68,148 research outputs found

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Aspect-oriented interaction in multi-organisational web-based systems

    Get PDF
    Separation of concerns has been presented as a promising tool to tackle the design of complex systems in which cross-cutting properties that do not fit into the scope of a class must be satisfied. Unfortunately, current proposals assume that objects interact by means of object-oriented method calls, which implies that they embed interactions with others into their functional code. This makes them dependent on this interaction model, and makes it difficult to reuse them in a context in which another interaction model is more suited, e.g., tuple spaces, multiparty meetings, ports, and so forth. In this paper, we show that functionality can be described separately from the interaction model used, which helps enhance reusability of functional code and coordination patterns. Our proposal is innovative in that it is the first that achieves a clear separation between functionality and interaction in an aspect-oriented manner. In order to show that it is feasible, we adapted the multiparty interaction model to the context of multiorganisational web-based systems and developed a class framework to build business objects whose performance rates comparably to handmade implementations; the development time, however, decreases significantly.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC2000-1106-C02-0

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    On the Identification of Agents in the Design of Production Control Systems

    No full text
    This paper describes a methodology that is being developed for designing and building agent-based systems for the domain of production control. In particular, this paper deals with the steps that are involved in identifying the agents and in specifying their responsibilities. The methodology aims to be usable by engineers who have a background in production control but who have no prior experience in agent technology. For this reason, the methodology needs to be very prescriptive with respect to the agent-related aspects of design

    Distributed-Pair Programming can work well and is not just Distributed Pair-Programming

    Full text link
    Background: Distributed Pair Programming can be performed via screensharing or via a distributed IDE. The latter offers the freedom of concurrent editing (which may be helpful or damaging) and has even more awareness deficits than screen sharing. Objective: Characterize how competent distributed pair programmers may handle this additional freedom and these additional awareness deficits and characterize the impacts on the pair programming process. Method: A revelatory case study, based on direct observation of a single, highly competent distributed pair of industrial software developers during a 3-day collaboration. We use recordings of these sessions and conceptualize the phenomena seen. Results: 1. Skilled pairs may bridge the awareness deficits without visible obstruction of the overall process. 2. Skilled pairs may use the additional editing freedom in a useful limited fashion, resulting in potentially better fluency of the process than local pair programming. Conclusion: When applied skillfully in an appropriate context, distributed-pair programming can (not will!) work at least as well as local pair programming

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor
    • 

    corecore