , which is a threshold for items to be considered semantically ex-

plainable when constructing the explainability graph (see equation 3.3). We varied θ using the

following values: 0, 0.1, 0.25, 0.5 0.75, and 0.9. Figures 4.5 and 4.7 illustrate the results.

In Figure 4.5, three graphs show the performance of all models while varying θ s using MEP,

MER, and xF-score metrics. θ s is a threshold for items to be considered semantically explainable

in equation 3.3. The results illustrate that when θ s is set to 0, which means that all items (even

those with a small explainability value) are considered explainable, the baseline PMF is the win-

ner. However, when adding more restrictions to items to be considered semantically explainable,

the proposed method, LDSDMF, significantly outperformed the other methods on all metrics (i.e.,

MEP, MER, and xF− score). Tables 4.8, 4.9, and 4.10 present the significance test results.

Table 4.8: MEP@10 significance test results in the movie domain (K = 10 and θ s = 0.25) using
semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 8.06e-23

EMF LDSDMF 8.1e-23
PMF LDSDMF 3.05e-17
AMF LDSDMF 8.06e-23

ASEMF_UIB LDSDMF 2.6e-20

Table 4.9: MER@10 significance test results in the movie domain (K = 10 and θ s = 0.25) using
semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 6.2e-21

EMF LDSDMF 6.3e-21
PMF LDSDMF 2.1e-15
AMF LDSDMF 6.2e-21

ASEMF_UIB LDSDMF 1.3e-19
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Figure 4.5: The upper graph shows the results of MEP@10 for all methods, while the middle one
shows MER@10 for all methods, and the lower graph illustrates the results of all methods using the
xF-score metric. All explainability metrics utilize semantic KGs. All the results are in the movie
domain.

71



Table 4.10: xF-score@10 significance test results in the movie domain (K = 10 and θ s = 0.25)
using semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 1.1e-21

EMF LDSDMF 1.1e-21
PMF LDSDMF 5.1e-16
AMF LDSDMF 1.1e-21

ASEMF_UIB LDSDMF 5.6e-20

Table 4.11: MEP@10 significance test results in the book domain (K = 50 and θ s = 0.25) using
semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF ASEMF_UIB 5.9e-08

EMF ASEMF_UIB 1.5e-07
PMF ASEMF_UIB 1.1e-13
AMF ASEMF_UIB 6.9e-21

LDSDMF ASEMF_UIB 4.1e-07

Table 4.12: MER@10 significance test results in the book domain (K = 50 and θ s = 0.25) using
semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF ASEMF_UIB 1.3e-07

EMF ASEMF_UIB 2.9e-08
PMF ASEMF_UIB 1.2e-12
AMF ASEMF_UIB 5.5e-21

LDSDMF ASEMF_UIB 4.8e-06

Table 4.13: xF-score@10 significance test results in the book domain (K = 50 and θ s = 0.25) using
semantic KGs to calculate explainability metrics.

Model 1 Model 2 p-value
MF ASEMF_UIB 1.05e-07

EMF ASEMF_UIB 3.07e-08
PMF ASEMF_UIB 1.01e-12
AMF ASEMF_UIB 5.5e-21

LDSDMF ASEMF_UIB 3.9e-06

Figure 4.6 illustrates the MEP, MER, and xF-score performance of all models against K. As

shown in the three graphs, the blue line, which indicates the model ASEMF_UIB, is the winner

with a significance values as shown in Tables 4.11, 4.12, and 4.13, meaning that it recommends

more semantically explainable items in the top 10 list than all models. ASEMF_UIB learns about
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Figure 4.6: The upper graph shows the results of MEP@10 for all methods, while the middle one
shows MER@10 for all methods, and the lower graph illustrates the results of all methods using the
xF-score metric. All explainability metrics utilize utilizes semantic KGs. All the results are in the
book domain.
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one property in the latent space making the model more focused on it especially with sparse data as

the case with book domain. Followed by the rest of the baseline models that performed similarly.

AMF’s performance was the lowest in all metrics.

4.4.2 Neighborhood Explainability Metrics

The previous results show the performance when explainability metrics were computed based

on the semantic graph. In this section, we examine how they perform when using the neighborhood

explainability graph for the explainability metrics. In Figure 4.7, three graphs show the performance

of all models while varying θ n. θ n is a threshold for items to be explainable based on the neigh-

borhood technique used in the baseline EMF [13] [14] [15]. Recall that formula for generating the

neighborhood-based explainability matrix (Equation 2.15) is

Wui =


|N′ (u)|
|Nk(u)| i f |N′ (u)|

|Nk(u)| > θ n

0 otherwise,
(4.6)

where N
′
(u) denotes the set of neighbors of user u, who rated item i, and Nk(u) depicts the list of

the k nearest neighbors of u.

Table 4.14: MEP@10 significance test results in the movie domain (K = 10 and θ n = 0.25) using
the neighborhood based explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 1.9e-21

EMF LDSDMF 1.9e-21
PMF LDSDMF 3.9e-17
AMF LDSDMF 1.2e-13

ASEMF_UIB LDSDMF 9.9e-19

Table 4.15: MER@10 significance test results in the movie domain (K = 10 and θ n = 0.25) using
the neighborhood based explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 1.2e-21

EMF LDSDMF 1.2e-21
PMF LDSDMF 1.4e-15
AMF LDSDMF 5.3e-15

ASEMF_UIB LDSDMF 5.9e-19
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Figure 4.7: The upper graph shows the results of MEP@10 for all methods, while the middle
one shows the MER@10 results for all methods, and the lower graph illustrates the results of all
methods. All explainability metrics are based on the neighborhood explainability graph. All the
results are in the movie domain.
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Table 4.16: xF-score@10 significance test results in the movie domain (K = 10 and θ n = 0.25)
using the neighborhood based explainability metrics.

Model 1 Model 2 p-value
MF LDSDMF 1.1e-21

EMF LDSDMF 1.1e-21
PMF LDSDMF 9.2e-16
AMF LDSDMF 6.4e-15

ASEMF_UIB LDSDMF 5.9e-19

Figure 4.7 illustrates the performance of all methods when evaluated using MEP, MER, and

xF-score metrics computed using the neighborhood explainability graph in the movie domain. Our

model, LDSDMF, significantly exceeded all baseline methods on all three explainability metrics

(see Tables 4.14, 4.15, and 4.16 for significance test results).

This observation shows that our proposed method recommends more accurate and more ex-

plainable items based on semantic KGs and neighborhood-based explainability graphs than all the

baseline methods.

Figure 4.8 shows three graphs of the MEP, MER, and xF-score performance of all models when

these metrics use the neighborhood explainability graph in the book domain. PMF was the winner,

followed by AMF, while the performance of all other models was low. This means that PMF and

AMF succeeded in recommending more neighborhood-based explainable items than all the other

models. The lack of extra information that semantic KGs provide caused all proposed models not

to perform well in this type of evaluation.

4.5 Analysis of Results

The experimental results showed that adding semantics resulted in improved recommendation

and explainability. Although one would expect explainability to decrease recommendation accuracy,

it is important to note that our proposed methods utilize more semantic data than mere user ratings.

This additional data compensates for lack of rating and sparseness of data, thus improving accuracy.
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Figure 4.8: The upper graph shows the results of MEP@10 for all methods, while the middle one
shows MER@10 for all methods, and the lower graph illustrates the results of all methods using
the xF-score metric. All explainability metrics use semantic KGs. All the results are in the book
domain.
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4.6 Real User Study

In this section, we validate the explainability of the model, proposed in Sections 3.9 and 3.2.1,

by conducting a user study experiment in the movie domain. Given the semantic KGs defined in

Equations 3.1, 3.2, and 3.3, our research questions are as follows:

• RQ1: Does the number of semantic attributes used in the explanation, whether it is low or

high, impact user satisfaction? Satisfaction is defined as the ease of system usability and the

enjoyment of use [148].

• RQ2: Does an explanation that uses a higher number of semantic attributes increase perceived

transparency? Transparency is providing information to the user so he or she can comprehend

how the system works and the justification behind the recommendation [148].

• RQ3: Does the number of semantic attributes used in the explanation (Low (1 semantic at-

tribute), Medium (3 semantic attributes), or High (5 semantic attributes)) impact the perceived

effectiveness? Effectiveness is defined as the ability of the explanation to help users make

good decisions [148].

4.6.1 Hypothesis

Suppose that a recommender system recommends two items i1 and i2 alongside their explana-

tions. Given the explanation definition in Sections 3.9 and 3.2.1 and Equations 3.1, 3.2, and 3.3,

if i1 uses more semantic attributes in the explanations than i2 (Figure 4.9), does recommending i1

result in a better satisfaction than recommending i2 from the user perspective? Our hypothesis can

be summarized as follows: Recommending an item with explanation that shows more semantic

attributes will lead to higher user satisfaction.

4.6.2 Methods

A web app platform, similar to commercial movie recommender engines used by Netflix, Ama-

zon Video, and Hulu, was designed to conduct the study. The application used the MovieLens

benchmark data set 3.
3https://grouplens.org/datasets/movielens/
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Figure 4.9: A comparison of two explanations, high on the left and low on the right, that are exposed
to the user during the experiment. The explanation on the left shows more semantic attributes than
the one on the right.

The explanations are divided into three groups based on the number of semantic attributes ran-

domly chosen to explain the recommended movie as follows:

• Low: Up to one semantic attribute used for explanation.

• Medium: Up to three semantic attributes used for explanation.

• High: Up to five semantic attributes used for explanation.

4.6.3 Subject Recruitment

The Institutional Review Board at University of Louisville reviewed and authorized our study.

Participants were students in a large urban, southern university and were recruited to participate in

the study via personal and email invitations. A Surface Pro laptop and a desktop were provided

to the participants to use for this experiment. Google forms was used to construct and host the

questions and the results were securely stored on Google drive.

4.6.4 Sample Size Estimation

To estimate the sample size, we performed a statistical power analysis. The effect size in this

study is large using Cohen’s [149] criteria. When α is set to 0.05, and power is set to 0.8, the sample

size needed is approximately 10.
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The 34 participants were randomly assigned to either the low, medium, or high group represent-

ing the number of semantic attributes used in explanation. The number of people in each group are

as follows:

• Low = 11

• Medium = 12

• High = 11

4.6.5 Procedures

The process of the experiment was as follows:

1. The participant is asked to rate from 1 to 5 at least 10 movies they have watched previously

from a selection of movies.

2. Based on the group the participant was assigned to, a recommendation alongside an explana-

tion will be provided to the user.

3. The recommendation and explanation will be selected from a pool of recommendations that

are calculated using the method proposed in Sections 3.9 and 3.2.1, such that the correct

number of semantic attributes to be used in the explanation is displayed to the user depending

on the experimental group that the participant was assigned to (i.e. “low (1)”, “medium (3)”,

or “high (5)”).

4. The participant is asked to fill out a Likert Scale questionnaire. Table 4.17 shows the questions

used in this study.

5. Demographic information is collected from the participant including age, gender, major of

study, weekly hours watching movies, and favorite movie attributes. Table 4.18 presents the

questions used in this experiment.

This information is requested to study potential confounding factors on the participant’s satis-

faction with the explanations. A snapshot of the application is shown in Figures 4.10 and 4.11. The

duration of the experiment is around 30 minutes.
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Table 4.17: Likert scale survey questions.
Question 1 "Based on the share of seman-

tic attributes between the recom-
mended movie and your interest
in these semantic attributes, this
is a good recommendation."

Question 2 "This explanation helps me un-
derstand why this movie was
recommended."

Question 3 "Based on the share of seman-
tic attributes between the rec-
ommended movie and my inter-
est in these semantic attributes, I
will watch this movie."

Question 4 "Based on the share of seman-
tic attributes between the rec-
ommended movie and my inter-
est in these semantic attributes,
I can determine how well I will
like this movie."

Question 5 "This explanation helps me un-
derstand how the recommender
system works."

Table 4.18: Demographic questions.
Question 1 "What is your gender"
Question 2 "What is your age?"
Question 3 "What is your major of study?"
Question 4 "How many hours per week do you watch movies on average?"
Question 5 "What are the most influential attributes that encourage you to

watch a movie?"
Question 6 "How familiar are you with automated recommender systems?"
Question 7 "Check all the online entertainment services that you have used

in the past."
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Figure 4.10: A snapshot of the recommender system app showing a list of movies for the user to
rate.
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Figure 4.11: A snapshot of a recommendation and its semantic explanation presented to a user. The
share of interest is the likeability degree computed using Equation 3.2
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4.6.6 Analysis of Results

In this study, participants were asked to answer five questions regarding their experience af-

ter using the model. Figure 4.12 shows a vertical bar chart for all participants’ answers to all of

Table 4.17’s five questions. The most repeated answer was "Somewhat Agree" across all ques-

tions, followed by the "Neutral" answer option, then by "Strongly Agree" respectively. The answers

"Somewhat Disagree" and "Strongly Disagree" were the least chosen answers by all participants

for all questions. Figure 4.13 depicts the answers for participants in the group High. People were

assigned randomly to each group. The answers "Strongly Agree" and "Somewhat Agree" were the

most popular answers to all questions. Only four participants were neither agreeing nor disagreeing

to question one, and only one participant disagreed in questions four and five. Worth noting that

more than half of the participants strongly agreed to question two, which is about how the explana-

tion helped them understand the recommendation. Figure 4.14 shows the answers of participants in

the group Medium. "Somewhat Agree" and "Neutral" responses were the most chosen responses by

people in this group. Followed by "Strongly Agree" and "Somewhat Disagree". Two participants

preferred "Strongly Disagree" as their answer to question three. In the group Low, as shown in Fig-

ure 4.15, more than half of the participants chose "Strongly Disagree" and "Somewhat Disagree" as

their answers to all questions. The next response in line was the Natural response choice, followed

by "Somewhat Agree", and only one participant gave a "Strongly Agree" answer to question five in

this group.

Figure 4.16 depicts a Heat map plot showing the distribution of all answers to all questions by

all participants. The most popular answer is "Somewhat Agree" followed by "Neutral" as the second

most popular. "Strongly agree" is next in line, then "Somewhat Disagree" and " Strongly Disagree"

answers were the least preferred answers by participants in the Medium group.

Figure 4.17 shows the responses from participants in the group High. The figure shows a clear

tendency to the Agree than to the Disagree answers. In contrast, responses from participants in the

group Low, as illustrated in Figure 4.19, tend to the Disagree side more than the Agree side. Lastly,

the heat map in Figure 4.18 is scattered over all responses to all question from participants in the

group Medium.

Figure 4.20 indicates the satisfaction level with the explanation for all participants in this study.
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Figure 4.12: A Vertical bar chart of the answers to the questions in Table 4.17 for all participants.

Figure 4.13: A Vertical bar chart of the answers to the questions in Table 4.17 for participants in the
group "High".
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Figure 4.14: A Vertical bar chart of the answers to the questions in Table 4.17 for participants in the
group "Medium".

Figure 4.15: A Vertical bar chart of the answers to the questions in Table 4.17 for participants in the
group "Low".

Figure 4.16: A Heat-map plot of the answers to the questions in Table 4.17 for all participants.
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Figure 4.17: A Heat-map plot of the answers to the questions in Table 4.17 for participants in the
group "High".

Figure 4.18: A Heat-map plot of the answers to the questions in Table 4.17 for participants in the
group "Medium".

Figure 4.19: A Heat-map plot of the answers to the questions in Table 4.17 for participants in the
group "Low".
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Figure 4.20: Distribution of the participants’ satisfaction with the explanation.

More than half of them were satisfied, whereas around 10% were strongly satisfied. 25% of the

participants were neither satisfied nor unsatisfied, and 12.5% were not satisfied. No participant

responded with the strongly unsatisfied answer option.

Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, and 4.27, show the responses of all participants to the

demographic questions in Table 4.18. The answers for these questions were optional.

Three-quarters of the participants were males and the rest were females as shown in Figure 4.21.

Figure 4.22 represents the age distribution of all participants. More than 60% are between the age

of 25 and 34 years, followed by 20% participants aged between 35 and 44 years. The rest of the

participants’ ages are distributed in the other groups.

The majority of the volunteers’ major of study is Computer science followed by other majors

as shown in Figure 4.23. Most of the participants watch movies for around 0 to 5 hours a week

as reported in Figure 4.24. Figure 4.26 shows half of the volunteers were either moderately or

somewhat familiar with the automated recommender systems, whereas 32.4% are slightly familiar.

14.7% were extremely familiar and a small portion of the participants were not familiar at all.

Figure 4.25 denotes the distribution of the participants regarding the most influential semantic

attributes that encourage them to watch a movie. It indicates that subject, genre and actor were the

most influential ones, however, producer and music-composer were the least influential. In Figure

4.27 represents the online entertainment services that the volunteers have used in the past. YouTube

and Netflix are the most popular services followed by Amazon Video and Hulu. Google Play and

HBO were the least used services by participants.
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Figure 4.21: Distribution of the participants’ gender.

Figure 4.22: Distribution of the participants’ age.

Figure 4.23: Distribution of the participants’ major of study.

Figure 4.24: Distribution of the participants’ weekly hours watching movies.
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Figure 4.25: Distribution of the participants’ favorite movies’ attributes.

Figure 4.26: Distribution of the participants’ familiarity with recommender systems.

Figure 4.27: Distribution of the participants’ most used online entertainment services.

90



4.6.7 Hypothesis Testing

In the previous section 4.6.6, we showed how the responses of the participants varied according

to the designated groups (High, Medium, and Low) where participants were assigned randomly.

The plots indicate that people in the group "High" tend to give more positive responses than others

in the other groups.

In this section, analytical testing is conducted to determine the significance of the those findings

of this study. First of all, it is essential to evaluate the reliability of the Likert scale questionnaire by

calculating Cronbach’s Alpha [150]. The correlation of the survey questions and the 34 participants

was 0.86, which is above the threshold of 0.7 for an acceptable level of reliability.

Table 4.20 presents the relationship between the explanation aspects, satisfaction, transparency,

and effectiveness, and the questions in the survey listed in Table 4.17.

An Analysis of Variance (ANOVA) test is conducted to study the effect of the explainability

variable on the designated aspects in Table 4.17. In this statistical test, The null hypothesis is that

the mean of the three groups, high, medium, and low, are equal.

• Satisfaction:

Questions 1 and 3 evaluate the participant’s satisfaction with the explanation in the ANOVA

test. The degree of freedom is 2, f-value is 9.273, and the p-value is 0.0006. The p-value

is less than 0.05 threshold, indicating that there exists a significant difference between the

three groups, hence, a significant correlation between satisfaction and explainability. The eta-

squared measure of effect size is 0.374. We conducted a Tukey’s HSD (Honestly Significant

Difference) post-hoc test to determine which pair of groups were significantly different from

each other. The Family-wise significance interval was at 95%, and Table 4.21 summarizes the

results. From this table, it is clear that there is a significant difference between group High

and group Low with a very small p-value resulting in rejecting the null hypothesis. However,

there is no significant difference between group High and group Medium nor between group

Medium and group Low. Figure 4.28 shows a visualization of the differences between the

means of the three groups.

• Transparency
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Figure 4.28: Visualization of differences of mean levels of pairs of groups for satisfaction.

Questions 2 and 5 evaluate the participants assessment of the recommendation transparency in

the ANOVA test. The degree of freedom is 2, f-value is 14.491, and the p-value is 3.6x10−5.

The eta-squared degree of effect size is 0.483. With a family-wise significance interval at

95%, we conducted a Tukey’s HSD post-hoc test to decide which pairs of groups were signif-

icantly distinct from each other. Table 4.22 presents the outcome. As shown in this table, with

a very small adjusted p-value, there is a significant difference between the groups High and

Low, as well as between the groups Medium and Low. Nevertheless, there is no significant

difference between the groups Medium and High. Figure 4.29 displays a visualization of the

mean differences between the groups.

• Effectiveness

Effectiveness of the explanation is measured by the perceived responses to Question 4 in

Table 4.17. We conducted the ANOVA test, and the results are as follows: The degree of

freedom is 2, f-value is 14.123, and the p-value is 4.3x10−5. The eta-squared degree of effect

size is 0.476. A Tukey’s HSD post-hoc test is conducted to determine if there exists any sig-

nificant signed difference between the groups. Table 4.23 indicates that there is a significant

signed difference between groups High and Low as well as between groups Medium and Low.

p-values are below the threshold of 0.05, resulting in rejection of the null hypothesis. Mean-
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Figure 4.29: Visualization of differences of mean levels of pairs of groups for transparency.

Table 4.19: Mean and standard deviation for all groups for regarding all three explanation aspects.
Groups

Explanation Aspect High Medium Low
Mean STD Mean STD Mean STD

Satisfaction 8.09 0.94 6.41 2.02 4.72 2.24
Transparency 8.81 1.32 7.75 1.35 5.27 2
Effectiveness 4.27 0.64 3.33 0.98 2.18 2.1

while, the relationship between groups High and Medium shows no sign of any significance.

Figure 4.30 presents the differences in means between the three designated groups.

Table 4.19 shows the mean and standard deviation for all groups regarding the tested explanation

styles, satisfaction, transparency, and effectiveness.

Table 4.20: Categorization of the survey questions from Table 4.17 according to the research ques-
tions.

Explanation Aspect Question
Satisfaction 1 and 3

Transparency 2 and 5
Effectiveness 4
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Figure 4.30: Visualization of differences of mean levels of pairs of groups for effectiveness.

Table 4.21: Tukey multiple comparisons of means at 95% family-wise confidence interval for sat-
isfaction.

Group pairs Difference Adjusted p-value reject
High-Low -3.3636 0.0004 True

High-Medium -1.6742 0.0888 False
Medium-Low 1.6893 0.0852 False

Table 4.22: Tukey multiple comparisons of means at 95% family-wise confidence interval for trans-
parency.

Group pairs Difference Adjusted p-value reject
High-Low -3.5454 0.0000 True

High-Medium -1.0681 0.2555 False
Medium-Low 2.4772 0.0021 True

Table 4.23: Tukey multiple comparisons of means at 95% family-wise confidence interval for ef-
fectiveness.

Group pairs Difference Adjusted p-value reject
High-Low -2.0909 0.0000 True

High-Medium -0.9393 0.0529 False
Medium-Low 1.1515 0.0147 True
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4.7 Summary of Experimental Evaluation

In this chapter, we presented the results of an offline and online evaluation of the methods pro-

posed in Chapter 3. In offline evaluation, we used objective metrics to measure the recommendation

accuracy of the proposed methods as well as the explainability. The overall results indicate that our

model succeeded in increasing the explainability of the system while keeping the error rate at a low

level.

In the online evaluation, the final results indicate that the participants had a good perception

of the explanation capability, especially when including more item properties in the explanation

generation process.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

As recommendation systems become an essential component of big data and artificial intelli-

gence (A.I.) systems, and as these systems embrace more and more sectors of society, it is becoming

ever more critical to build trust and transparency into machine learning algorithms without signifi-

cant loss of prediction power.

Our research harnesses the power of A.I., such as Knowledge Graphs and semantic inference,

to help build explainability into accurate Black Box predictive systems in a way that is modular and

extensible to a variety of prediction tasks within and beyond recommender systems.

In this study, we concentrated on collaborative filtering (CF) techniques, as they excel in han-

dling the big data with which the web is abundant and tend to outperform content-based filtering

techniques. More specifically, we focused on matrix factorization, a state-of-the-art CF technique

that builds low-dimensional spaces for hidden features to predict unseen items’ ratings and effi-

ciently deals with sparse data. Nevertheless, the lack of transparency significantly reduces user

satisfaction and trust in the system. The cold start problem is another issue from which CF tech-

niques suffer.

To tackle these issues, we proposed to use semantic knowledge graphs (KG) that correlate the

user with the item’s semantic attributes based on the number of interactions between them in the

user’s history. Item properties are retrieved by SPARQL, the SQL-like semantic web query lan-

guage, from semantic web databases such as DBpedia. The semantic KGs are used in the latent

spaces to build the final model and to generate justifications for the recommendations. They also

work as a warm-up solution for the cold start problem.

We proposed four techniques in Chapter 3. The first, an asymmetric semantic explainable ma-
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trix factorization user-item-based (ASEMF-UIB) method, consists of a two-phase model-building

process; in the first phase, the semantic KGs are incorporated, and, in the second step, the user’s

history is introduced to the model. The second model is semantic explainable matrix factorization

(SemEMF), a one-step formulation in which semantic KGs are integrated into the objective func-

tion as a new term. The third model is merged semantic explainable matrix factorization (MergedSe-

mEMF); in this model, semantic KGs and the neighborhood method are both used as soft constraints

as regularization in the loss function. For the last model, we proposed the linked data semantic dis-

tance matrix factorization (LDSDMF) method, in which two algorithms are integrated into one loss

function, resulting in a more robust prediction mechanism.

Finally we proposed the inferred fact style explanation (IFSE) technique. This method incorpo-

rates indirect knowledge inferred from the designated semantic KGs to generate explanations for the

output by extracting new facts about the user and the new recommended item’s semantic attributes

in a numerical form.

We conducted an offline evaluation to measure the error rate, recommendability, and the ex-

plainability of the recommended items. We also evaluated the explainability of all models, using

neighborhood based explainability measures, in two different domains of knowledge, movies and

books.

An online evaluation was conducted with a user study of 34 individuals. The results clearly

show that the proposed explanation style increased the user perception of system transparency, while

being more effective in encouraging the user to accept the recommendation, leading to higher user

satisfaction.

Our results have been partially disseminated in [128] and [151] which to be appearing in Pro-

ceedings of KDIR 2019.

For future work, we intend to include more semantic attributes in the process of building the ex-

plainable recommender model and to experiment with more knowledge and item domains. We also

plan to integrate multiple explanation styles, such as NSE, ISE, etc., with the proposed explanation

style to increase the transparency of the black box recommender system.
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