4,331 research outputs found

    Improving the 1-Bounded Space Algorithms for 2-Dimensional Online Bin Packing

    Get PDF
    In this paper we study the 1-bounded space of 2-dimensional bin pack- ing. A sequence of rectangular items arrive one at a time, and the follow- ing item arrives only after the packing of the previous one, which after being packed cannot be moved. The bin size is 1 1 and the width and height of the items are 1. The objective is to minimize the number of bins used to pack all the items. At any time there is only 1 active bin, and the previously closed bins cannot be used for any subsequent items. The new algorithm o ers an improvement of the previous best known 8:84-competitive algorithm to a 6:53-competitive, it also raises the lower bound from 2:5 to 2:^6

    Improving the 1-Bounded Space Algorithms for 2-Dimensional Online Bin Packing

    Get PDF
    In this paper we study the 1-bounded space of 2-dimensional bin pack- ing. A sequence of rectangular items arrive one at a time, and the follow- ing item arrives only after the packing of the previous one, which after being packed cannot be moved. The bin size is 1 1 and the width and height of the items are 1. The objective is to minimize the number of bins used to pack all the items. At any time there is only 1 active bin, and the previously closed bins cannot be used for any subsequent items. The new algorithm o ers an improvement of the previous best known 8:84-competitive algorithm to a 6:53-competitive, it also raises the lower bound from 2:5 to 2:^6

    Optimal online bounded space multidimensional packing

    Get PDF
    We solve an open problem in the literature by providing an online algorithm for multidimensional bin packing that uses only bounded space. We show that it is optimal among bounded space algorithms for any dimension d>1d>1. Its asymptotic performance ratio is (Piinfty)d(Pi_{infty})^d, where Piinftyapprox1.691Pi_{infty}approx1.691 is the asymptotic performance ratio of the one-dimensional algorithm harm. A modified version of this algorithm for the case where all items are hypercubes is also shown to be optimal. Its asymptotic performance ratio is sublinear in dd. Additionally, for the special case of packing squares in two-dimensional bins, we present a new unbounded space online algorithm with asymptotic performance ratio of at most 2.2712.271. We also present an approximation algorithm for the offline problem with approximation ratio of 16/1116/11. This improves upon all earlier approximation algorithms for this problem, including the algorithm from Caprara, Packing 2-dimensional bins in harmony, Proc. 43rd FOCS, 2002

    Online Circle and Sphere Packing

    Full text link
    In this paper we consider the Online Bin Packing Problem in three variants: Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes. The two first ones receive an online sequence of circles (items) of different radii while the third one receive an online sequence of spheres (items) of different radii, and they want to pack the items into the minimum number of unit squares, isosceles right triangles of leg length one, and unit cubes, respectively. For Online Circle Packing in Squares, we improve the previous best-known competitive ratio for the bounded space version, when at most a constant number of bins can be open at any given time, from 2.439 to 2.3536. For Online Circle Packing in Isosceles Right Triangles and Online Sphere Packing in Cubes we show bounded space algorithms of asymptotic competitive ratios 2.5490 and 3.5316, respectively, as well as lower bounds of 2.1193 and 2.7707 on the competitive ratio of any online bounded space algorithm for these two problems. We also considered the online unbounded space variant of these three problems which admits a small reorganization of the items inside the bin after their packing, and we present algorithms of competitive ratios 2.3105, 2.5094, and 3.5146 for Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes, respectively

    A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game

    Full text link
    We prove a tight lower bound on the asymptotic performance ratio ρ\rho of the bounded space online dd-hypercube bin packing problem, solving an open question raised in 2005. In the classic dd-hypercube bin packing problem, we are given a sequence of dd-dimensional hypercubes and we have an unlimited number of bins, each of which is a dd-dimensional unit hypercube. The goal is to pack (orthogonally) the given hypercubes into the minimum possible number of bins, in such a way that no two hypercubes in the same bin overlap. The bounded space online dd-hypercube bin packing problem is a variant of the dd-hypercube bin packing problem, in which the hypercubes arrive online and each one must be packed in an open bin without the knowledge of the next hypercubes. Moreover, at each moment, only a constant number of open bins are allowed (whenever a new bin is used, it is considered open, and it remains so until it is considered closed, in which case, it is not allowed to accept new hypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448] showed that ρ\rho is Ω(logd)\Omega(\log d) and O(d/logd)O(d/\log d), and conjectured that it is Θ(logd)\Theta(\log d). We show that ρ\rho is in fact Θ(d/logd)\Theta(d/\log d). To obtain this result, we elaborate on some ideas presented by those authors, and go one step further showing how to obtain better (offline) packings of certain special instances for which one knows how many bins any bounded space algorithm has to use. Our main contribution establishes the existence of such packings, for large enough dd, using probabilistic arguments. Such packings also lead to lower bounds for the prices of anarchy of the selfish dd-hypercube bin packing game. We present a lower bound of Ω(d/logd)\Omega(d/\log d) for the pure price of anarchy of this game, and we also give a lower bound of Ω(logd)\Omega(\log d) for its strong price of anarchy
    corecore