275 research outputs found

    Observation-based Cooperation Enforcement in Ad Hoc Networks

    Full text link
    Ad hoc networks rely on the cooperation of the nodes participating in the network to forward packets for each other. A node may decide not to cooperate to save its resources while still using the network to relay its traffic. If too many nodes exhibit this behavior, network performance degrades and cooperating nodes may find themselves unfairly loaded. Most previous efforts to counter this behavior have relied on further cooperation between nodes to exchange reputation information about other nodes. If a node observes another node not participating correctly, it reports this observation to other nodes who then take action to avoid being affected and potentially punish the bad node by refusing to forward its traffic. Unfortunately, such second-hand reputation information is subject to false accusations and requires maintaining trust relationships with other nodes. The objective of OCEAN is to avoid this trust-management machinery and see how far we can get simply by using direct first-hand observations of other nodes' behavior. We find that, in many scenarios, OCEAN can do as well as, or even better than, schemes requiring second-hand reputation exchanges. This encouraging result could possibly help obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure

    Chronology of the development of Active Queue Management algorithms of RED family. Part 1: from 1993 up to 2005

    Get PDF
    This work is the first part of a large bibliographic review of active queue management algorithms of the Random Early Detection (RED) family, presented in the scientific press from 1993 to 2023. The first part will provide data on algorithms published from 1993 to 2005

    International environmental law-making and diplomacy review 2013

    Get PDF

    International environmental law-making and diplomacy review 2013

    Get PDF

    Proportional bandwidth distribution in IP networks implementing the assured forwarding PHB

    Get PDF
    Recent demands for new applications are giving rise to an increasing need of Quality of Service (QoS). Nowadays, most IP-based networks tend to use the DiffServ architecture to provide end-to-end QoS. Traffic conditioners are a key element in the deployment of DiffServ. In this paper, we introduce a new approach for traffic conditioning based on feedback signaling among boundary nodes and traffic conditioners. This new approach is intended to provide a poportional distribution of excess bandwidth to endusers. We evaluate through extensive simulations the performance of our proposal in terms of final throughput, considering contracted target rates and distribution of spare bandwidth. Results show a high level of fairness in the excess bandwidth allocation among TCP sources under different network conditions

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053
    • …
    corecore