3 research outputs found

    An Urdu semantic tagger - lexicons, corpora, methods and tools

    Get PDF
    Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as Natural Language Processing (NLP), corpus linguistics, data sciences, etc. An important aspect of such automatic information extraction and analysis is the semantic annotation of language data using semantic annotation tool (a.k.a semantic tagger). Generally, different semantic annotation tools have been designed to carry out various levels of semantic annotations, for instance, sentiment analysis, word sense disambiguation, content analysis, semantic role labelling, etc. These semantic annotation tools identify or tag partial core semantic information of language data, moreover, they tend to be applicable only for English and other European languages. A semantic annotation tool that can annotate semantic senses of all lexical units (words) is still desirable for the Urdu language based on USAS (the UCREL Semantic Analysis System) semantic taxonomy, in order to provide comprehensive semantic analysis of Urdu language text. This research work report on the development of an Urdu semantic tagging tool and discuss challenging issues which have been faced in this Ph.D. research work. Since standard NLP pipeline tools are not widely available for Urdu, alongside the Urdu semantic tagger a suite of newly developed tools have been created: sentence tokenizer, word tokenizer and part-of-speech tagger. Results for these proposed tools are as follows: word tokenizer reports F1F_1 of 94.01\%, and accuracy of 97.21\%, sentence tokenizer shows F1_1 of 92.59\%, and accuracy of 93.15\%, whereas, POS tagger shows an accuracy of 95.14\%. The Urdu semantic tagger incorporates semantic resources (lexicon and corpora) as well as semantic field disambiguation methods. In terms of novelty, the NLP pre-processing tools are developed either using rule-based, statistical, or hybrid techniques. Furthermore, all semantic lexicons have been developed using a novel combination of automatic or semi-automatic approaches: mapping, crowdsourcing, statistical machine translation, GIZA++, word embeddings, and named entity. A large multi-target annotated corpus is also constructed using a semi-automatic approach to test accuracy of the Urdu semantic tagger, proposed corpus is also used to train and test supervised multi-target Machine Learning classifiers. The results show that Random k-labEL Disjoint Pruned Sets and Classifier Chain multi-target classifiers outperform all other classifiers on the proposed corpus with a Hamming Loss of 0.06\% and Accuracy of 0.94\%. The best lexical coverage of 88.59\%, 99.63\%, 96.71\% and 89.63\% are obtained on several test corpora. The developed Urdu semantic tagger shows encouraging precision on the proposed test corpus of 79.47\%

    Category-Theoretic Quantitative Compositional Distributional Models of Natural Language Semantics

    Full text link
    This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201

    Tune your brown clustering, please

    Get PDF
    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly unexplored. Accordingly, we present information for practitioners on the behaviour of Brown clustering in order to assist hyper-parametre tuning, in the form of a theoretical model of Brown clustering utility. This model is then evaluated empirically in two sequence labelling tasks over two text types. We explore the dynamic between the input corpus size, chosen number of classes, and quality of the resulting clusters, which has an impact for any approach using Brown clustering. In every scenario that we examine, our results reveal that the values most commonly used for the clustering are sub-optimal
    corecore