571 research outputs found

    Factorizations of some weighted spanning tree enumerators

    Get PDF
    We give factorizations for weighted spanning tree enumerators of Cartesian products of complete graphs, keeping track of fine weights related to degree sequences and edge directions. Our methods combine Kirchhoff's Matrix-Tree Theorem with the technique of identification of factors.Comment: Final version, 12 pages. To appear in the Journal of Combinatorial Theory, Series A. The paper has been reorganized, and the proof of Theorem 4 shortened, in light of a more general result appearing in reference [6

    The Hamilton-Waterloo Problem with even cycle lengths

    Full text link
    The Hamilton-Waterloo Problem HWP(v;m,n;α,β)(v;m,n;\alpha,\beta) asks for a 2-factorization of the complete graph KvK_v or KvIK_v-I, the complete graph with the edges of a 1-factor removed, into α\alpha CmC_m-factors and β\beta CnC_n-factors, where 3m<n3 \leq m < n. In the case that mm and nn are both even, the problem has been solved except possibly when 1{α,β}1 \in \{\alpha,\beta\} or when α\alpha and β\beta are both odd, in which case necessarily v2(mod4)v \equiv 2 \pmod{4}. In this paper, we develop a new construction that creates factorizations with larger cycles from existing factorizations under certain conditions. This construction enables us to show that there is a solution to HWP(v;2m,2n;α,β)(v;2m,2n;\alpha,\beta) for odd α\alpha and β\beta whenever the obvious necessary conditions hold, except possibly if β=1\beta=1; β=3\beta=3 and gcd(m,n)=1\gcd(m,n)=1; α=1\alpha=1; or v=2mn/gcd(m,n)v=2mn/\gcd(m,n). This result almost completely settles the existence problem for even cycles, other than the possible exceptions noted above

    Vertex-regular 11-factorizations in infinite graphs

    Full text link
    The existence of 11-factorizations of an infinite complete equipartite graph Km[n]K_m[n] (with mm parts of size nn) admitting a vertex-regular automorphism group GG is known only when n=1n=1 and mm is countable (that is, for countable complete graphs) and, in addition, GG is a finitely generated abelian group GG of order mm. In this paper, we show that a vertex-regular 11-factorization of Km[n]K_m[n] under the group GG exists if and only if GG has a subgroup HH of order nn whose index in GG is mm. Furthermore, we provide a sufficient condition for an infinite Cayley graph to have a regular 11-factorization. Finally, we construct 1-factorizations that contain a given subfactorization, both having a vertex-regular automorphism group
    corecore