
Improving the 1-Bounded Space Algorithms for

2-Dimensional Online Bin Packing

Xarnach Rotllan, Ferran

Todays Date

Abstract

In this paper we study the 1-bounded space of 2-dimensional bin pack-
ing. A sequence of rectangular items arrive one at a time, and the follow-
ing item arrives only after the packing of the previous one, which after
being packed cannot be moved. The bin size is 1 × 1 and the width and
height of the items are ≤ 1. The objective is to minimize the number of
bins used to pack all the items. At any time there is only 1 active bin,
and the previously closed bins cannot be used for any subsequent items.
The new algorithm offers an improvement of the previous best known
8.84-competitive algorithm to a 6.53-competitive, it also raises the lower
bound from 2.5 to 2.6̂.

1 Introduction

In the bin packing problem, a sequence of items are packed into different bins
of the same size without overlapping. The objective is to minimize the number
of bins used to pack all the items. The size of the items are at most the size of
a bin.

In the online variation of the bin packing problem, the items have to be
packed as they arrive, and they cannot be moved afterwards. In the online
bounded space variation, the items can only be packed into the active bins.
When none of the active bins can pack the newly arrived item, one active bin
has to be closed and a new bin has to be opened and labeled active.

The online bounded space variation on a 1-dimensional space, has been sub-
ject of study for long time. Csirik. et al. [2] showed that simple K-Bounded
Best Fit BBFk (base on the Best-fit algorithm using bounded space) is better
than Next-K fit algorithms (Based on the First-fit algorithm), with an asymp-
totic worst-case ratio of 17/10 for all k ≥ 2 and better packings on average. Lee.
et al. [3] created an harmonic algorithm that performs better on the worst case
(but poorly on the average) with a worst-case ratio of 1.69103.

An interested variation is the one with only one active bin at a time (1-
bounded space) on a 2-dimensional space. This variant originates from grid
computing, in which there is a cluster of computers arranged on a grid (the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301210096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bin) and each job requests a rectangular subgrid of computers (the rectangular
items) which can only be rotated by 90◦, and as soon as a subgrid has been
assigned it cannot be moved. There is only one grid machine and the jobs
arrive online. The objective is to pack as many jobs as possible into this fixed
size grid. When all the jobs are finished, another set of jobs can be packed.

This paper is regarding the online variation of 1-bounded space 2-dimensional
bin packing allowing the 90◦ rotation of items 1. The items arrive online, and
are packed without knowledge of the shape of subsequent items. Once an item
has been packed, it cannot be moved.

The size of the square bin is 1 × 1, and the sides of every item are smaller
than 1. Since 90◦ rotation is allowed, and x being the width of an item and
y its height, w.l.o.g. assume that x ≥ y. The space occupied by an item is
the product xy, and the total occupied space in a bin is the sum of the total
occupied space of the items in it. The problem is to maximize the occupied
space per bin, packing all the items without overlaps.

To evaluate an online algorithm used for bin packing, the asymptotic com-
petitive ratio which is defined as follows is used. Consider an online algorithm
A and an optimal offline algorithm OPT . For a sequence S of items, let A(S)
be the cost (number of bins used) of the algorithm A and let OPT (S) be the
optimal cost of OPT . Then the asymptotic competitive ratio for A is:

R∞A = lim
k→∞

sup
S
{ A(S)

OPT (S)
|OPT (S) = k}.

The previous results on this variant by Fujita [6] consist on a lower bound of
23/11 and an upper bound O((log logm)2)−comptetitive, where m is the width
of the square bin, and it is of value ≥ 512. Those are improved by Chin. et al.
[1], raising the lower bound to 2.5 and making the upper bound independent
from the size of the bin, getting an 8-competitive algorithm.

In the algorithm by Chin. et al. [1], the items are classified into three classes
{A : x ≥ 1/2}, {B : 1/6 ≤ x < 1/2} and {C : x < 1/6.} (assuming x ≥ y),
and the square bin is partitioned into two areas U and L. Big items (A and
B classes) are packed into area U of the bin, and the small items into area L,
following two different strategies for U and L.

The worst case scenario of this algorithm is when one area of the bin (U or
L) is empty and the bin is closed because a newly arrived item cannot be packed
into the other area. In this scenario the inefficiency of a strict grouping into
big and small items (U and L areas) becomes obvious. The improved algorithm
aims at lowering the importance of the distinction of the items characteristics,
thus raising the amount of used space per bin.

Our contribution is the raise of the lower bound up to 2.6̂ and an improved
algorithm offers a worst-case ratio of 6.53. On the improved algorithm, the
items are also classified in the three clases the algorithm by Chin. et al. is

1It’s easy to see that if rotation is not allowed, no constant bounds could exist as proved
by Fujita [6], because two perpendicular rectangles of sizes 1 × ε could never be packed into
the same bin.

2

classified, and the bin initially is divided into the same two areas, when a small
(C class) item cannot be packed, if there is space enough in U a new area is
allocated there to pack small items as explained in section 2.3. The areas of
the bin are named differently in the new algorithm, because is not important to
distinguish which area is the upper as more than one area for small items can
exist. The area which big items are packed into, is named B and the area into
which small items are packed into are named S. This naming will be used to
explain the previous best constant-competition algorithm as well.

2 An improved Algorithm

In order to achieve a better constant-competitive algorithm, we are going to
apply a modification into the previous best constant-competitive algorithm [1].
In that algorithm the rectangular items are classified into three classes A, B
and C with x ≥ y so that

A = {(x, y)|x ≥ 1/2},
B = {(x, y)|1/6 ≤ x < 1/2}, and

C = {(x, y)|x < 1/6}.

From now on, items will be called by their class: A-items, B-items and
C-items.

Each square bin is divided into a bottom B-area (for A- and B-items) and
a top S-area. Items are packed in S and B following two different strategies as
explained in sections 2.1 and 2.2. When a newly arrived item a cannot be packed
into its designated area, the active bin is closed and another one is opened to
pack item a.

In the improved algorithm the packing strategies for B and S are the same
and two initial B- and S-areas are defined, but depending on the items that
keep comming, different S-areas can be allocated inside of the original B-area.
How those S-areas are allocated is explained in section 2.3.

This allows a bigger initial B-area on the improved algorithm, resulting in
a better asymptotic competitive ratio.

2.1 Packing Strategy for Area B

A-items are packed following a top-down order, and the vertical symmetry axis
of each item aligns with the vertical symmetry axis of the square bin. B-items
are packed by a bottom-up order in both the left and the right side of B, while
balancing the height of both sides, e.g., the new B-item a is packed into the side
with the lower height. For instance in figure 1 a newly arrived item a should be
packed into the right area, considering y1 ≥ y2.

3

y2

y

y1

b

Figure 1: Packing big items into B.

2.2 Packing Strategy for Area S

Define a C item as area of the subclass Ci if 2−i−1/6 < x ≤ 2−i/6, and wi as the
biggest possible width of all items from subclass Ci, i.e., w0 = 1/6, w1 = 1/12.
According to this, the area for small items can be partitioned into columns of
width wi(i > 0) 2. For every subclass Ci, define coli to be the active column,
i.e., the only column of size wi currently open.

Let f be the width of the free space at the right part of S. A newly arrived
item a ∈ Ci is packed into coli following a bottom-up order. If a cannot fit into
coli, this column is closed and another column is created and labeled active in
the free space right of the last column, in order to pack a. If a new column
cannot be created, the active S is closed.

C0

C1

C2

C2

C1

C3

s

f

Figure 2: Packing small items into S.

E.g., in figure 2, we can see that there are four subclasses Ci of items. The
second and third columns had been closed because the items in columns four
and five were to big to fit in there, thus, these columns will not be used anymore
3. The active columns are the first, fourth, fifth and sixth. If a newly arrived
item a is of one of the subclases Ci (i < 4) then it can be packed into one of
the existent columns, otherwise a new column would have to be created in the
f amount of free space on the right of the last column. Note in col0 that all
the items have a width larger than wo/2, this is true for all the columns by the
definition of Ci.

2.3 Allocation of S-areas in the Improved Algorithm

The improved version of this algorithm on the other hand defines a much smaller
initial S-area in a bin, but the final space used for small items can grow during

2The number of different classes Ci is a constant given the input.
3We don’t need to use them anymore, even for subsequent small items because the used

space that we can assure they contain is the same.

4

S1

S3

S2

B1
B2

B3

Figure 3: Configuration in which the bin has been closed because of a small
C-item.

the execution of the algorithm by assigning new S-areas to B. In order to sim-
plify the analysis of the different areas, the B-area is situated at the bottom of
the bin, and the initial S-area at the top.

The contiguos space (not divided into smaller parts by the allocation of an
S-area in it) of the B-area used to pack big items is named the active part of
the B-area.

The area in which C-items are currently being packed is named the active S-
area. All the other S-areas, if there are any, are named closed S-areas. Whenever
a newly arrived C-item cannot be packed into the active S-area, this one is
closed. Then there are two possibilities, if the allocation strategy for S-areas
cannot allocate a new S-area then the bin is closed, and the C-item is packed
in the new opened bin. Otherwise if there is space enough in the active part of
the B-area, the new active S-area is allocated right under all the A-items of the
active part of the B-area, and the remaining B space turns into the new active
part of the B-area.

S1

S2

S1

S2

Figure 4: Example of allocation of S-areas and the equivalent used for the
analysis of the used space.

The more S-areas allocated, the smaller their heights are, and the heights
of them depend on the maximum number of S-areas possible as explained in
section 2.3. The used case here is with a maximum of three S-areas. More areas
cannot improve the asymptotic competitive ratio on the worst case scenario.

5

2.4 Packing Strategy Analysis

Let n be the number of bins used by the packing strategy, B1 the set of bins
bin with one S-area closed and B2 similary with two S-areas. Let B3 be the set
of bins with three S-areas and closed because of a big item and S when closed
because of a small item. Let B be B1 ∪ B2 ∪ B3.

Let S1 be the initial S-area, and S2 and S3 the consecutives ones. B1 is the
B-area in a bin with one S-area, and similary for B2 and B3. Note that a B
area can have disjoint parts separated by S-areas.

Let Oi
S1

, Oi
S2

and Oi
S3

be the occupied spaces of the i-th bin for the S1, S2

and S3 respectively. Oi
B1

, Oi
B2

and Oi
B3

are defined the same way. If a bin does
not have one kind of area (All the bins have exactly one kind of B-area, and at
least one kind of S-area), the occupied space of that area is zero.

Note that the sets are disjoint as they represent different ways to close a bin
and |B1|+ |B2|+ |B3|+ |S|+ 1 = n. When n is big we can regard the number of
bins as |B1|+ |B2|+ |B3|+ |S| to calculate the average occupation for the worst
case scenario on every set of bins:

≥

∑
i∈B1

(Oi
B1

) +
∑

i∈B2

(Oi
S1

+ Oi
B2

) +
∑

i∈B3

(Oi
S1

+ Oi
S2

+ Oi
B3

) +
∑
i∈S

(Oi
S1

+ Oi
S2

+ Oi
S3

)

|B1|+ |B2|+ |B3|+ |S|

≥ min{

∑
i∈B1

(Oi
B1

)

|B1|
,

∑
i∈B2

(Oi
S1

+ Oi
B2

)

|B2|
,

∑
i∈B3

(Oi
S1

+ Oi
S2

+ Oi
B3

)

|B3|
,

∑
i∈S

(Oi
S1

+ Oi
S2

+ Oi
S3

)

|S|
} (1)

The area B can be considered as a contiguous area. Thus, its average occu-
pied space can be easily analysed.

Lemma 1. The average occupied space of every kind of B for bins ∈ B ≥
b/4− 1/32. With b = height(B).

Proof. Let s1, s2 and s3 be the S1, S2 and S3-area heights respectively. It can
be assumed that the total height of the A-items is y and the height of the left
and right side of B-items are y1 and y2 respectively, as in figure 1, and w.l.o.g.,
y1 ≥ y2. It can also w.l.o.g be assumed that the bin is closed because of a big
(A- and B- items), this will be demonstrated at the end.

W.l.o.g let the i-th bin be in Bj , piA and qiA be half of the occupied space of
A-items in the i-th bin, i.e., with an A-item with height h in a bin, piA and qiA are
at least h/4 (A-items have width ≥ 1/2). Let qiB be half of the occupied space
of the side (left or right) with more occupied space, and piB be the remaining
occupied space of B-items in B.

For instance, in figure 1 the occupied space on the left side is bigger than
the occupied space on the right side, so qiB ≥ y1/12 (B-item have width ≥ 1/6).
Note that the side with larger height may not be the one with a bigger occupied
space.

For bins ∈ B the space occupied by C-items can be disregarded, as the
closing bin configuration with less space would have none of them. The average
occupied space of A- and B-items for bins ∈ Bj is:

6

∑n
i=1(piA + qiA + piB + qiB)

|Bj |
≥ min

i∈Bj

{piA + qi+1
A + piB + qi+1

B }

Assume that the i-th bin belongs to Bj , and that piA + qi+1
A + piB + qi+1

B =

mink∈B{pkA+qk+1
A +pkB +qk+1

B }. When a newly arrived item a cannot be packed
in B, a new bin has to be opened. The item a can be an A-item or a B-item,
and the occupied space by B-items on the left side can be bigger or not than
on the right side. Denote OL for the occupied space on the left part by B-items
and OR for the right side, the average occupied space is:

• item a is an A-item.

According to the packing strategy, a must be packed into the (i + 1)-th
bin. Asume y′ is the height of a. By definition piA ≥ y/4.

– OL > OR

piB = OL/2+OR ≥ y2/12+(y1−y2)2/2+y2/6 = y2/4+(y1−y2)2/2

Because OL ≥ y2/6 + (y1 − y2)2

– OL ≥ OR

piB = OL + OR/2 ≥ OL + OL/2 ≥ y2/6 + y2/12 + (y1 − y2)2/2 =
y2/4 + (y1 − y2)2/2

Because OR > OL ≥ y1/6 ≥ y2/6

Thus, no matter which side is larger, piB ≥ y2/4 + (y1 − y2)2/2

Combine with qi+1
A ≥ y′/4 from item a,

piA + piB + qi+1
A + qi+1

B

=piA + piB + qi+1
A

≥y/4 + [y2/4 + (y1 − y2)2/2] + y′/4

=(y + y′ + y2)/4 + (y1 − y2)2/2

≥(b− y1 + y2)/4 + (y1 − y2)2/2

=b/4 + (y1 − y2 − 1/4)2/2− 1/32

≥b/4− 1/32

• item a is a B-item.

The width of a ≥ 1/6. Asuming y′ is the height of a. The occupied space
of a is at least y′2 because items are defined so that their height is no
bigger than their width, by definition piA ≥ y/4.

– OL ≥ OR. In this case y + y2 + y′ > u.

piB = OL/2 +OR ≥ y1/12 + y2/6

7

– OL < OR. In this case y + y1 + y′ > u.

piB = OL +OR/2 ≥ OL +OL/2 ≥ y1/6 + y1/12 ≥ y2/6 + y1/12

Thus, no matter which side is larger, piB ≥ y1/12 + y2/6.

Combine with qi+1
B ≥ y′2/2 from item a (since qi+1

B is equal to half of the
occupied space of the larger side),

piA + piB + qi+1
A + qi+1

B

=piA + piB + qi+1
B

≥y/4 + [y1/12 + y2/6] + y′2/2

≥y/4 + [y1/12 + y2/6] + (b− y − y2)2/2

≥(y/4 + y2/4) + (b− y − y2)2/2

=(b− y − y2 − 1/4)2/2 + (b/4− 1/32)

≥b/4− 1/32

Let’s demonstrate now that w.l.o.g. the bin is closed by a big item. This
is always the case for B3 by definition. For B1 if the bin is closed because of a
small item, y1 ≥ 1− s1 − s2 ≥ 1− 2s1, and the occupied space for big items on
the worst case is bigger than 2(1−2s1)/6−1/36, and for small items s1/3−1/36
(using lemma 2). This space is bigger than the one closing the bin because of
a big item, (1− s1)/4− 1/32 (using lemma 1) for s1 smaller than 17/24 ≈ 0.7,
which is much bigger than the s1 used for the algorithm, and so it holds.

For B2 if the bin is closed because of a small item, y1 ≥ 1 − s1 − s2 − s3 ≥
1 − s1 − 2s2 and the occupied space for big items on the worst is bigger than
2(1−s1−2s2)/6−1/36, and for small items s1/3−1/36+s2/3−1/36. This space
is bigger than the one closing the bin because of a big item, (1−s1−s2)/4−1/32,
because solving the inequality resulting of balancing the space when the bin is
closed because of a small item and because of a big item we get:

(1− s1 − s2)/4− 1/32
?
< [(1− s1 − 2s2)/3− 1/36] + [s1/3− 1/36 + s2/3− 1/36]

8s2
?
< 24s1 + 3

This holds because s2 < s1. So we can asume that the bin is closed because
of a big item w.l.o.g.

Thus, the lemma is correct.

Lemma 2. The average occupied space of every kind of S closed ≥ s/3− 1/36.
With s = height(S).

8

Proof. For a fixed Sj , define coli for every Ci as the set of all the columns of
size wi but coli. Informally, coli are the closed columns that contain elements of
the class Ci and these are almost full. Let pji and qji be the disjoint occupations

in the j-th column for the subclass Ci. Define pji equal to wi/2 · (l − hij) with

hij being the free space at the top of the j-th column for the subclass Ci, and

qji as the remaining occupied space in the same column.
The total occupied space in Sj is the occupied space of every column of every

subclass Ci.∑
i

∑
1≤j≤|coli|+1

(pji + qji) ≥
∑
i

min
1≤j≤|coli|

{pji + qj+i
i } · |coli| (2)

W.l.o.g. assume pji + qj+i
i = min

1≤j≤|coli|
{pji + qj+i

i }. Because the j-th column

of the subclass Ci with free height hj is a column of coli, cannot satisfy the
newly arrived item a of size (x, y) from the class Ci. Note that wi/2 < x ≤ wi

and y > hij . Note also that x > hj , because x ≥ y, i.e. the width of an item is
no less than its height.

The different cases are:

• hj ≤ wi/2

pji + qj+1
i ≥ pji = wi/2 · (s− hij) ≥ wi/2 · (s− wi/2) ≥ wi/2 · (s− 1/12)

• hj = wi/2 + z > wi/2

The item a can be partitioned into two disjoint parts of sizes wi/2 · y
and (x − wi/2) · y which belong to pj+1

i and qj+1
i respectively. Thus,

qj+1
i ≥ (x− wi/2) · y and we have:

pji + qj+1
i

≥wi/2 · (s− hj) + (x− wi/2) · y
≥wi/2 · (s− wi/2− z) + (y − wi/2) · y
≥wi/2 · (s− wi/2− z) + (hij − wi/2) · y
=wi/2 · (s− wi/2− z) + z · wi/2

=wi/2 · (s− wi/2)

≥wi/2 · (s− 1/12)

Thus, no matter how large the free height on the top of the j-th column of
the class Ci is, pji + qj+1

i ≥ wi/2 · (s− 1/12).
From the inequality 2 and the above analysis, it can be infered that the

average occupied space for any kind of S closed is

9

≥
∑
i

(wi/2 · (s− 1/12)) · |coli| = (s− 1/12)/2
∑
i

wi · |coli|

When the newly arrived item a cannot be packed, one of the active columns
has to be closed, and so there is one subclass Ci without coli. Since the width
of the free space f is less than wi (or else another column would be allocated
and labeled active) and

∑
1/6 + 1/12 + · · · = 1/3, can be infered than the sum

of the width of the active column for all subclasses is ≤ 1/3. Thus, the sum
of the width of the almost full col is ≥ 2/3, and it can be concluded that the
average occupied space of every kind of closed S is:

≥ s− 1/12

2
· 2

3
=
s

3
− 1

36

2.5 Allocation of S-areas Analysis and Upper Bound

As can be seen in the equation 1, the average occupation can be computer as a
minimum.

≥ min{

∑
i∈B1

(Oi
B1

)

B1

,

∑
i∈B2

(Oi
S1

+ Oi
B2

)

B2

,

∑
i∈B3

(Oi
S1

+ Oi
S2

+ Oi
B3

)

B3

,

∑
i∈S

(Oi
S1

+ Oi
S2

+ Oi
S3

)

S
}

This means that in order to find the optimal sizes for the allocated S-areas,
so that the bin has the biggest occupied space on the worst case, we need to
balance the occupied spaces in the different possible bin closing configurations.

Let OB1
be the minimum occupied space needed for a bin ∈ B1 to close with

a possible newly arrived item. Define OB2
, OB3

and OS the same way.

OB1 = OB2 = OB3 = OS (3)

OB1
= Oi

B1

OB2
= Oi

S1
+Oi

B2

OB3 = Oi
S1

+Oi
S2

+Oi
B3

OS = Oi
S1

+Oi
S2

+Oi
S3

Let s1, s2 and s3 be the S1, S2 and S3-area heights respectively. The system
of equations 3 has the solution s1 = 1103/4200 ≈ 0.26, s2 = 251/1050 ≈ 0.24
and s3 = 109/525 ≈ 0.21, by using the lemmas 1, OS ≥ s/3 − 1/36 and 2,
OB ≥ b/4 − 1/32. This way the balanced occupied space is 643/4200, which
means that the average occupation in each bin is at least 0.153. Thus, this
strategy is 6.53-competitive.

10

For the worst case analysis of this strategy, consider the packing in the B-area
of a sequence of items (b, a, b, a, b, a, · · ·) that arrive one at a time. a ∈ A, and
b ∈ B. The size of b is 0.25×0.25, while the size of a is 0.5×(4200−1103

4200 −0.25+ε),
where ε is a very small value. According to the strategy, a and b cannot be
packed into the same bin. Thus, the amortized occupied space in each bin is
(0.252 +0.5(4200−1103

4200 −0.25+ε))/2 = 0.25ε+643/4200. Therefore, the strategy
is tight.

3 A new Lower Bound

In this section, we will show that the lower bound of the competitive ratio for any
1-bounded space algorithm is 2.6̂, which is an improvement over the previous
bound of 2.5. The input used to show such a lower bound is a variation based
in the one used by Chin. et al. [1] to reach the lower bound of 2.5. The key
point in this variation is the use of a padding item P , its main characteristic is
that all the P items together can fit in at most one square bin.

Consider the following sequence of rectangular items as the input:

(A1, B1, A2, B1, · · ·A2k+2, B1, X1, X2, X3, k/3 · (3 ·B2, 3 · C,P))

Where Ai is (1/3 + ai, 2/3 + x), B1 is (1/3 − ε, 1/3 − ε), B2 is (1/3 + 2 ·
ε, 1/3 + 2 · ε), P is (1, δ) and C is (2/3 + ε, 1/3−x). The sizes of X1, X2 and X3

are shown in figure 5 and their sizes are so that after adding them the square
bin is completly full.

The sizes of these rectangular items must satisfy the constrains:

a1 = εa, a2i = (i+ 1)εa, and a2i+1 = −iεa − δa for i > 0,

δa > 2ε > x > ε > 0,

εa > δa + ε,

δ > 2x− 2ε,

ai, δa, ε, εa, x, δ � 1

Lemma 3. For any online packing strategy, the number of used bins for the
input sequence is at least 8k/3 + 2.

Proof. The number of bins used is analysed for differents parts of the input
sequence.

(

2k+2 bins︷ ︸︸ ︷
A1, B1, A2, B1, · · ·A2k+2, B1, X1, X2, X3,

2k/3 bins︷ ︸︸ ︷
k/3 · (

1 bin︷ ︸︸ ︷
3 ·B2,

1 bin︷ ︸︸ ︷
3 · C,P))

11

• As can be seen in figure 5 , the items Ai, B1 and Ai+1 cannot be put in
the same bin, because B1 cannot be packed together with Ai and Ai+1

because (2/3 + x) + (1/3 − ε) > 1, and the sum of the heights is (2/3 +
εa − δa) + (1/3 − ε) > 1 for i ≥ 2 4. Thus, the first 4k + 4 rectangular
items must use at least 2k + 2 bins. Items X1, X2 and X3 can be packed
into the 2k + 2-th bin, thus, to pack the first item B2 a new bin must be
opened.

2/3 + x

1/
3

+
a
i 1/

3
−
ε

Ai

B1

2/3 + x

1/
3

+
a
i

A2k+2

B1

1/
3
−
ε

X2

X1

X3

Figure 5: Ai and Ai+1 cannot be packed into the same bin.

• The best packing for the following k/3 groups of items (3 · B2, 3 · C,P)
uses two bins per group.

– The three B2 items of the group can be packed into one bin, although
only two B2 items per row and per column can fit because 3 · (1/3 +
2ε) > 1. This means that the following C item cannot fit into the
same bin and another bin has to be opened because (2/3 + 4ε) +
(1/3− x) > 1 and (1/3 + 2ε) + (2/3 + ε) > 1, as can be seen in figure
6.

– The three C items and the padding P item of the group can be packed
in one bin. If the three C items are packed contiguously and with
the same orientation, then the following B2 item must be packed in
a new bin because (1/3 + 2ε) + (2/3 + ε) > 1, otherwise, if one of
the C items is perpendicular to the other two, the padding P item
ensures that the following B2 item has to be packed into a new bin,
this is so because (2/3− 2x) + (δ) + (1/3 + 2ε) > 1 as can be seen in
figure 6.

Thus, 2 bins must be used to pack a group. Having k/3 groups, a total of
2k/3 bins are needed.

In total there are 8k/3 + 2 bin.

4For the special case of i = 1 the sum of the heights is (2/3 + 3εa) + (1/3 − ε) > 1

12

1/3 + 2ε

B2 B2

B2

1/
3

+
2
ε

C C

C

P

1/3− x

2/
3

+
ε

δ

Figure 6: Restrictions caused by padding P

Lemma 4. The optimal solution for packing the above input uses k + 4.

Proof. The different agrupations used to pack the items are defined below.

• Define δ ≤ 3/k so that all the P items can be packed in 1 bin.

• The items A1, A3, 2 · B1, B2 and C can be packed together in 1 bin as
shown in figure 7, because the sum of the heights of A1, A3 and B2 is
1− δa + 2ε < 1.

• The items A2i, A2i+3, 2 · B1, B2 and C can as well be packed together
for 0 < i < k, for the same reason. They can be packed using a total of
k− 1 bins.

• The items A2k, A2k+2 that remain cannot be packed in the above way
(Note that the above packing is possible because the sum a2i + a2i+3 =
−δa), these two items and the remaining items X1, X2 and X3 can be
packed using at most 3 bins.

Thus, the optimal offline algorithm uses at most k + 4 bins for the given
input.

Theorem 1. The lower bound of competitive ratio for 1-bounded space online
algorithm is 2.6̂

Proof. From 3 and 4 we can reach this lower bound because:

O(
8k/3 + 2

k + 4
) =

8

3
= 2.6̂

13

2/3 + x

1
/3

+
ε a

A2k+21/
3
−
ε a
−
δ a

B1

C
A2k+2

B1B2

A1

A3

1/3− x

1/3 + 2ε 1/3− ε

2/
3

+
ε

Figure 7: Packing of all the items but the padding item P in one bin by the
offline packing strategy.

References

[1] Francis Y.L. Chin, Hing-Fung Ting and Yong Zhang, 1-Bounded Space Al-
gorithms for 2-Dimensional Bin Packing. Algorithms and Computation, De-
partment of Computer Science, The University of Hong Kong, Hong Kong

[2] J Csirik, DS Johnson, Bounded space on-line bin packing: best is better than
first. Algorithmica, 2001 - Springer

[3] C. C. Lee, D. T. Lee, A simple on-line bin-packing algorithm. J. ACM, Vol.
32, No. 3. (1985), pp. 562-572

[4] E. G. Coffman, Jr. , M. R. Garey , D. S. Johnson, Approximation algorithms
for bin packing: a survey. Approximation algorithms for NP-hard problems,
PWS Publishing Co., Boston, MA, 1996

[5] S. Fujita and T. Hada, Two-Dimensional On-Line Bin Packing Problem with
Rotatable Items. Proc. of COCOON, LNCS 1858, 210220, 2000

[6] S. Fujita, On-Line Grid-Packing with a Single Active Grid. Ibarra, O.H.,
Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 476483. Springer,
Heidelberg (2002)

14

