3,144 research outputs found

    Characterisation of Reaction Products and Mechanisms in Atmospheric Pressure Plasma Deposition of Carbon Films from Ethanol

    Get PDF
    Atmospheric pressure plasma deposition (APPD) of carbon films from a predominantly ethanol liquid phase was carried out under varying experimental conditions. A solid precipitate formed in the process was characterised by FT-IR and Raman spectroscopy. After each experiment the liquid phase was analysed for by-products by GC-MS. A number of compounds were found and mechanisms for their formation are proposed. These mechanisms involve the production of free radical species under the high energy plasma/discharge conditions of the process. The formation of groups of compounds was found to correlate with the voltage in the cell, but not with any other experimental parameter

    Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique : a new approach to the study of biocorrosion

    Get PDF
    The scanning vibrating electrode technique (SVET)was employed to investigate oxygen reduction catalysis by the presence of enzyme in an aerobic medium. Heme protoporphyrin (hemin) was chosen as a model of the enzymes that are able to catalyze oxygen reduction. A strict experimental protocol was defined for preparing the graphite surface by deposition of hemin with a simple configuration mimicking the presence of enzyme on the samples. The same configuration was adapted to a stainless steel electrode. Different geometric arrangementswere investigated by SVET to approach the local conditions. The results demonstrated that hemin deposited on the electrode surface led to an increase in the cathodic current, which indicated a catalytic effect. Based on the SVET analysis, itwas demonstrated that hemin caused the appearance of galvanic cells on the material surface. The SVET proved able to locate active catalytic centres and therefore to foresee the contribution of the enzyme to the creation of galvanic cells, thus leading to localized corrosion. The application of SVET to the study of the interaction between biological molecules and material provides a newapproach for visualizing and understanding microbially influenced corrosion (MIC) in an aerobic medium

    Origin of magnetic moments in carbon nanofoam

    Get PDF
    A range of carbon nanofoam samples was prepared by using a high-repetition-rate laser ablation technique under various Ar pressures. Their magnetic properties were systematically investigated by dc magnetization measurements and continuous wave (cw) as well as pulsed EPR techniques. In all samples we found very large zero-field cooled-field-cooled thermal hysteresis in the susceptibility measurements extending up to room temperature. Zero-field cooled (ZFC) susceptibility measurements also display very complex behavior with a susceptibility maximum that strongly varies in temperature from sample to sample. Low-temperature magnetization curves indicate a saturation magnetization MS ≈0.35 emu g at 2 K and can be well fitted with a classical Langevin function. MS is more than an order of magnitude larger than any possible iron impurity, proving that the observed magnetic phenomena are an intrinsic effect of the carbon nanofoam. Magnetization measurements are consistent with a spin-glass type ground state. The cusps in the ZFC susceptibility curves imply spin freezing temperatures that range from 50 K to the extremely high value of >300 K. Further EPR measurements revealed three different centers that coexist in all samples, distinguished on the basis of g -factor and relaxation time. Their possible origin and the role in the magnetic phenomena are discussed

    Brazing techniques for the fabrication of biocompatible carbon-based electronic devices

    Get PDF
    Prototype electronic devices have been critical to the discovery and demonstration of the unique properties of new materials, including composites based on carbon nanotubes (CNT) and graphene. However, these devices are not typically constructed with durability or biocompatibility in mind, relying on conductive polymeric adhesives, mechanical clamps or crimps, or solders for electrical connections. In this paper, two key metallization techniques are presented that employ commercially-available brazing alloys to fabricate electronic devices based on diamond and carbonaceous wires. Investigation of the carbon - alloy interfacial interactions was utilized to guide device fabrication. The interplay of both chemical ( adhesive ) and mechanical ( cohesive ) forces at the interface of different forms of carbon was exploited to fabricate either freestanding or substrate-fixed carbonaceous electronic devices. Elemental analysis in conjunction with scanning electron microscopy of the carbon - alloy interface revealed the chemical nature of the Ag alloy bond and the mechanical nature of the Au alloy bond. Electrical characterization revealed the non-rectifying nature of the carbon - Au alloy interconnects. Finally, electronic devices were fabricated, including a Au circuit structure embedded in a polycrystalline diamond substrate

    Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition.

    Get PDF
    Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation

    Elegy to an Oz Republic: First Steps in a Ceremony of Invocation towards Reconciliation

    Get PDF
    In 2012 the author completed a series of drawings that, while figurative in form, were structurally based on and derived their inspiration from Robert Motherwell’s abstract series, Elegies to the Spanish Republic (1963-1975). This wholesale 'borrowing', 'quotation' and 'citation' raises the questions addressed in this article. What does it mean to engage in acts of appropriation now? And, more importantly, can such acts of appropriation draw on the spirit of the 'original' work to make a (political) difference? 
    corecore