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Abstract

We give factorizations for weighted spanning tree enumerators of Cartesian products of

complete graphs, keeping track of fine weights related to degree sequences and edge directions.

Our methods combine Kirchhoff’s Matrix-Tree Theorem with the technique of identification

of factors.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Graph Laplacian; Spanning tree; Matrix-tree theorem

1. Introduction

Cayley’s celebrated formula nn�2 for the number of spanning trees in the complete
graph Kn has many generalizations (see [5]). Among them is the following well-
known factorization for the enumerator of the spanning trees according to their
degree sequence, which is a model for our results.

Cayley–Prüfer Theorem.X
TATreeðKnÞ

xdegðTÞ ¼ x1x2?xnðx1 þ?þ xnÞn�2;

where TreeðKnÞ is the set of all spanning trees and xdegðTÞ :¼
Qn

i¼1 x
degT ðiÞ
i :
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Although this is most often deduced from the bijective proof of Cayley’s formula
that uses Prüfer coding (see, e.g., [5, pp. 4–6]), we do not know of such a bijective
proof for most of our later results. Section 2 gives a quick proof (modelling those
that will follow) using a standard weighted version of Kirchhoff’s Matrix-Tree

Theorem, along with the method of identification of factors.
We generalize the Cayley–Prüfer Theorem to Cartesian products of complete

graphs G ¼ Kn1 �?� Knr
: The number of spanning trees for such product graphs

can be computed using Laplacian eigenvalues. Section 3 generalizes this calculation
to keep track of the directions of edges in the tree, as we now explain. Note that
vertices in G are r-tuples ð j1;y; jrÞA½n1� �?� ½nr�; and each edge connects two
such r-tuples that differ in only one coordinate. Say that such an edge lies in direction

i if its two endpoints differ in their ith coordinate. Given a spanning tree T in G;
define the direction monomial

qdirðTÞ :¼
Yr

i¼1
q
jfedges in T in direction igj
i :

Theorem 1.

X
TATreeðKn1

�?�Knr Þ
qdirðTÞ ¼ 1

n1?nr

Y
|aAC½r�

X
iAA

qini

 !Q
iAA

ðni�1Þ

¼
Yr

i¼1
qni�1

i nni�2
i

Y
AC½r�
jAjX2

X
iAA

qini

 !Q
iAA

ðni�1Þ

:

One might hope to generalize the previous result by keeping track of edge
directions and vertex degrees simultaneously. Empirically, however, such generating
functions do not appear to factor nicely. Nevertheless, if one ‘‘decouples’’ the vertex
degrees in a certain way that we now explain, nice factorizations occur. Create a

variable x
ðiÞ
j for each pair ði; jÞ in which iAf1; 2;y; rg is a direction and j is in the

range 1; 2;y; ni: In other words, there are r sets of variables, with ni variables

x
ðiÞ
1 ; x

ðiÞ
2 ;y; x

ðiÞ
ni in the ith set. Given a spanning tree T of G; define the decoupled

degree monomial

xddðTÞ :¼
Y

v¼ð j1;y;jrÞA½n1��?�½nr�
x
ð1Þ
j1
?x

ðrÞ
jr

� �degT ðvÞ
: ð1Þ

In Section 3, we prove the following generalization of the Cayley–Prüfer Theorem.

Theorem 2. The spanning tree enumerator

fn1;y;nr
ðq; xÞ :¼

X
TATreeðKn1

�?�Knr Þ
qdirðTÞxddðTÞ
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is divisible by

qni�1
i ;

x
ðiÞ
j

� �n1?ni�1niþ1?nr

and

x
ðiÞ
1 þ?þ xðiÞ

ni

� �ni�2

for each iA½r� and jA½ni�:

Conjecture. The quotient polynomial

fn1;y;nr
ðq; xÞQr

i¼1 qni�1
i x

ðiÞ
1 ?x

ðiÞ
ni

� �n1?ni�1niþ1?nr

x
ðiÞ
1 þ?þ x

ðiÞ
ni

� �ni�2

in Z½qi; x
ðiÞ
j � has non-negative coefficients.

Empirically, this quotient polynomial seems not to factor further in general,
although when one examines the coefficient of particular ‘‘extreme’’ monomials in

the qi; the resulting polynomial in the x
ðiÞ
j factors nicely. Such nice factorizations

seem to fail for the coefficients of non-extreme monomials in qi when there are at
least two niX3:
Section 5 shows that when all ni ¼ 2; the spanning tree enumerator fn1;y;nr

ðq; xÞ
factors beautifully. Here we consider the Cartesian product

Qn :¼ K2 �?� K2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n times

;

which is the 1-skeleton of the n-dimensional cube. For the sake of a cleaner

statement, we make the following substitution of the 2n variables fx
ðiÞ
1 ; x

ðiÞ
2 gn

i¼1:

x
ðiÞ
1 ¼ x

�1
2

i ;

x
ðiÞ
2 ¼ x

1
2
i : ð2Þ

Substitution (2) is harmless, because it is immediate from (1) that the polynomial
f2;y;2ðq; xÞ is homogeneous of total degree 2ð2n � 1Þ in each of the sets of two

variables fx
ðiÞ
1 ; x

ðiÞ
2 g: Our result may now be stated as follows:

Theorem 3.

X
TATreeðQnÞ

qdirðTÞxddðTÞ

2
4

3
5

x
ðiÞ
1
¼x

�
1
2

i
;x

ðiÞ
2
¼x

1
2
i

¼ q1?qn

Y
AC½n�
jAjX2

X
iAA

qiðx�1
i þ xiÞ:
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This result may shed light on the problem of finding a bijective proof for the
known number of spanning trees in the n-cube (see [7, pp. 61–62]).
Section 6 proves a result (Theorem 4 below), generalizing the Cayley–Prüfer

Theorem in two somewhat different directions. In one direction, it deals with
threshold graphs, a well-behaved generalization of complete graphs. Threshold
graphs have many equivalent definitions (see, e.g., [4, Chapters 7–8]), but one that is
convenient for our purpose is the following. A graph G is threshold if, after labelling
its vertices by ½n� :¼ f1; 2;y; ng in weakly decreasing order of their degrees, the
degree sequence l ¼ ðl1X?XlnÞ determines the graph completely by the rule that
the neighbors of vertex i are the li smallest members of ½n� other than i itself. A result
of Merris [3] implies the following generalization of Cayley’s formula to all threshold

graphs. It uses the notion of the conjugate partition l0 to the degree sequence l;
whose Ferrers diagram is obtained from that of l by flipping across the diagonal.

Merris’ Theorem. Let G be a threshold graph with vertices ½n� and degree sequence l:
Then the number of spanning trees in G is

Qn�1
r¼2 l0r:

The natural vertex-ordering by degree for a threshold graph G induces a canonical
edge orientation in any spanning tree T of G; by orienting the edge fi; jg from j to i if
j4i: Thus given a spanning tree T and a vertex i; one can speak of its indegree

indegTðiÞ and outdegree outdegTðiÞ:

Theorem 4. Let G be a connected threshold graph with vertices ½n� and degree sequence

l: Then

X
TATreeðGÞ

Yn

i¼1
x
indegT ðiÞ
i y

outdegT ðiÞ
i ¼ x1yn

Yn�1
r¼2

Xl0r
i¼1

xminfi;rgymaxfi;rg

 !
:

In particular, setting yi ¼ xi gives

X
TATreeðGÞ

xdegðTÞ ¼ x1x2?xn

Yn�1
r¼2

Xl0r
i¼1

xi

 !
:

The proof, sketched in Section 6, proceeds by identification of factors. The authors
thank M. Rubey and an anonymous referee for pointing out that it can also be
deduced bijectively from a very special case of a recent encoding theorem of Remmel
and Williamson [6].

2. Proof of Cayley–Prüfer Theorem: the model

The goal of this section is to review Kirchhoff’s Matrix-Tree Theorem, and use it
to give a proof of the Cayley–Prüfer Theorem. Although this proof is surely known,
we included it both because we were unable to find it in the literature, and because it
will serve as a model for our other proofs.
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Introduce a variable eij for each edge fi; jg in the complete graph Kn; with the

conventions that eij ¼ eji and eii ¼ 0: Let L be the n � n weighted Laplacian matrix

defined by

Lij :¼
Pn
k¼1

eik for i ¼ j;

�eij for iaj:

8<
: ð3Þ

Kirchhoff’s Matrix-Tree Theorem (Moon [5, Section 5.3]). For any r; sA½n�;X
TATreeðKnÞ

Y
fi;jgAT

eij ¼ ð�1Þrþsdet L̂;

where L̂ is the reduced Laplacian matrix obtained from L by removing row r and

column s:

We now restate and prove the Cayley–Prüfer Theorem.

Cayley–Prüfer Theorem.X
TATreeðKnÞ

xdegðTÞ ¼ x1x2?xnðx1 þ?þ xnÞn�2;

where xdegðTÞ :¼
Qn

i¼1 x
degT ðiÞ
i :

Proof. Apply the substitution eij ¼ xixj to the weighted Laplacian matrix L in

Kirchhoff’s Theorem. Setting f :¼ x1 þ?þ xn; one has from (3)

Lij ¼
ð f � xiÞxj for i ¼ j;

�xixj for iaj:

�
By Kirchhoff’s Theorem, the left-hand side of the Cayley–Prüfer Theorem coincides

with the determinant det L̂; where L̂ is the reduced Laplacian obtained from this
substituted L by removing the last row and column. We wish to show that this
determinant coincides with the right-hand side of the Cayley–Prüfer Theorem. Note
that both sides are polynomials in the xi of degree 2n � 2; and both have coefficient 1

on the monomial xn�1
1 x2x3?xn: Therefore, it suffices to show that the determinant is

divisible by each of the variables xj; and also by f n�2: Divisibility by xj is clear since

xj divides every entry in the jth column of L (and hence also L̂). Divisibility by f

follows from Lemma 5 below, once one notices that in the quotient ring

Q½x1;y; xn�=ð f Þ; this weighted Laplacian L (and hence L̂) reduces to a rank-1

matrix of the form L ¼ �vT  v; where v is the row vector ½ x1 ? xn �: &

The following lemma, used in the preceding proof, is one of our main tools. It
generalizes from one to several variables the usual statement on identification of
factors in determinants over polynomial rings (see [2, Section 2.4]).
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Lemma 5 (Identification of factors). Let R be a Noetherian integral domain (e.g., a

polynomial or Laurent ring in finitely many variables over a field ). Let fAR be a prime

element, so that the quotient ring R=ð f Þ is an integral domain, and let K denote the

field of fractions of R=ð f Þ: Let AARn�n be a square matrix. If the reduction
%AAðR=ð f ÞÞn�n

has K-nullspace of dimension at least d; then f d divides detA in R:

Proof. Let f%vigd
i¼1 be d linearly independent vectors in Kn lying in the nullspace of %A:

Extend them to a basis f%vign
i¼1 of Kn: By clearing denominators, one may assume

that f%vign
i¼1 lie in R=ð f Þn; and then choose pre-images fvign

i¼1 in R:

Letting F denote the fraction field of R; we claim that fvign
i¼1 is a basis for Fn: To

see this, assume not, so that there are scalars ciAF which are not all zero satisfying

Xn

i¼1
civi ¼ 0: ð4Þ

Clearing denominators, one may assume that ciAR for all i: If every ci is divisible by
f ; one may divide Eq. (4) through by f ; and repeat this division until at least one of
the ci is not divisible by f : (This will happen after finitely many divisions because R is
Noetherian.) But then reducing (4) modulo ð f Þ leads to a non-trivial K-linear

dependence among the vectors f%vign
i¼1; a contradiction.

Let PAFn�n be the matrix whose columns are the vectors vi: Note that det P is not

divisible by f ; or else the reductions f%vign
i¼1 would not form a K-basis in Kn:

Therefore, by Cramer’s Rule, every entry of P�1 belongs to the localization Rð f Þ at

the prime ideal ð f Þ: Note the following commutative diagram in which horizontal
maps are inclusions and vertical maps are reductions modulo ð f Þ:

R - Rð f Þ - F

k k

R=ð f Þ - K

Since P�1 has entries in Rð f Þ; so does P�1AP: For each iA½d�; the reduction of Avi

vanishes in K ; so every entry in the first d columns of P�1AP lies in the ideal ð f Þ:
Hence det P�1AP ¼ detA is divisible by f d in Rð f Þ; thus also in R: &

The authors thank W. Messing for pointing out a more general result, deducible
by a variation of the above proof that uses Nakayama’s Lemma.

Lemma 6. Let S be a (not necessarily Noetherian) local ring, with maximal ideal m

and residue field K :¼ S=m: Let AASn�n be a square matrix such that the reduction %A

has K-nullspace of dimension at least d: Then detAAmd :

Lemma 5 follows from this by taking S to be the localization Rð f Þ:
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3. Proof of Theorem 1

We recall the statement of Theorem 1.

Theorem 1.

X
TATreeðKn1

�?�Knr Þ
qdirðTÞ ¼ 1

n1?nr

Y
|aAC½r�

X
iAA

qini

 !Q
iAA

ðni�1Þ

:

As a prelude to the proof, we discuss some generalities about Laplacians and
eigenvalues of Cartesian products of graphs. We should emphasize that all results in
this section refer only to unweighted Laplacians; that is, one substitutes eij ¼ 1 for

iaj in the usual weighted Laplacian LðGÞ defined in (3).
The Cartesian product G1 �?� Gr of graphs Gi with vertex sets VðGiÞ and edge

sets EðGiÞ is defined as the graph with vertex set
VðG1 �?� GrÞ ¼ VðG1Þ �?� VðGrÞ

and edge set

EðG1 �?� GrÞ

¼ T
r

i¼1
VðG1Þ �?� VðGi�1Þ � EðGiÞ � VðGiþ1Þ �?� VðGrÞ;

where T denotes a disjoint union. The next proposition follows easily from this
description; we omit the proof.

Proposition 7. If G1;y;Gr are graphs with (unweighted ) Laplacian matrices LðGiÞ;
then

LðG1 �?� GrÞ ¼
Xr

i¼1
id#?id#LðGiÞ#id#?id;

where id denotes the identity, and LðGiÞ appears in the ith tensor position.
As a consequence, a complete set of eigenvectors for LðG1 �?� GrÞ can be chosen

of the form v1#?#vr; where vi is an eigenvector for LðGiÞ: Furthermore, this

eigenvector will have eigenvalue l1 þ?þ lr if vi has eigenvalue li for LðGiÞ:

We also will make use of the following variation of the Matrix-Tree Theorem; see,
e.g., [7, Theorem 5.6.8].

Theorem 8. If the (unweighted ) Laplacian matrix LðGÞ has eigenvalues l1;y; ln;
indexed so that ln ¼ 0; then the number of spanning trees in G is

1

n
l1?ln�1:
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Proof of Theorem 1. Both sides in the theorem are polynomials in the qi; hence it
suffices to show that they coincide whenever the qi are all positive integers. In that

case, the left-hand side of the theorem has the following interpretation. Let K
ðqÞ
n

denote the multigraph on vertex set ½n� having q parallel copies of the edge fi; jg for
every pair of vertices i; j: Then the left-hand side of Theorem 1 counts the number of
spanning trees in the Cartesian product

K ðq1Þ
n1

�?� K ðqrÞ
nr

;

as each spanning tree T in Kn1 �?� Knr
gives rise in an obvious way to exactly

qdirðTÞ spanning trees in K
ðq1Þ
n1 �?� K

ðqrÞ
nr : It is well-known that the (unweighted)

Laplacian LðKnÞ has eigenvalues n; 0 with multiplicities n � 1; 1; respectively

[7, Example 5.6.9]. Hence LðK ðqÞ
n Þ ¼ qLðKnÞ has eigenvalues qn; 0 with multiplicities

n � 1; 1; respectively. By Proposition 7, LðK ðq1Þ
n1 �?� K

ðqrÞ
nr Þ has an eigenvalueP

iAA qini for each subset AC½r�; and this eigenvalue occurs with multiplicityQ
iAA ðni � 1Þ: As the zero eigenvalue arises (with multiplicity 1) only by taking

A ¼ |; Theorem 8 implies that the number of spanning trees in K
ðq1Þ
n1 �?� K

ðqrÞ
nr is

1

n1?nr

Y
|aAC½r�

X
iAA

qini

 !Q
iAA

ðni�1Þ

: &

4. Proof of Theorem 2

We recall here the statement of Theorem 2.

Theorem 2. The spanning tree enumerator

fn1;y;nr
ðq; xÞ :¼

X
TATreeðKn1

�?�Knr Þ
qdirðTÞxddðTÞ

is divisible by

qni�1
i ;

x
ðiÞ
j

� �n1?ni�1niþ1?nr

and

x
ðiÞ
1 þ?þ xðiÞ

ni

� �ni�2

for each iA½r� and jA½ni�:

Proof. To see divisibility by qni�1
i ; note that every spanning tree in Kn1 �?� Knr

is

connected, hence gives rise to a connected subgraph of Kni
when one contracts out all

edges not lying in direction i: This requires at least ni � 1 edges in direction i in the
original tree.
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To see divisibility by ðxðiÞ
j Þn1?ni�1niþ1?nr ; note that every spanning tree has an edge

incident to each vertex, and therefore to each of the n1?ni�1niþ1?nr different
vertices which have ith coordinate equal to some fixed value jA½ni�:
Lastly, we check divisibility by ðxðiÞ

1 þ?þ x
ðiÞ
ni Þni�2: Starting with the weighted

Laplacian matrix (3) for Kn1 �?� Knr
(regarded as a subgraph of Kn1?nr

), let L be
the matrix obtained by the following substitution: if fk; lg represents an edge of
Kn1 �?� Knr

in direction i between the two vertices k ¼ ðk1;y; krÞ and
l ¼ ðl1;y; lrÞ; then we set

ekl ¼ qi  x
ð1Þ
k1
?x

ðrÞ
kr

 x
ð1Þ
l1
?x

ðrÞ
lr
; ð5Þ

otherwise we set ekl ¼ 0: Then Kirchhoff’s Theorem says that fn1;y;nr
ðq; xÞ ¼ 7det L̂

for any reduced matrix L̂ obtained from L by removing a row and column. Thus by

Lemma 5, it suffices for us to show that L̂ has nullspace of dimension at least ni � 2

modulo f ðiÞ :¼ x
ðiÞ
1 þ?þ x

ðiÞ
ni : In fact, we will show that L itself has nullspace of

dimension at least ni � 1 in this quotient. To see this, one can check that, as in
Proposition 7, the matrix L has the following simpler description, due to our
‘‘decoupling’’ substitution of variables:

L ¼
Xr

i¼1
X ð1Þ#?#X ði�1Þ#qiL

ðiÞ#X ðiþ1Þ#?#X ðrÞ;

where X ðiÞ is the diagonal matrix with entries ðxðiÞ
1 Þ2;y; ðxðiÞ

ni Þ
2; and LðiÞ is

obtained by making the substitution ekl ¼ x
ðiÞ
k x

ðiÞ
l in the weighted Laplacian

matrix for Kni
: In the proof of the Cayley–Prüfer Theorem, we saw that LðiÞ has

rank 1 modulo ð f ðiÞÞ; and thus a nullspace of dimension ni � 1: If v is any null-

vector for LðiÞ modulo ð f ðiÞÞ; then the following vector is a nullvector for L

modulo ð f ðiÞÞ:

1n1#?#1ni�1#v#1niþ1#?#1nr
;

where 1m represents a vector of length m with all entries equal to 1. Since
varying v leads to ni � 1 linearly independent such nullvectors, the proof is
complete. &

5. Proof of Theorem 3

We recall here the statement of Theorem 3, using slightly different notation.

Regard the vertex set of Qn as the power set 2
½n�; so that vertices correspond to

subsets of SC½n�: For any subset SC½n�; let xS :¼
Q

iAS xi: Write xwtðTÞ for the
decoupled degree monomial corresponding to a tree T under substitution (2),
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that is,

xwtðTÞ ¼
Y

SC½n�

xS

x½n�\S

� �1
2
degT ðSÞ

¼
Y

edgesfS;Rg in T

xSxR

x½n�
: ð6Þ

Theorem 3.X
TATreeðQnÞ

qdirðTÞxwtðTÞ ¼ q1?qn

Y
AC½n�
jAjX2

X
iAA

qiðx�1
i þ xiÞ:

Proof. As before, regard the vertex set of Qn as the power set 2½n�: Denote the
symmetric difference of two sets S and R by SDR; and abbreviate SDfig by SDi:
Thus two vertices S;R form an edge in Qn exactly when SDR is a singleton set fig; in
this case the direction of this edge is dirðeÞ :¼ i: It is useful to note that the neighbors
of S are

NðSÞ ¼ fSDi j iA½n�g:

Our goal is to show that the two sides of the theorem coincide as elements of

Z½qi; xi; x�1
i �: Note that the two sides coincide as polynomials in qi after setting

xi ¼ 1 for all i; using the special case of Theorem 1 in which all ni ¼ 2:
We next show that both sides have the same maximum and minimum total degrees

as Laurent polynomials in the xi: Each side is easily seen to be invariant under the

substitution xi/x�1
i (this follows from the antipodal symmetry of the n-cube for the

left-hand side), so it suffices to show that both sides have the same maximum total
degree. For the right-hand side, the maximum total degree in the xi is simply the
number of subsets SC½n� with jSjX2; that is, 2n � n � 1:
For the left-hand side, we argue as follows. Denote by V 0 the set of vertices of Qn

other than ½n�: For any spanning tree T and vertex SAV 0; define fðSÞ to be the
parent vertex of the vertex S when the tree T is rooted at the vertex ½n� (that is, fðSÞ
is the first vertex on the unique path in T from S to ½n�); then the edges of T are
precisely

EðTÞ ¼ ffS;fðSÞg j SAV 0g:

One has jfðSÞj ¼ jSj71 (because fðSÞ ¼ SDi for some i). Therefore the total

degree of the monomial xwtðTÞ will be maximized when jfðSÞj ¼ jSj þ 1 for
all SAV 0; for instance, when fðSÞ ¼ S,fmaxð½n�\SÞg: In this case, that total
degree isX

fS;fðSÞgAT

ðjSj þ jfðSÞj � nÞ ¼
X
SAV 0

ð2jSj þ 1� nÞ ¼ 2n � n � 1:
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Having shown that both sides have the same total degree in the qi; the same
maximum and minimum total degrees in the xi; and that they coincide when all
xi ¼ 1; it suffices by unique factorization to show that the left-hand side is divisible
by each factor on the right-hand side, that is, by

fA :¼
X
iAA

qiðx�1
i þ xiÞ:

Henceforth, fix AC½n� of cardinalityX2: It is not hard to check that fA is irreducible

in Z½qi; xi; x�1
i �; using the fact that it is a linear form in the qi:

Starting with the weighted Laplacian matrix (3) for Qn; whose rows and columns
are indexed by subsets SD½n�; let L be the matrix obtained by making the
substitutions

eS;R ¼
qixSxSDi

x½n�
for SDR ¼ fig;

0 for jSDRj41:

8<
:

By Kirchhoff’s Theorem, the left-hand side in Theorem 3 is the determinant of the

reduced Laplacian matrix L̂ obtained from L by removing the row and column

indexed by S ¼ |: It therefore suffices to show that the reduction of L̂ modulo ð fAÞ
has non-trivial nullspace. We will show that

v :¼
X

|aSC½n�
ðx2A � ð�1ÞjA-SjðxA\SÞ2ÞeS ð7Þ

is a nullvector,1 where eS is the standard basis vector corresponding to S: Note that
the entries of v are not all zero modulo ð fAÞ; it remains to check that every entry
ðL̂vÞR of L̂v is a multiple of fA: Since L̂R;S ¼ 0 unless S ¼ R or S ¼ RDi for some i;
one has

ðL̂vÞR ¼ L̂R;RvR þ
Xn

i¼1
L̂R;RDivRDi

¼
Xn

i¼1

qixRxRDi

x½n�
ðx2A � ð�1ÞjA-RjðxA\RÞ2Þ

�
Xn

i¼1

qixRxRDi

x½n�
ðx2A � ð�1ÞjA-ðRDiÞjðxA\ðRDiÞÞ2Þ

¼ xR

x½n�

Xn

i¼1
qixRDiðð�1ÞjA-ðRDiÞjðxA\ðRDiÞÞ2 � ð�1ÞjA-RjðxA\RÞ2Þ: ð8Þ
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algebra package Macaulay [1] to compute the nullspace of L̂ in the quotient ring modulo ð fAÞ:
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If ieA; then A-R ¼ A-ðRDiÞ and A\R ¼ A\ðRDiÞ; so the summand in (8) is zero.
If iAA; then jA-Rj ¼ jA-ðRDiÞj71; so one may rewrite (8) as follows:

ðL̂vÞR ¼ �ð�1ÞjA-Rj xR

x½n�

X
iAA

qixRDiððxA\ðRDiÞÞ2 þ ðxA\RÞ2Þ: ð9Þ

Note also that when iAA;

xRDi ¼
xRx�1

i for iAR;

xRxi for ieR

�
and

xA\ðRDiÞ ¼
xA\Rxi for iAR;

xA\Rx�1
i for ieR:

�
Therefore, one may rewrite (9) as follows:

ðL̂vÞR ¼7
xR

x½n�

X
iAA-R

qixRx�1
i ððxA\R xiÞ2 þ ðxA\RÞ2Þ

 

þ
X

iAA\R

qixRxiððxA\Rx�1
i Þ2 þ ðxA\RÞ2Þ

!

¼7
ðxRxA\RÞ2

x½n�

X
iAA-R

qix
�1
i ðx2i þ 1Þ þ

X
iAA\R

qixiðx�2
i þ 1Þ

 !

¼7
ðxRxA\RÞ2

x½n�

X
iAA

qiðxi þ x�1
i Þ

¼7
ðxRxA\RÞ2

x½n�
fA;

which shows that ðL̂vÞR is zero modulo ð fAÞ as desired. &

6. Proof of Theorem 4

We recall the statement of Theorem 4.

Theorem 4. Let G be a connected threshold graph with vertices ½n�; edges E; and degree

sequence l: Then

X
TATreeðGÞ

Yn

i¼1
x
indegT ðiÞ
i y

outdegT ðiÞ
i ¼ x1yn

Yn�1
r¼2

Xl0r
i¼1

xminfi;rgymaxfi;rg

 !
:

As noted in the Introduction, this result is a special case of Theorem 2.4 of [6].
For this reason, and because the ideas of the proof are quite similar to those of
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Theorem 3, we omit most of the technical details. We write NðvÞ for the neighbors of
a vertex v; and denote the set fi; i þ 1;y; jg by ½i; j�:

Proof. The partitions l which arise as degree sequences of threshold graphs have
been completely characterized (see, e.g., [4, Theorem 8.5]). In particular, suppose
that the Durfee square of l (the largest square which is a subshape of l) has side
length s: Then for all rA½n�;

either rpsol0r ¼ 1þ lr

or r4sXl0r ¼ lrþ1:
ð10Þ

Using these identities, one may rewrite the desired equality asX
TATreeðGÞ

Yn

i¼1
x
indegT ðiÞ
i y

outdegT ðiÞ
i ¼ x1 

Ys

r¼2
fr 

Yn�1
r¼sþ1

gr 
Yn

r¼sþ1
yr; ð11Þ

where

fr :¼ yr

Xr

i¼1
xi þ xr

X1þlr

i¼rþ1
yi and gr :¼

Xlrþ1

i¼1
xi:

Both the left- and right-hand sides of (11) are polynomials in the xi; yi of total

degree 2n � 2; and both have coefficient of xn�1
1 y2y3?yn equal to 1 (because

Nð1Þ ¼ ½2; n�). Thus, it suffices to prove that the left-hand side is divisible by each of
the factors on the right-hand side. By Kirchhoff’s Theorem, this left-hand side is the

determinant of the matrix L̂ obtained from the usual weighted Laplacian matrix by
removing the first row and column and making the substitution

eij ¼
xminfi;jgymaxfi;jg for fi; jgAE;

0 for fi; jgeE:

�
First, one must show that the left-hand side of the theorem is divisible by the

monomial factor x1
Qn

r¼sþ1 yr: Every spanning tree T of G contains an edge of the

form f1; jg; which contributes a factor of x1yj to the monomial corresponding to T :

In particular, x1 divides the left-hand side of (11). Furthermore, if r4s; then qor

whenever qANðrÞ: In particular, yr divides every entry in the rth row of L̂:

Second, one must show that fr divides det L̂ for rA½2; s�: Clearly fr is irreducible,
since neither sum in the definition of fr is empty. Define a column vector

2

v ¼
Xr

i¼1
xier þ

Xl0r
i¼rþ1

xrei;

where ei denotes the ith standard basis vector. Note that the entries of v are not all
divisible by fr; so that v is a non-zero vector modulo ð frÞ: By Lemma 5, it is now
sufficient to show that for each j; the jth entry ðL̂vÞj of L̂v is divisible by fr: One must
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J.L. Martin, V. Reiner / Journal of Combinatorial Theory, Series A 104 (2003) 287–300 299



consider four cases depending on the value of j: (i) jor; (ii) j ¼ r; (iii) j4r and
f j; rgAE; (iv) j4r and f j; rgeE:We omit the routine calculations, which are similar
to the proof of Theorem 3.

Third, one must show that gr divides det L̂ for all rA½s þ 1; n � 1�: In fact, some
higher power of gr may divide det L̂; as we now explain. If l has exactly b columns of

height l0r; i.e.,

l0a�14l0a ¼ ? ¼ l0r ¼ ? ¼ l0aþb�14l0aþb

for some a4s; then NðiÞ ¼ ½lr� for all vertices iA½a þ 1; a þ b�; so
ga ¼ gaþ1 ¼ ? ¼ gr ¼ ? ¼ gaþb�1:

Accordingly, one must show that gb
r divides det L̂: Restricting the Laplacian matrix L

to the columns ½a þ 1; a þ b� yields a rank-1 matrix of the form
�½ x1 x2 ? xlr

0 ? 0 �T ½ yaþ1 yaþ2 ? yaþb �:

Consequently, both L and L̂ have b � 1 linearly independent nullvectors modulo ðgrÞ
supported in coordinates ½a þ 1; a þ b�: It remains only to exhibit one further

nullvector for L̂ which is supported in at least one coordinate outside that range. We
claim that such a vector3 is

v ¼
Xa

i¼1þlr

ðyaþbei � yieaþbÞ:

One must verify that for each k; the kth coordinate ðL̂vÞk vanishes modulo ðgrÞ: This
calculation splits into four cases: (i) kA½2; lr�; (ii) kA½1þ lr; a�; (iii) kA½a þ 1; n �
1�\fa þ bg; (iv) k ¼ a þ b: Once again, we omit the routine verification. &
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