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Abstract 

Translating the exceptional properties of carbon nanotubes (CNTs) and graphene into micro- 

and macrostructures has greatly broadened the potential applications of these materials. Yarns, 

fibers, and papers based on CNTs or graphene have been utilized as electrochemical 

biosensors, artificial muscles, strain sensors, and electrically-driven neural growth substrates. 

Prototype devices have been critical to the discovery and demonstration of the unique 

properties of new materials, but are not typically constructed for durability or biocompatibility 

because they rely on polymeric adhesives (such as conductive glues), or solders for electrical 

connections. In this work, we present two key metallization techniques using commercially-

available alloys for the integration of carbon materials with electronics: (i) laser fabrication of 

Au micro-circuit boards embedded in a polycrystalline diamond substrate and (ii) spot-

brazing of carbonaceous fibers with Au-based pastes to enable a freestanding carbon wire 

with metallic (platinum or stainless steel) contacts. The carbon/metal interfaces are 

characterized according to their electrical properties and elemental composition at the 

interface. A brief review and discussion of active brazing to carbon materials is included.  
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1. Introduction 

Owing to their unique combination of biological, mechanical, electrochemical, electrical, 

thermal, and optical properties, carbon-based materials such as graphene, carbon nanotubes 

(CNTs), carbon fibers (CFs), and diamond have attracted significant scientific and industrial 

interest. Exploiting the properties of CNT and graphene in micro- and macroscale structures is 

of significant interest for engineering research and product development.
1-3

 For example, high 

strength and high conductivity fabrics based on these materials could enable a variety of 

applications from lightweight body armor to space elevators.
4, 5

 Several solutions to the 

problem of scale have been demonstrated for both graphene and CNTs. Spinning CVD-grown 

aligned CNTs into a continuous yarn has enabled conductive, high-strength structures with 

micron diameters and macro-scale lengths.
3
 Control of mechanical strength and 

electrical/thermal conductivity of CNT yarns is established by adjusting lengths of the 

component CNTs, as well as the spinning angles of the fibers.
6, 7

 Twisted and/or coiled 

structures of CNT yarns have been used to fabricate electrochemical as well as electrolyte-

free CNT torsional actuators (artificial muscles) with large-stroke and high work-capacity.
8, 9

  

Cell culture dishes containing CNT yarns have shown that neurons grow and respond to 

electrical stimulation delivered by the yarn.
10

 As bulk carriers of electricity and data, CNT 

yarns have been evaluated as replacements for standard Cu and Al wires due to their light 

weight (alleviating stress on joints), ballistic conduction (lack of scattering reduces risk of 

Joule heating), and capacity to handle high frequencies.
11

 Expanding upon the application of 

long-distance electricity transfer, CNT yarns have been used to build wireless data transfer 

networks that were mechanically-resilient and displayed frequency-independent resistive 

behavior.
 12

 As a demonstration of their favorable electrochemical characteristics, CNT yarns 

have been used as an alternative to the standard CF electrochemical sensor for 

neurotransmitters due to an intrinsic ability to resist surface fouling.
13
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All of the aforementioned research, and much that was not mentioned, was performed using 

prototype devices containing silver epoxy, gold paste, solder, or mechanical clamps to create 

electrical connections to CNT yarns or CFs. While these connections served their respective 

experimental purposes, their use in fabrication does not generally yield scalable or integrated 

electronic devices, nor are these connection methods resilient or biocompatible enough for 

consideration as materials for biomedical devices. There have been several methods 

developed for bonding individual CNTs to metals, as well as to joining individual CNTs to 

other CNTs.
14

 However, making electrical connections to larger (micro, rather than nano) 

CNT composites and yarns is a different challenge. Current approaches include mechanical 

clamps, Ag- and Au-based epoxy adhesives, carbon solder, ultrasonic welding, and vacuum 

brazing.
15, 16

 A recent, very exciting approach involves use of transition metal soldering alloys 

to join carbon wires using standard solder conditions (e.g., 350 °C in air).
17

 While it is a 

technique that will undoubtedly revolutionize the utility of carbonaceous wires, the Cu- and 

Sn-based alloys are unlikely to display biocompatibility due to the known cytotoxicity of 

these metals.
18, 19

 We have recently developed a technique to create a hermetic diamond 

capsule using biocompatible gold alloys.
20

 Additionally, we have demonstrated a method for 

the construction of hermetic, biocompatible feedthroughs for a retinal prosthesis device based 

on conductive nitrogen-doped diamond electrodes.
21

 In the present paper, we extend our 

previous work and describe the construction of diamond-based electronic circuit substrates 

with embedded Ag- or Au-based interconnects and soldering pads. Finally, we describe a 

method to metallize the aforementioned carbonaceous wires (CNT yarns, CFs, and graphene 

fibers), with the option to incorporate them into the diamond circuit substrates. The methods 

we describe constitute an important toolkit to allow for CNTs and other similar materials to be 

incorporated into circuits and bonded to traditional surface-mount electronics, with special 

focus on biocompatible systems for implantation into the body.   
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1.1 Brazing to carbon 

Active brazing, a variation of vacuum brazing, utilizes an alloy containing an active 

component that reacts chemically with a relatively inert surface, such as diamond materials 

and ceramics.
22, 23

 Transition metals are of particular interest due to electron vacancies in their 

d-orbitals, with greater numbers of vacancies leading to greater reactivity (overlap) with 

carbon’s p-orbitals.
24

 In the case of carbon substrates, the active component—typically Ti, V, 

or Cr—forms a carbide interface layer that acts as a surfactant to enable the wetting of other 

filler metals.
25

 A Ag-based active brazing alloy (ABA) has been used previously to make 

electrical contact to a CNT bundle, and formation of the TiC interface layer was confirmed 

with X-ray photon scattering (XPS), though the electrical and mechanical properties were not 

fully characterized.
16

  In the present work, commercially-available ABAs were investigated 

for their ability to make electronic connections to several carbonaceous materials, including 

polycrystalline diamond (PCD), CNT yarns, graphene oxide (GO) fibers, and PAN-based 

carbon fibers (CFs) to enable various types of electronic devices (Figure 1).  
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Figure 1. ABAs were used to make electrical contact to electrodes based on either conductive 

diamond or carbonaceous wires such as CNT yarns, CFs, or GO fibers. The option to braze 

either a rigid diamond or flexible carbon wire electrode into an insulating, robust substrate is 

the key to the realization of array-based carbon electronic devices. Another technique—a 

novel lift-off method—facilitates the fabrication of freestanding carbonaceous wires with 

metallic end-contacts. *Abbreviations in figure: Au ABA (Au active brazing alloy), PCD 

(polycrystalline diamond; electrical insulator), N-UNCD (nitrogen-incorporated 

ultrananocrystalline diamond; electrical conductor).  

 

In the first technique described here, ABAs were used to create embedded circuit boards in 

PCD, wherein the solidified ABA forms the interconnect and contact pads following 

mechanical polishing. The second metallization system involves making free-standing Au 

contacts to carbonaceous fibers using a graphite “lift-off” method which exploits the balance 

of cohesive and adhesive forces of the liquidus metal/graphite interface (Equation 1).  

                                                                      cos 𝜃 =
𝑊𝐴

𝜎𝐿
− 1                                                                (1)  

Where θ is the contact angle between the substrate and liquid metal, WA is the work of 

adhesion (adhesion force) between the substrate and the liquid metal, and σL is the cohesion 

force (liquid-vapour surface tension) within the liquid metal droplet. Equation 1 describes the 

balance of forces at the liquid metal/solid substrate interface, wherein liquid metals 

(intrinsically very high cohesion force materials) tend to create large contact angles on most 

substrates unless σL < WA, where contact angles <90˚ are considered “wetting”. In one facet of 

this work, we use active brazing to modify WA and create robust electrical connections to 

carbonaceous materials such as PCD and CFs. In another technique, we exploit the lack of 

adhesion and wetting between graphitic carbon and Au, as well as the cohesion forces within 

the liquid metal droplet, to create a freestanding carbonaceous wire with metallic connections. 

Broadly speaking, the techniques described here are applicable to the development of devices 

in which a strong, biocompatible, and ohmic bond to carbon-based materials is required. 

 

 

2. Results and Discussion 
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2.1. Diamond circuit boards 

Three different brazing pastes were assessed for their ability to wet and bond to 

polycrystalline diamond (PCD) substrates (Figure 2). The elemental composition of these 

brazes is included in Table 1 of the Experimental section. 

 

Figure 2. (a) Ag ABA wets PCD and bonds strongly. (b) Au ABA does not wet PCD, 

forming a droplet that makes ~111° contact angle with the surface; some bonding occurs but it 

can be removed. (c) Au ABA wets the PCD following a previous Ag ABA brazing step 

implemented to create an adhesion layer. (d) TiCuNi braze wets the PCD surface, but does not 

bond. The cooled TiCuNi droplet is easily pulled from the PCD surface with forceps.  

 

Ag ABA was found to spread and adhere strongly to PCD, which was likely facilitated by the 

formation of an interfacial TiC layer (Figure 2a) (Supplementary Figure S1). Au ABA did 

not spread on the PCD surface upon melting and, therefore, created a spherical droplet that 

exhibited a 111° contact angle with the surface (Figure 2b). In order to create a Au/PCD 

system—with the aim of biocompatibility and corrosion resistance—a Ag ABA brazing step 

was introduced to produce a metallic adhesion layer for a subsequent brazing step with Au 

ABA (Figure 2c). The Ag/Au two-step brazing process is illustrated in Figure 10 of the 

Experimental section. TiCuNi, a braze used previously for the encapsulation of medical 

devices,
26

 can wet the PCD surface upon heating but did not bond and was easily removed 

with forceps upon cooling (Figure 2d). Ni has been shown previously to etch diamond at low 

pressures during heating, in which graphitization occurs upon cooling.
27

 It is possible that this 

graphitic layer is preventing the spreading of Au-ABA, as well as the lack of adhesion of the 
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TiCuNi upon cooling. The effect is exaggerated with TiCuNi due to a 5-fold increase in Ni 

content compared with Au ABA (Table 1). If a metal is unable to wet or bond to PCD, it is 

not suitable for the creation of embedded, thick film conductors or contact pads required for 

the embedded circuit structures presented here.  

   

A 532 nm Nd:YAG laser was used to create microscopic grooves in a PCD substrate prior to 

brazing and mechanical polishing processes. This process is illustrated in Figure 9 of the 

Experimental section. The laser-cut microstructures and resultant brazed/polished devices 

were imaged using optical microscopy, SEM, and Micro-CT (Figure 3). Figure 3a shows two 

magnifications of microstructures milled into PCD. The interconnect widths achieved so far 

with this technique range between 6-10 µm. A correlation between laser power and groove 

width was found using SEM imaging (Supplementary Figure S2). Smaller features are 

likely possible following more extensive laser parameter optimization.  Only Ag/PCD and 

Au/PCD (with Ag-ABA adhesion layer) devices were fabricated due to the poor adhesion of 

TiCuNi braze and the poor wetting of pure Au ABA on PCD substrates. Ag-ABA spreads and 

flows during heating to fill in laser-milled circuit structures, which demonstrates a significant 

advantage over conventional “line-of-sight” thin film metallization procedures. A Micro-CT 

image (Figure 3c) demonstrates the complex three-dimensional assembly of braze wires and 

contact pads utilized to contact conductive diamond electrodes (dotted circle) in a full 

electrode array device. The resistance of Au microwires embedded in PCD was measured 

using a transmission line set-up to correct for contact resistance. The relationship between the 

resistance of a 500 µm length Au interconnect and laser power utilized to mill the track is 

shown in Figure 3d.   
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Figure 3. Embedded circuit boards produced with laser engraving, active brazing, and 

mechanical polishing. (a) SEM image of a laser-cut interconnect (right) and contact pad. (b) 

Au (left) and Ag (right) circuit structures after mechanical polishing. (c) A microcomputed 

tomography (micro-CT) image of the metal interconnects embedded in a diamond substrate. 

Note: the diamond is highly transparent to the CT x-rays. (d) Relationship between laser 

power used to mill the circuit structure and resistance of the embedded track. The length of 

the track (n=3) measured at each power was 500 µm and was made using the 2-step brazing 

process: Ag ABA, followed by Au.  

 

The 3D nature of the interconnect leads to a significant decrease in electrical resistance 

compared with a thin film metal contact according to R=ρL/A, where ‘R’ is resistance, ‘ρ’ is 

material resistivity, ‘L’ is interconnect length, and ‘A’ is interconnect cross-sectional area. 

The polished circuit boards are durable and ideal for thermal management applications due to 

diamond’s extremely high thermal conductivity (1-2 kW/mK).
28

 The workability of both Au- 

and Ag-ABA interconnects is an important consideration. Both varieties of braze are 

solderable and easily laser welded to, enabling compatibility with traditional surface-mount 

technology (Supplementary Figure S3). Brazing individual CFs into a diamond substrate 

was achieved using a screen-printing technique to avoid the need for mechanical polishing 

(Figure 4).  
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Figure 4. (a) Individual 7 µm CFs were manually-placed into laser-cut grooves of the PCD 

substrate and secured in place with braze paste. Due to the presence of laser-cut grooves, 

excess paste was removed by wiping with a squeegee to avoid a mechanical polishing step. 

The substrates were heated to melt the Ag ABA paste, forming an embedded electrode and 

metallic interconnect in a PCD substrate (b,c).   

 

Avoiding mechanical polishing is important for delicate, small, and fragile electrode materials. 

However, because the brazing pastes are comprised of both metal beads and polymeric binder, 

the functional volume of the interconnect is reduced upon melting, leading to some loss in 

conductivity in comparison with a thicker interconnect. We are currently investigating 

methods for protecting the CFs , and other carbonaceous wires, during mechanical polishing 

to enable more complex, robust device architectures.  

 

2.2 Metallization of free-standing carbon wires 

If the carbonaceous wire is to be used as a free-standing electrochemical probe or conduction 

line, a “lift-off” method is required. Of the three varieties of ABA paste examined, Au ABA is 
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preferred because it does not form a strong bond to the graphite substrate following a melting 

cycle, so the entire wire can be lifted off of the substrate with the contacts intact, preventing 

damage to the wire. Both Ag ABA and TiCuNi bonded strongly to the graphite substrate 

preventing facile lift-off and sometimes leading to mechanical damage of the fiber. The 

enhanced bonding of the TiCuNi/graphite system in comparison with the TiCuNi/PCD system 

is possibly explained by graphite’s porosity, which creates a higher contact surface area 

compared with diamond (reference). Au does not bond to the graphite due to the known 

immiscibility of graphitic carbon and Au (brazing reference). When the graphite substrate was 

heated, the Au-ABA formed a spherical metallic contact, enclosing both the carbonaceous 

fiber and a metallic wire (if desired) within it (Figure 5). 

 

Figure 5. Graphite lift-off method demonstrating resolution of spot-brazing free-standing 

carbon wires. (a) Graphite wafer laser milled for spot brazing technique. (b) Au ABA paste 

placed over grooves and (c) solidified Au contacts on carbon fiber bundle. The intact device is 

easily removed from the graphite wafer due to the lack of chemical bonding between Au and 

graphite.  
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Additionally, both TiCuNi and Ag-ABA wetted portions of the carbon wire, likely changing 

its mechanical and structural properties, limiting the resolution of the contact area 

(Supplementary Figure S4). This technique is a potential improvement over mechanical 

clamps, especially considering the diameters of the fibers studied here (7-50 µm) because 

mechanical stress from clamps would likely fray or damage the fibers. Voltage sweeps (-1 to 

+1 V) were performed while current was recorded across the PtIr/CNT yarn (Figure 6b), 

suggesting a linear (non-rectifying) contact in the tested voltage range. The resistivity, ρ, of 

the CNT yarns in this work was comparable to those, of similar size and length, measured by 

Jasinghe et al.
29

  We measure an average ρ of 4.3×10
-3

 Ω·cm for the PtIr/Au/CNT yarn 

structures and Jasinghe et al report a ρ of 1.7-3×10
-3

 Ω·cm for pristine CNT yarns.  Further 

investigation is needed to estimate the contact resistance of this system.  

 

 

Figure 6. Electrical characterization and SEM imaging of free-standing carbonaceous wires 

with Pt wire contacts. (a) Optical photograph of PtIr/Au/CNT yarn system during electrical 

measurement. (b) Linear (Ohmic) I-V curves of several CNT yarns and one graphene oxide 

(LCGO) fiber sample. (c) SEM image of the Au contact between the PtIr wire and the CNT 

yarn. (d) 2300X magnification of the junction between the Au contact and the yarn. (e) 370X 

magnification of the Au contact on LCGO fiber. 
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2.3 Material characterization 

2.3.1 Pre- and post-brazing Raman spectroscopy 

The structures described above were characterized using 514 nm Raman spectroscopy (inVia) 

to investigate structural changes in the materials before and after high temperature brazing 

(Figure 7). The Au ABA samples were chosen for investigation because they were subject to 

the highest melting ranges (1003-1030 °C).  

 

Figure 7. Raman spectroscopy of CNT yarns (a,b), LCGO fibers (c,d), and CF bundles (e,f) 

before and after brazing. (g) Chart illustrating change in D/G intensity with brazing. The D-

peak (or disorder peak) is located around 1330-1350 cm
-1

 and the G-peak (or graphite band) is 

located around 1580-1590 cm
-1

.    

 

In an attempt to improve the thermal and electrical properties of CNTs and composites, 

gamma irradiation and high temperature treatments have been previously investigated.
30

 The 

CNT yarn spectra suggest a decrease in the intensity ratio of D/G peaks following brazing, 
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suggesting the decrease of “disorder” in the lattice (Figure 7g). A similar result was observed 

by Pieoli et al.
30

 It of interest that creating brazed contacts at either end of a woven or spun 

material, such as CNT yarn, prevents unwinding and generally helps to keep the fiber intact. 

Mechanical clamps, which apply large forces to the end of the yarn, can lead to fraying and 

damage, especially at smaller yarn diameters.
15

 The before and after Raman spectra of CFs 

reveals very little change in the microstructure, aside from the loss of a broad peak at around 

2750 cm
-1

 following brazing (Figure 7a,b). This peak, known as G’, is described as an 

overtone of the D-peak.
31

 The presence of a prominent D-peak in CFs based on 

polyacrylonitrile (PAN) is typically attributed to poor graphitization and is never present in 

pure crystallized graphite.
31

 The G’ peak appears quite prominent in both CF spectra 

presented here (Figure 7a,b), though there appears to have been some moderate increase in 

graphitization following brazing. Additionally, the loss of the D-peak overtone (the G’ peak) 

potentially suggests the increased crystallinity of the material due to increased graphitization. 

However, it is important to note that the graphitization process during commercial CF 

manufacturing occurs at around 2600 ˚C—much higher than is used to create Au contacts in 

this study.
31

  The Raman spectra of the LCGO fiber revealed several peaks typically seen in 

the spectra of graphite, carbon fibers, and graphene oxide (Figure 7c,d). Some major changes 

occurring following brazing include: (1) loss of a peak at ~1100 cm
-1

, (2) increase in D/G 

intensity ratio, and (3) loss of a “shoulder” on the G’ peak. It is possible that the loss of these 

peaks is the result of the loss of a surface functionality as a result of high temperature 

treatment, such as a C-O group.  However, further investigation is required to acquire a full 

understanding of the structural changes occurring not only as a result of the high temperature 

processes in the presence of various metals.  

 

2.3.2 Braze/carbon interface characterization 
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Au ABA formed a seal around the bundle, but had minimal reaction with the graphite 

substrate, enabling the fiber/ABA structure to be easily lifted from the substrate. However, if 

enough force is applied, the Au contact can be removed from the fiber. To investigate the 

interface between the fibers and the brazing alloys, the same samples described above were 

molded, polished and examined using energy dispersive X-ray spectroscopy (EDX) and SEM 

(Figure 8). All analysis was performed on the cross-section of the fiber-metal interface as 

illustrated in Figure 8a.  

 

Figure 8. (a) Process for preparing interface examination sample. A silicone rubber mold 

(purple outline) was cast using a 10 mm steel cylindrical plug. Next, the CF/ABA samples 

were cut close to to the joint and placed into the mold with super glue until fixed. Araldite 

epoxy resin was poured in to the mold, covering the entire sample, which was then polished 

and examined with EDX and SEM. (b) Ag ABA surrounds individual 7 µm diameter CFs. (c) 

EDX reveals that Ti (green) has migrated to the fibers, forming TiC that enables wetting of 

Ag (red). (d) Au ABA, rather than reacting with individual fibers, forces the individual fibers 

together to form a bundle (e), with only small amounts of Ti diffusing in (e).  

 

The Ag-ABA/CF interface revealed separation of the CF bundle into individual 7 µm fibers 

(Figure 8b). EDX of the interface revealed rings of Ti around the fibers and intimate contact 
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with Ag, perhaps suggesting a TiC reaction product (Figure 8c). Due to the presence of the 

TiC surfactant layer, an intimate bond with Ag is made possible. Au-ABA reacted quite 

differently with the CF bundle. Rather than splaying the bundle, the cohesion forces within 

the liquidus metal enclosed the fiber bundle (Figure 8d). There was some Ti present in the 

joint, but not selectively around the CF as observed in the Ag-ABA sample. This difference in 

activity can be explained by the fact that Au does not wet TiC due to the precipitation of a 

graphite layer.
32

 At the interface of the Au/TiC system, there is an important reaction to 

consider:  

𝑇𝑖𝐶 → 𝑇𝑖 + 𝐶𝑔 

Where Cg is a graphitic carbon precipitate. Adding between 3.7% and 7.5% Ni (or 7.1 to 

15.8% Fe) to the Au alloy can dramatically reduce the contact angle between Au and a TiC 

surface.
33, 34

 Another option to improve Au wetting to TiC is to introduce Cu, though the 

effect is not as prominent as with the Au/Ni or Au/Fe alloys. In previous literature describing 

Au/Cu experiments, it was hypothesized that Cu would reduce the reactivity of the Au, 

thereby reducing the amount of Ti pulled from TiC and ultimately reducing the amount of 

graphitic carbon precipitation (Cg).
32, 33

 However, the addition of Cu could potentially 

compromise biocompatibility. Titrating Au alloy compositions to enhance carbon bonding 

without cytotoxic consequences warrants further investigation.   

 

 

3. Conclusions 

Two key methods for fabricating electronic microdevices with PCD and carbon-based wires 

(CNT yarns, CFs, and LCGO fibers) have been described, with focus on biocompatibility of 

all components. For PCD electronics, Ag ABA is used due to its wetting and covalent 

bonding to diamond via reactive formation of TiC. Au ABA can be used following creation of 

an Ag ABA interfacial layer, as it does not wet PCD. Both Au and Ag contact pads of the 
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embedded PCD circuit boards are compatible with commercially-available solders and are 

easily laser-welded for solder-free joining. The non-wetting method of enclosing 

carbonaceous fibers and yarns was used to create strong, low-resistance, and Ohmic 

connections between PtIr wires and carbonaceous fibers. Structural and interfacial 

examinations of these structures lend insight into the forces at play during both the wetting 

and non-wetting fabrication of carbonaceous devices. We exploit surface tension effects of 

two commercially-available active brazing alloys to create two different device architectures:  

 (1) The wetting technique was used, in conjunction with mechanical polishing, to create 

robust circuit substrates with embedded Ag or Au interconnects and contact pads. The option 

to braze a variety of carbonaceous wires into the substrate illustrates utility of the method for 

enabling all-carbon microwire electrode arrays.  

(2) The non-wetting technique was developed to enable freestanding carbon wires with Au or 

Au/PtIr wire contacts. This technique is interesting for the creation of not only free-standing 

carbonacoues conductors, but also for neural probes or sensors for both central and peripheral 

nervous system integration. We have previously described methods to fabricate neural 

stimulation and recording electrodes from carbonaceous wires, demonstrating both in vitro 

and in vivo functionality.
35

  

 

 

 

 

4. Experimental  

Wetting of PCD by braze alloys 

Thermal grade polycrystalline diamond (PCD) substrates (TM-250, Element Six) with a 

thickness of 250 µm were laser-cut into 5 × 5 mm squares. Approximately 6.5 mg of either 

TiCuNi, Ag ABA, or Au ABA paste were placed ontop of the PCD substrate. Samples were 
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placed in a brazing furnace under vacuum heated until the braze was visibly melted, then held 

at temperature for 1 minute. Samples were cooled and imaged using an optical microscope. 

The contact angle of Au ABA on PCD was measured using the  low-bond axisymmetric drop 

shape analysis in the Droplet-Analysis package in ImageJ image processing software.
36, 37

 

   

Fabrication of PCD circuit substrates 

Thermal grade PCD substrates (TM-500, Element Six) with a thickness of 500 µm were laser 

engraved using a 532 nm Nd:YAG laser (Oxford lasers) at a pulse frequency of 10 kHz. A 

boiling solution of sodium nitrate and sulfuric acid was used to remove debris from the 

engraved pattern, followed by 5 minutes of ultrasonication in acetone. The PCD substrates 

were rinsed with isopropanol and deionized water, then dried with nitrogen. Groove width 

was correlated with laser power using scanning electron microscopy (SEM) images. The 

contents and properties of the ABA pastes studied are listed in Table 1. 

 

ABA 

(Manufacturer) 

Ag (%) Au (%) Cu (%) Al (%) Ti (%) Ni (%) MP (°C) 

Ag-ABA 

(Wesgo) 

 

92.75 - 5 1 1.25 - 912 

Au-ABA 

(Morgan) 

 

- 96.4 - - 0.6 3 1003 

TiCuNi 

(Wesgo) 

- - 15 - 70 15 960 

 

Table 1. Manufactuer, elemental composition, and melting point (MP) of the ABA pastes 

studied.   

 

ABA paste was spread over the PCD substrate. Samples were transferred to a 10 × 10 mm 

graphite wafer, placed inside an electron beam deposition system (Thermionics) and 

evacuated to 1 × 10
-6

 Pa. The electron beam was focused onto the graphite substrate, rather 

than the diamond sample, and current was increased until both the graphite and PCD were 
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glowing red, ultimately leading to the ABA melting and spreading over the substrate and into 

the laser-milled patterns. Current was decreased over the course of 1 minute and the samples 

were cooled over the course of 1 hour in a N2 environment. The brazed samples were 

removed from the deposition chamber and mechanical polishing was performed with a 

diamond-embedded polishing plate (Struers Inc.), using deionized water as a coolant. The 

samples were polished until embedded Ag ABA or Au ABA tracks were revealed and 

residual metals between patterns removed, ensuring no shorting between interconnects. 

Resistance between isolated interconnects was measured to ensure no shorting (e.g., >MΩ 

resistance) between unconnected tracks. If shorting did occur, due to residual unpolished 

metal, mechanical polishing was continued until it was removed. Fiber or wire electrodes can 

be incorporated into laser cut grooves, followed by “screen-printing” ABA paste into the 

grooves holding them securely during sample transfer. Screen-printing removes the need for a 

final mechanical polishing step which can damage the very sensitive fibers. The fabrication of 

Au/PCD circuit boards requires an additional brazing step to metallize the circuit substrate 

(Figure 9). 

 

Figure 9. An extension of the method described in Figure 2. (a-b), circuit patterns were laser 

cut into the diamond substrate and the surface treated with a combination of sulfuric acid and 

sodium nitrate. (c) Ag-ABA paste was applied to the surface melted in an electron beam 
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deposition system. (d) The electron beam was continuously applied until a majority of Ag 

evaporated from the surface, leaving behind a conformal film for Au adhesion (e) A Au-based 

paste was applied to the surface and melted with the aforementioned method (f). (g) The 

substrate was mechanically-polished, revealing Au circuit structures. (h) Finally, connections 

or components were attached with laser welding, soldering, or wirebonding if necessary. 

  

 

Carbon wire preparation 

MWNT forest was synthesized by catalytic chemical vapor deposition using acetylene gas as 

the carbon source. Carbon nanotubes in the 400 um tall forests typically had diameters of 10 

nm. The CNT yarns were drawn from the forest by pulling and twisting as described by 

Zhang et al.
38

 Graphene oxide (GO) was prepared from intercalated graphene flakes. The 

liquid crystallite state of graphene oxide was used to wet-spin conductive fibers as described 

previously.
39

    

 

Metallization of freestanding carbon wires 

On a graphite substrate, two mounds of ABA paste were placed on opposite sides of a 10 × 10 

mm graphite wafer. Either a bundle of CFs (Goodfellow), a single CNT yarn (15 µm), or a 

graphene oxide fiber (50 µm) was placed across the mounds and pressed into them. 

Additionally, one PtIr wire (75 µm, Goodfellow) was placed into each of the ABA paste 

mounds. The graphite substrate was transferred to an electron beam deposition system 

(Thermionics) and evacuated to 1 × 10
-6

 Pa. The electron beam was focused onto the graphite 

substrate—as described above for PCD circuit board construction—and the current was 

increased until the substrate was glowing red. This process is illustrated in Figure 10.  
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Figure 10. (a) Fabrication of freestanding metal/ABA/CNT yarn wires. Mounds of ABA 

paste were placed onto a graphite substrate and either CNT yarns, CFs, or graphene oxide 

fibers were pressed into them. PtIr wires were pressed into the end for testing.  

 

Once melting of the ABA was observed, the current was ramped down over 1 minute and the 

samples were cooled for 30 minutes in an N2 environment. Au-ABA samples were easily 

removed from the graphite substrate due to lack of reaction, while considerable force was 

needed to remove the Ag ABA and TiCuNi samples.  

 

 

 

Electrical characterization  

The resistance of the Au ABA interconnects embedded in the polished PCD substrates were 

measured using a 2-way probe station and a multimeter (Keithley Instruments). Transmission 

line devices were fabricated to correct for contact resistance. The electrical behavior of the 

freestanding PtIr/Au/CNT yarn structures was characterized by performing voltage sweeps (-1 

to +1 Volt) with a potentiostat (eDAQ) while measuring current.  

 

Material and interface characterization  
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Raman spectroscopy (inVia Raman, Renishaw) was used to investigate the effects of high 

temperature brazing on the microstructure of CFs, CNT yarns, and reduced graphene oxide 

fiber (LCGO). A 514 nm green laser with a power of 50% (15 mW) was used for CF bundles, 

while a power of 5% (1.5 mW) was used for 15 µm CNT yarns and 40 µm LCGO to avoid 

ablation damage. Samples were scanned before and after high temperature brazing (1003-

1030˚C). The laser was focused on the center of the sample and an exposure time of 60 

seconds was used. The acquired signals were processed in Matlab using a linear baseline 

correction procedure, followed by Gaussian fitting to resolve peaks. The metal/fiber interfaces 

were studied by embedding brazed samples in epoxy resin (Araldite) and mechanically-

polishing them to reveal the cross-section. SEM images were acquired and energy-dispersive 

X-ray spectroscopy (EDX) was used to identify elemental composition at the interface of both 

Ag-ABA/CF and Au-ABA/CF joints.          
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