35 research outputs found

    Difference in Voice Parameters of MDVP and Praat Programs according to Severity of Voice Disorders in Vocal Nodule

    Get PDF
    MDVP and Praat are measured by nine variables in common; F0, jitter local, jitter absolute, jitter relative average perturbation, jitter period perturbation quotient, shimmer local, shimmer dB, shimmer amplitude perturbation quotient, and NHR. In the present study, 30 female subjects were divided by their disorders(control group, vocal nodule group), ages(from 18 to 50 years old), gender(women), and severities of voice disorder(GRBAS-G0, G1, G2). Then, the subjects' vowel /a/ was evaluated by MDVP and Praat. First, jitter and shimmer variables of the MDVP were significantly different by severities. Praat showed different jitter, shimmer, and NHR parameters by severities. Second, jitter and NHR levels of MDVP were meaningfully higher than Praat regardless their severities. The result of the research confirms the relationships among GRBAS, MDVP and Praat as well as the differences in acoustic variables between MDVP and Praat.ope

    ๋ฌด์„ ํ™˜๊ฒฝ์—์„œ์˜ RTP๋ฅผ ์ด์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์›๊ฒฉ ์ง„๋ฃŒ ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ํ‰๊ฐ€

    Get PDF
    ์ƒ์ฒด๊ณตํ•™ ํ˜‘๋™๊ณผ์ •/์„์‚ฌ[ํ•œ๊ธ€]ํ™˜๊ฒฝ์˜ ์ œ์•ฝ์ด ์—†๋Š” ์ธํ„ฐ๋„ท ๊ธฐ๋ฐ˜์˜ ์‹ค์‹œ๊ฐ„ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์„œ๋น„์Šค๋ฅผ ์ด์šฉํ•œ ์›๊ฒฉ ์˜๋ฃŒ๋Š” ์‹œ, ๊ณต๊ฐ„์˜ ์ œ์•ฝ ์—†์ด ํ™˜์ž๋ฅผ ์ง„๋‹จํ•˜๊ณ  ์ ์ ˆํ•œ ์กฐ์น˜๋ฅผ ์ทจํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์—ฌ ํ™˜์ž์˜ ์ƒ์กด์œจ, ํšŒ๋ณต๋ฅ ์— ๊ธ์ •์  ํšจ๊ณผ๋ฅผ ๋ผ์นœ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์‘๊ธ‰ ์˜๋ฃŒ ์„œ๋น„์Šค๋Š” ๋‹ค์–‘ํ•œ ์ „๋ฌธ์˜์˜ ์ข…ํ•ฉ์ ์ด๊ณ  ๋™์‹œ์ ์ธ ์„œ๋น„์Šค๊ฐ€ ์ œ๊ณต๋˜์–ด์•ผ ํ•œ๋‹ค. ์ธํ„ฐ๋„ท์„ ํ†ตํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ๋น„๋””์˜ค๋ฅผ ์ „์†กํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ฑ„๋„์˜ ์ถฉ๋ถ„ํ•œ ๋Œ€์—ญํญ, ์ ์€ ์ง€์—ฐ๊ณผ ์ ์€ ํŒจํ‚ท ์†์‹ค ๋“ฑ์˜ ์กฐ๊ฑด์ด ๋ณด์žฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ์˜ ์ธํ„ฐ๋„ท์€ ๋น„๋””์˜ค ์ „์†ก์— ํ•„์š”ํ•œ QoS (Quality of Service)๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋„คํŠธ์›Œํฌ ๊ณ„์ธต์—์„œ ์–ด๋– ํ•œ ๊ธฐ๋Šฅ๋„ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์„œ๋น„์Šค์˜ ํ’ˆ์งˆ ๋ณด์žฅ์€ ๋„คํŠธ์›Œํฌ ๊ณ„์ธต ์ƒ์œ„์—์„œ ์ˆ˜ํ–‰๋˜์–ด์•ผ๋งŒ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ œ์•ˆ๋œ ๊ฒƒ์ด ์ˆ˜์†ก๊ณ„์ธต(transport layer) ์œ„์—์„œ ๋™์ž‘ํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ์ˆ˜์†ก ํ”„๋กœํ† ์ฝœ(RTP : Real-time Transport Protocol)๊ณผ ์‹ค์‹œ๊ฐ„ ์ˆ˜์†ก์ œ์–ด ํ”„๋กœํ† ์ฝœ(RTCP : Real-time Transport Control Protocol)์ด๋‹ค. ์ด๋“ค์€ ์‘์šฉ ๊ณ„์ธต๊ณผ ์ˆ˜์†ก๊ณ„์ธต ์‚ฌ์ด์—์„œ ํŒจํ‚ท ์ƒ์„ฑ ์‹œ ์‚ฝ์ž…๋˜๋Š” ๋ถ€๋ถ„์ด๋ผ๊ณ  ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•  ๊ฒƒ์ด๋‹ค. ์‹ค์‹œ๊ฐ„ ์ˆ˜์†ก ํ”„๋กœํ† ์ฝœ(RTP)๊ณผ ์‹ค์‹œ๊ฐ„ ์ˆ˜์†ก์ œ์–ด ํ”„๋กœํ† ์ฝœ(RTCP)์„ ์‚ฌ์šฉํ•˜๋ฉด, ๋น„๋””์˜ค ์ „์†ก์—์„œ ์‹œ๊ฐ„์ œ์•ฝ์— ๋”ฐ๋ฅธ ํŠน์„ฑ์„ ๊ณ ๋ คํ•ด ์ค„ ์ˆ˜ ์žˆ๊ณ , ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์†์‹ค์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” RTP ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์›๊ฒฉ ์˜๋ฃŒ ์ง„๋ฃŒ์‹œ์Šคํ…œ์„ ์„ค๊ณ„, ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์šฐ์„  ์˜๋ฃŒ ์ •๋ณด ๋ฐ์ดํ„ฐ์— ์‹ค์‹œ๊ฐ„์„ฑ์„ ๋ถ€์—ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ UDP ๊ธฐ๋ฐ˜์— RTP๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ๋ฌด์„ ๋ง์—์„œ TCP๋ฅผ ์‚ฌ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ ์‹ค์‹œ๊ฐ„์„ฑ์ด ์™„๋ฒฝํžˆ ๋ณด์žฅ๋˜์ง€ ์•Š๊ณ  ๋ฌด์„ ๋ง์—์„œ์˜ ๋งํฌ ์—๋Ÿฌ๋ฅผ ๋ณ‘๋ชฉํ˜„์ƒ ๋“ฑ์˜ ๋‹ค๋ฅธ ์—๋Ÿฌ๋กœ ์ธ์‹ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ•„์š”ํ•œ ์œˆ๋„์šฐ์‚ฌ์ด์ฆˆ ์กฐ์ ˆ๋กœ ์ธํ•œ ๋Œ€์—ญํญ ๋‚ญ๋น„ํ˜„์ƒ์ด ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด UDP๋Š” ๋ฌด์กฐ๊ฑด์ ์ธ ์ „์†ก์œผ๋กœ ์ธํ•œ ๋น„ ์‹ ๋ขฐ์ ์ธ ์ „์†ก๊ณผ QoS๊ฐ€ ๋ณด์žฅ ๋˜์ง€ ์•Š๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋•Œ๋ฌธ์— ๋ณธ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋Œ€์—ญํญ์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” UDP ๊ธฐ๋ฐ˜์—์„œ RTP ํ”„๋กœํ† ์ฝœ์„ ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์„ฑ์„ ๋ถ€์—ฌํ•˜๊ณ  ์ค‘์š”ํ•œ ํ™˜์ž ๋ฐ์ดํ„ฐ๋Š” ์šฐ์„ ๊ถŒ์„ ๋ถ€์—ฌํ•˜์—ฌ ์ „์†กํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์‘์šฉ๊ณ„์ธต ์•„๋ž˜ ๋‹จ์—์„œ์˜ ์‹ค์‹œ๊ฐ„์„ฑ ๋ณด์žฅ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.๋‘ ๋ฒˆ์งธ๋กœ๋Š” ๋„คํŠธ์›Œํฌ์˜ ์ƒํƒœ์— ์œ ๋™์ ์œผ๋กœ ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์ „์†ก๋ฅ  ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ •ํ™•ํ•˜๊ณ  ์ฃผ๊ธฐ์ ์ธ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ์ˆ˜์ง‘์„ ์œ„ํ•˜์—ฌ RTCP๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. RTCP๋Š” ํ˜„์žฌ ๋„คํŠธ์›Œํฌ์˜ ๋Œ€์—ญํญ, ์ง€์—ฐ, PER ๋“ฑ์˜ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ์ตœ๋Œ€ ์ „์†ก ๋ณด์žฅ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์ฆˆ๋ฅผ ์†ก์‹ ๋‹จ์—๊ฒŒ ์•Œ๋ ค์ค€๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ ํ•ฉํ•œ ์ „์†ก๋ฅ ์„ ๊ฒฐ์ •, ์ „์†กํ•จ์œผ๋กœ์จ ์•ˆ์ •์ ์ธ ๋Œ€์—ญํญ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ณ , ๋ฌด์กฐ๊ฑด์ ์ธ ์ „์†ก์œผ๋กœ ์ธํ•œ ๋ณ‘๋ชฉํ˜„์ƒ์„ ๋ฐฉ์ง€ํ•จ์œผ๋กœ์จ ํ™˜์ž ์˜์ƒ ํ’ˆ์งˆ์˜ ๋ณด์žฅ์— ์šฐ์›”ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. [์˜๋ฌธ]For quick and correct treatment of disease, real-time telemedicine system that enables medical examination and treatments made by several specialists simultaneously was designed. The system must transmit good quality data without concerning network that has different bandwidth by real time. The important issue of real-time telemedicine system is end-to-end delay constraint. Therefore, UDP(User Datagram Protocol) is more suitable for transporting multimedia data than TCP(Transmission Control Protocol). But UDP does not control network congestion and guarantee QoS(Quality of Service). There are many research results to complement UDP. One of these results is RTP(Real-Time Transport Protocol) and RTCP(Real-Time Transport Protocol). RTP and RTCP is mainly designed for use with UDP(User Datagram Protocol) for multimedia transport over the Internet. It has the capability of media-synchronization and network''s QoS feedback to compensate for the weakness of UDP. In this thesis, the RTP/RTCP UDP protocol is implemented over a windows pc system, and integrate with a MPEG-4 video codec system. The performance of channel rate control algorithms for VBR(Variable Bit Rate) video transmission is compared by the implemented test system. They are a TCP-Friendly rate control algorithm and a modified algorithm with a hounded minimum and maximum bitrate. It is shown that the modified algorithm provide wider range of controlled bit rates depending on the packet loss ratio and the throughput than the TCP or UDP algorithm.In this paper, we designed and evaluated the real-time multimedia telemedicine system using RTP over CDMA 1X-EVDO. To evaluate this system, we designed the telemedicine system which is based on the RTP. RTP can guarantee realtime transmission at the transport layer, that can''t guarantee at the network layer. and then we designed the RTCP protocol. The RTCP Packets can analyze network traffic and packet loss rate. Using RTCP report, we can control the QoS(Quality of Service) such as transmission rate control or priority control. The performances of the proposed algorithm and system in terms of throughput variation, RTT(Round Trip Time), jitter and PSNR(Peak Signal to Noise Ratio) were shown better performance more than UDP or native RTP.ope

    (A) Study on the Effect of Phase Noise on 64 QAM System Performance

    Get PDF
    In modern digital communication, Frequency synthesizers are widely used in wireless LAN, military radar and transceivers. In the military freaquency hopping system, the 16 Kbps data are modulated to 14.5 MHz, up-converted to 30โˆผ88 MHz by frequency synthesizer, and transmitted through the channel. The received data are down-converted to IF band by frequency synthesizer and demoulated. Because transceivers rely heavily on frequency conversion using frequency synthesizer in hopping systems and ,therefore, the spectral purity of the internal oscillators in both the receiver and the transmitter is one of the factors limiting the maximum number of available channels and users. Also, theose are demanded for wide-band frequency scope and excellent frequency resolution. To satisfy this conditions, we must predict the oscillator's internal phase noise and carefully consider when it designed. The phase noise model proposed in [1] is widely known as the Leeson model, and is by far the most well-known. It is based on a linear time-invariant (LTI) approach for tuned tank oscillator, but it really has the nonlinear time variant natures. LC-tuned oscillator is using band-pass charateristics to reduce phase noise and has good performance than ring oscillator which has switching effect in power supply. However, it has not been used widely, for not be integrated on synthesizer. Thus, in this thesis, linear time-variant(LTV) CMOS inverter ring oscillator's model which can be integrated and has good perfomance in phase noise than relaxation oscillator is analyzed. To predict the phase noise of oscillator very accurately, the oscillator is considered, which has the linearly time-varying nature when the input impulsive current into the oscillator is small. The performance which detect the corrupted signal by oscillator phase noise is compared with only affected by AWGN and analyze how much it degrade system performance for 64 QAM. In accordance with phase noise level, QPSK system performance, using HP-ADS(Advanced Design System), has been analyzed and compared with the results which only affected by AWGN. Added -85 dBc phase noise at 10 kHz offset frequency into the system degraded the BER about 2 dB in QPSK and 4 dB in 64 QAM.Absract = โ…ฑ Nomenclature = โ…ณ ์ œ 1 ์žฅ ์„œ๋ก  = 1 ์ œ 2 ์žฅ ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ํƒ€์ด๋ฐ ์ง€ํ„ฐ์™€ ์œ„์ƒ์žก์Œ = 3 2-1 ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ํƒ€์ด๋ฐ ์‹ ํ˜ธ = 3 2-2 ํƒ€์ด๋ฐ ์ง€ํ„ฐ = 5 2-3 PLL์—์„œ ํƒ€์ด๋ฐ ์ง€ํ„ฐ = 7 2-4 ์œ„์ƒ์žก์Œ๊ณผ ํƒ€์ด๋ฐ ์ง€ํ„ฐ๏ผŸ็—ผ๏ผŸ ๊ด€๊ณ„ = 8 ์ œ 3 ์žฅ 5๋‹จ CMOS ๋ง ๋ฐœ์ง„๊ธฐ์—์„œ ์œ„์ƒ์žก์Œ = 11 3-1 ์‹œ๋ณ€ ์œ„์ƒ ์žก์Œ ๋ชจ๋ธ = 11 3-2 ISF๋ฅผ ์ด์šฉํ•œ ๋ฐœ์ง„๊ธฐ์˜ ์ž„ํŽ„์Šค ์‘๋‹ต ๋ชจ๋ธ = 15 3-3 ์œ„์ƒ ์žก์Œ ์ €๊ฐ ๋Œ€์ฑ… = 21 ์ œ 4 ์žฅ ์œ„์ƒ ์žก์Œ์ด ์‹œ์Šคํ…œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ = 24 4-1 QPSK ์‹œ์Šคํ…œ = 24 4-1-1 ์œ„์ƒ ์žก์Œ์˜ ์˜ํ–ฅ = 27 4-1-2 HP-ADS๋ฅผ ์ด์šฉํ•œ ์œ„์ƒ ์žก์Œ์˜ ์˜ํ–ฅ = 29 4-2 64 QAM ์‹œ์Šคํ…œ = 36 ์ œ 5 ์žฅ ๊ฒฐ๋ก  = 40 ์ฐธ๊ณ ๋ฌธํ—Œ = 4

    ๋™์•„์‹œ์•„์— ์žˆ์–ด์„œ ์ง€๋”ํ˜• ์•…๊ธฐ์˜ ๋น„๊ต-์ผ๋ณธ ๊ณ ํ† (็ญ†)์˜ ๊ด€์ ์— ๊ธฐํ•˜์—ฌ-

    Get PDF
    ๋™๋‚จ์•„์‹œ์•„, ์˜ค์„ธ์•„๋‹ˆ์•„ ๊ฐ™์€ ์ฃผ๋ณ€๊ตญ๊ฐ€๋“ค ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋™์•„์‹œ์•„์—์„œ๋„ ๋‹ค์–‘ํ•œ ์ง€ํ„ฐํ˜• ํ˜„์•…๊ธฐ๊ฐ€ ์—ฌ๋Ÿฌ ๊ธฐํ›„์กฐ๊ฑด์—์„œ ์‚ด๊ณ  ์žˆ๋Š” ๋ฏผ์กฑ๋“ค ์‚ฌ์ด์—์„œ ๊ณต์œ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋“ค ์•…๊ธฐ๋“ค ์ค‘ ์ผ๋ถ€๋Š” ๋ฏผ์กฑ ๊ณ ์œ ์˜ ํ–ฅํ† ์ ์ธ ๋ฐ”ํƒ•์—์„œ ๋งŒ๋“ค์–ด์ง„ ํ† ์ฐฉ์•…๊ธฐ๋“ค์ธ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์™ธ์˜ ์•…๊ธฐ๋“ค์€ ์ด์›ƒ ๋ฏผ์กฑ๋“ค์— ์˜ํ•ด ๋ฐ›์•„๋“ค์—ฌ์ง€๊ณ  ์˜ค๋žœ๊ธฐ๊ฐ„์„ ํ†ตํ•˜์—ฌ ๊ฐ์ž ๊ทธ๋“ค ๋ฏผ์กฑ๋งŒ์ด ๊ฐ€์ง„ ๋ฏธ์  ๊ฐ๊ฐ์— ์˜ํ•ด์„œ ๋ณ€ํ™”๋˜์–ด ์˜จ ๊ฒƒ์ด๋‹ค. ์ผ๋ณธ์˜ ๊ฒฝ์šฐ๋ฅผ ๋ณธ๋‹ค๋ฉด๏ผŒ ๊ณ ํ† ๋ผ๋Š” ๋ง์€ ๊ณ ๋Œ€์‹œ๋Œ€์—๋Š” ํ† ์ฐฉ์ฒ™์ธ ํ˜„์•…๊ธฐ ์ž์ฒด๋ฅผ ์ผ์ปฌ์–ด ์“ฐ์—ฌ์™”์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ณ ๋Œ€๋ฌธํ•™์—์„œ ๊ทธ ์šฉ์–ด์˜ ์ถœํ˜„์„ ์ฐพ์•„ ๋ณผ ์ˆ˜ ์žˆ๊ณ ๏ผŒ๋ฒฝํ™”๊ทธ๋ฆผ์„ ํ†ตํ•˜์—ฌ์„œ๋„ ๋น„์Šทํ•œ ํ˜•ํƒœ์˜ ์•…๊ธฐ๋ฅผ ๋ฐœ๊ฒฌํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์˜ค๋Š˜๋‚  ์ธ์ง€ํ•˜๋‹ค์‹œํ”ผ ์ง€๋‚œ ์ˆ˜์„ธ๊ธฐ ๋™์•ˆ ์Œ์•…์—ฐ์ฃผ์— ์žˆ์–ด์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋‹ด๋‹นํ•ด์˜จ ์ง€ํ„ฐํ˜• ํ˜„์•…๊ธฐ๋Š” ๊ณ ํ† ์ด๋‹ค. ๊ณ ํ† ๋Š” ์•„์‹œ์•„ ๋Œ€๋ฅ™์œผ๋กœ๋ถ€ํ„ฐ ์†Œ๊ฐœ๋˜์–ด ์ฒ˜์Œ์—๋Š” ๊ถ์ค‘์Œ์•…์—์„œ๋งŒ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ทธ ํ›„ ์˜ค๋Š˜๋‚ ๊ณผ ๊ฐ™์€ ์ดˆ๊ธฐ ๊ณ ํ† ์˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ˜•๋˜์—ˆ๋Š”๋ฐ ์ด๋ฒˆ ํ•™ํšŒ๋ฅผ ํ†ตํ•˜์—ฌ ๊ทธ ์•…๊ธฐ ์†Œ๋ฆฌ๋ฅผ ๋“ค์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค

    ๋ฒ ํŠธ๋‚จ ์ง€ํ„ฐ ๋‹จํŠธ๋ž€์˜ ๋ฌธํ™”์ ๏ผŒ ์Œ์•…์  ์†Œ๊ฐœ

    Get PDF
    ๋ฒ ํŠธ๋‚จ์„ ๋ฐฉ๋ฌธํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€ ๋ฒ ํŠธ๋‚จ์˜ ๋ฌธํ™”๋ฅผ ๋ฐฐ์šฐ๊ธฐ ์œ„ํ•ด ์ฃผ๋กœ ์ „ํ†ต์Œ์•…์„ ์—ฐ์ฃผํ•˜๋Š” ์—ฐ์ฃผํšŒ์žฅ์„ ์ฐพ๋Š”๋‹ค. ๊ทธ๋Ÿฐ ์—ฐ์ฃผํšŒ์žฅ์—์„œ๋Š” ์˜ค๋žœ ์—ญ์‚ฌ๋ฅผ ํ†ตํ•ด์„œ ํ–ฅ์ƒ ์ž์ฃผ ์‚ฌ์šฉ๋˜์—ˆ๋˜ ๋ฒ ํŠธ๋‚จ์˜ ์ „ํ†ต์•…๊ธฐ๋“ค์ธ ๋ฅ˜ํŠธ(Lute, ๊ธฐํƒ€๋ฅ˜๏ผŒ ๋ชฉ๊ณผ ๊ณต๋ช…ํ†ต์ด ์žˆ๋Š” ํ˜„์•…๊ธฐ), ์ง€ํ„ฐ(Zither, ๊ฑฐ๋ฌธ๊ณ  ๋ฅ˜, ๊ธด ๊ณต๋ช…ํŒ์— ์ค„์ด ๋ป—์–ด ์žˆ๋‹ค), ํ”ผ๋ฆฌ (flute), ํ™œํ˜„์•…๊ธฐ(fiddle, ํ™œ์ด ์žˆ๋Š” ํ˜„์•…๊ธฐ)๏ผŒ ํƒ€์•…๊ธฐ ๋“ฑ์ด ์—ฌ๋Ÿฌ ์—ฐ์ฃผ๋‹จ์ฒด๋“ค์— ์˜ํ•ด ์—ฐ์ฃผ๋œ๋‹ค. ๊ทธ ์ค‘ ๋‹จํŠธ๋ž€(Dan Tranh)์€ ํ•˜๋…ธ์ด(Hanoi), ํ›„์—(Hue), ํƒ„ํœ˜ ํ˜ธ์น˜๋ฏผ (Ho Chi Minh City, ํ˜ธ์น˜๋ฏผ์‹œ)๋“ฑ์˜ ๋ฌด๋Œ€ ์œ„์—์„œ ๋˜๋Š” ๋ผ๋””์˜ค, ํ…”๋ ˆ๋น„์ ผ ๋“ฑ์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ํ˜„์•…๊ธฐ(์ง€ํ„ฐ๋ฅ˜์˜)์ด๋‹ค. ๋‹จํŠธ๋ž€์€ ๊ธฐ๊ต์ ์ธ ๋…์ฃผ์•…๊ธฐ๋กœ์จ ๊ทธ๋ฆฌ๊ณ  ๋™์‹œ์— ํ˜„์•…ํ•ฉ์ฃผ์•…๊ธฐ๋กœ์จ ์‚ฌ์šฉ๋˜๋ฉฐ, ๋˜ ๋…ธ๋ž˜๋ฐ˜์ฃผ์šฉ ์‹ค๋‚ด์•…๊ณผ ๊ทน์žฅ ๋“ฑ์—์„œ๋„ ์‚ฌ์šฉ๋œ๋‹ค. ์–ด๋–ค ๊ฒฝ์šฐ์—๋Š” ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ๋ฏผ์š” ๋ฐ˜์ฃผ์šฉ์œผ๋กœ ์ ๊ฒŒ๋Š” ๋‘ ๋Œ€์—์„œ ์—ด๋Œ€๊นŒ์ง€์˜ ๋‹จํŠธ๋ž€์ด ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์—ฐ์ฃผํšŒ์žฅ์˜ ์ฒญ์ค‘๋“ค์€ ํŠนํžˆ ์ด ์•…๊ธฐ์˜ ํ™”๋ คํ•œ ์Œ์ƒ‰๊ณผ ๋ฏธ๋ฌ˜ํ•œ ์„ ์œจ์— ๊ฐ๋™ํ•œ๋‹ค. ์‚ฌ์‹ค ํ˜„์žฌ ๊ทธ๋Ÿฐ ๋ฌด๋Œ€์—์„œ ๋ณด์—ฌ์ง€๊ณ  ์žˆ๋Š” ๋‹จํŠธ๋ž€ ์Œ์•…์€ ์˜ค๋žœ ์ „ํ†ต์„ ๊ฐ–๊ณ  ์žˆ๋Š” ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์ž˜ ๊ตฌ์„ฑ๋˜๊ณ  ์กฐ์ง๋œ ์Œ์•…์ด๋‹ค. ๋‹จํŠธ๋ž€์€ ์ผ๋ฐ˜ ๋Œ€์ค‘์—์„œ ์™•์‹ค์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์žˆ์—ˆ๋˜ ์ „ํ†ต์Œ์•… ์—ฐ์ฃผ๋‹จ์ฒด์˜ ํ•œ ์•…๊ธฐ๋กœ ํ•ญ์ƒ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋‹จํŠธ๋ž€์€ ์ค‘๊ตญ์˜ ์ก(zheng), ํ•œ๊ตญ์˜ ๊ฐ€์•ผ๊ธˆ, ์ผ๋ณธ์˜ ๊ณ ํ† ์™€ ํ•จ๊ป˜ ๊ทธ ์•…๊ธฐ์ž์ฒด์˜ ๋‹ฎ์€์ (์œ ์‚ฌ์„ฑ)๊ณผ ๊ทธ ์‚ฌ์šฉ๋œ ์šฉ๋„์˜ ์œ ์‚ฌ์„ฑ์—์„œ ๋™์•„์‹œ์•„ ๋ฌธํ™”์™€์˜ ๊ด€๋ จ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด ๊ธ€์—์„œ๋Š” ๋‹จํŠธ๋ž€์˜ ์—ญ์‚ฌ์ , ๋ฌธํ™”์ , ์Œ์•…์  ์ธก๋ฉด์˜ ๋ถ„์„, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ์œ ์‚ฌํ•œ ์•…๊ธฐ๋“ค๊ณผ ๊ทธ ์—ฐ์ฃผ๋ฐฉ๋ฒ•์— ์˜ํ•ด์„œ ์„œ๋กœ ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ๊ณ  ๋ฐ›์•˜๋Š”๊ฐ€์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด๊ฒ ๋‹ค

    The development of simulator for warship propulsion system using HILS

    Get PDF
    ์ตœ๊ทผ ํ•จ์ •์— ํƒ‘์žฌ๋˜๋Š” ๋ฌด๊ธฐ์ฒด๊ณ„๊ฐ€ ๊ณ ์ „๋ ฅํ™” ๋˜์–ด๊ฐ์— ๋”ฐ๋ผ ํ•จ์ •์— ์š”๊ตฌ๋˜๋Š” ์ „๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ•จ์ •์˜ ์ถ”์ง„์ฒด๊ณ„๋Š” ๊ธฐ๊ณ„์‹์—์„œ ๋ณตํ•ฉ์‹, ์ „๊ธฐ์‹์œผ๋กœ ๋ฐœ๋‹ฌํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ˆœํ•œ ๊ธฐ๊ณ„์‹ ์ถ”์ง„์ฒด๊ณ„์—์„œ ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ๋ฅผ ๋ณตํ•ฉํ•˜์—ฌ ์ถ”์ง„ํ•  ๊ฒฝ์šฐ ์ œ์–ด ๊ธฐ๋Šฅ์ด ๋ณต์žกํ•ด์ง„๋‹ค. ๊ตญ๋‚ด์—์„œ๋Š” ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ๋ฅผ ํƒ‘์žฌํ•œ ๋ณตํ•ฉ์‹ ์ถ”์ง„์ฒด๊ณ„์— ๋Œ€ํ•œ ๊ฒฝํ—˜์˜ ๋ถ€์กฑ์œผ๋กœ ์ถ”์ง„๊ธฐ๊ด€์˜ ์—ฐ๋™์ด๋‚˜ ์ œ์–ด, ์‹œํ—˜ ๋ฐ ์ถ”์ง„์ฒด๊ณ„ ์—ฐ๋™ํ†ตํ•ฉ ๋“ฑ์˜ ์—…๋ฌด๋ฅผ ๊ตญ์™ธ์˜ ๊ธฐ์ˆ ์— ์˜์กดํ•˜๊ณ  ์žˆ๋‹ค. ์ด์— ํ•จ์ • ์ถ”์ง„์ฒด๊ณ„์˜ ์—ฐ๋™ ๊ธฐ์ˆ  ๋ฐ ์ œ์–ด, ๊ฒ€์ฆ ๊ธฐ์ˆ ์„ ๊ตญ์‚ฐํ™”ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ •์˜ ์ถ”์ง„๊ณผ ๊ธฐ๋™์„ ๊ฒ€์ฆํ•˜๋Š” ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š” ์ถ”์ง„์ฒด๊ณ„์˜ ๋™ํŠน์„ฑ์„ ๋ชจ์‚ฌํ•˜๋Š” ์ถ”์ง„ ์žฅ๋น„ ๋ชจ๋ธ๊ณผ ์ ˆ์ฐจ๋ฅผ ๋ชจ์‚ฌํ•˜๋Š” ์ œ์–ด๋ชจ๋ธ, ์‹ค์ œ ์ถ”์ง„์ฒด๊ณ„๋ฅผ ๋ชจ์‚ฌํ•˜๋Š” ํ”Œ๋žœํŠธ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑ๋˜์–ด์žˆ๋‹ค. ์ถ”์ง„ ์žฅ๋น„ ๋ชจ๋ธ์€ ์—ด์—ญํ•™ ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋กœ ๊ฐœ๋ฐœํ•  ๊ฒฝ์šฐ ๋ณต์žกํ•œ ์—ฐ์‚ฐ์œผ๋กœ ์ธํ•œ ์‹œ๊ฐ„์ง€์—ฐ์ด ๋ฐœ์ƒํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์ œ์–ด์— ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ •์˜ ์ถœ๋ ฅ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ธ์ž๋ฅผ ์„ ํƒํ•˜์—ฌ ๋‹จ์ˆœํ™”๋œ ์ถ”์ง„ ์žฅ๋น„ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ์ถ”์ง„์ฒด๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•จ์ •์˜ ์ถ”์ง„๋ชจ๋“œ ์ค‘์—์„œ ๊ฐ€์Šคํ„ฐ๋นˆ๊ณผ ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ์˜ ์ „ํ™˜์ ˆ์ฐจ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๋ณตํ•ฉ(hybrid)๋ชจ๋“œ์™€ ๋‹จ์ผ ์ถ”์ง„ ์žฅ๋น„์— ๋Œ€ํ•œ ์ž๋™๋ชจ๋“œ์™€ ์ˆ˜๋™๋ชจ๋“œ์˜ ์ถœ๋ ฅ ๋ฐ ์ œ์–ด์—ฐ๋™๊ด€๊ณ„์— ๋Œ€ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ๊ฐ€์Šคํ„ฐ๋นˆ๊ณผ ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ์˜ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€ ์ถ”์ง„ ์žฅ๋น„ ๋ชจ๋ธ ๊ฐ„์˜ ์˜ค์ฐจ๋Š” ํ‰๊ท  5% ์ด๋‚ด์˜ ์˜ค์ฐจ๋ฅผ ๊ฐ€์กŒ๋‹ค. ๋˜ํ•œ, ํ•˜๋“œ์›จ์–ด ํ”Œ๋žœํŠธ ๋ชจ๋ธ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์˜ค์ฐจ๋Š” ํ‰๊ท  5% ์ด๋‚ด์˜ ์˜ค์ฐจ๋ฅผ ๊ฐ€์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•˜์—ฌ ์ถ”ํ›„ ๋ณตํ•ฉ์‹ ์ถ”์ง„์ฒด๊ณ„ ๊ฑด์กฐ ๋‹จ๊ณ„ ์ด์ „์— ๊ฒ€์ฆ ๋ฐ ์„ฑ๋Šฅ ํ™•์ธ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.|The electric power required for naval ships is increasing as the weapon systems mounted on naval ships are becoming more powerful. Accordingly, the propulsion systems of naval ships are evolving from mechanical to composite or electric systems. The control function becomes sophisticated when a propulsion motor is added to a simple mechanical propulsion system to create a composite propulsion system. In Korea, tasks, such as interlocking, control, test, and propulsion system integration of the propulsion engine, rely on foreign technologies because of insufficient experience in composite propulsion systems equipped with a propulsion motor. Therefore, we intend to develop herein a simulator that validates propulsion and maneuvering of naval ships to localize interlocking, controlling, and verifying technologies for the propulsion system of naval ships and secure their reliability. The simulator comprises a propulsion equipment model that simulates the dynamic characteristics of a propulsion system, a control model that simulates the procedure, and a plant model that simulates an actual propulsion system. The propulsion equipment model is not suitable for real-time control if it is developed as a thermodynamic model because of the complicated formulas and process. This study solves this problem by selecting the factors affecting the power output of naval ships and developing a simplified propulsion equipment model. The developed propulsion system simulator is used to simulate the navigation mode that can check the conversion procedure between the gas turbine and the propulsion motor and the power output and control/interlocking relations of the automatic and manual modes of the single propulsion equipment among the propulsion modes of naval ships. The simulation results confirm that the errors between the actual data of the gas turbine and the propulsion motor and those of the propulsion equipment model were within 5% on average. Furthermore, the errors between the simulation result of the hardware plant model and the actual data were within 5% on average. Therefore, this simulation can be utilized to verify the system and check its performance prior to the building stage of a composite propulsion system in the future.1. ์„œ ๋ก  1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋™ํ–ฅ 4 1.3 ์—ฐ๊ตฌ ๋‚ด์šฉ ๋ฐ ๊ตฌ์„ฑ 9 2. ํ•จ์ • ์ถ”์ง„์ฒด๊ณ„ 2.1 ํ•จ์ • ์ถ”์ง„์ฒด๊ณ„ ์ข…๋ฅ˜ 10 2.2 ํ•จ์ • ์ถ”์ง„์ฒด๊ณ„ ์„ค๊ณ„ 12 3. ์ถ”์ง„์ฒด๊ณ„ ์žฅ๋น„ ๋ชจ๋ธ๋ง & ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 3.1 ์ถ”์ง„์ฒด๊ณ„ ๋ชจ๋ธ๋ง & ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐœ์š” 16 3.2 ํ•จ์ • ๋ชจ๋ธ 18 3.3 ๊ฐ€์Šคํ„ฐ๋นˆ ๋ชจ๋ธ 23 3.4 ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ ๋ชจ๋ธ 27 3.5 ๊ฐ์†๊ธฐ์–ด ๋ฐ ํด๋Ÿฌ์น˜ 29 3.6 ๊ฐ€๋ณ€ํ”ผ์น˜ ํ”„๋กœํŽ ๋Ÿฌ 33 4. ์ถ”์ง„์ฒด๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ 4.1 ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌ์ถ• 36 4.2 ํ•จ์ •์ถ”์ง„์ฒด๊ณ„ ์šด์šฉ๋ชจ๋“œ 40 4.3 ํ†ตํ•ฉ๊ธฐ๊ด€์ œ์–ด๊ธฐ 42 4.3.1 FPGA ๋ชจ๋ธ 43 4.3.2 Telegraph ๋ชจ๋ธ 45 4.3.2 Propulsion System ๋ชจ๋ธ 47 5. ์ถ”์ง„์ฒด๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 5.1 ์ฃผ ํ”„๋กœ๊ทธ๋žจ 52 5.2 ๊ฐ€์Šคํ„ฐ๋นˆ ์ž๋™๋ชจ๋“œ 56 5.3 ๊ฐ€์Šคํ„ฐ๋นˆ ์ˆ˜๋™๋ชจ๋“œ 58 5.3 ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ ์ž๋™๋ชจ๋“œ 59 5.4 ์ „๊ธฐ์ถ”์ง„์ „๋™๊ธฐ ์ˆ˜๋™๋ชจ๋“œ 60 5.5 Navigation Mode 61 6. ๊ฒฐ ๋ก  ์ฐธ๊ณ ๋ฌธํ—Œ 66Maste

    ์–‘์ž ๋ธ”๋ž™ํ™€์— ๋Œ€ํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ผ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2021. 2. ๊น€์„.This thesis aims to holographically study the black holes in anti-de Sitter spacetime from the dual conformal field theories. We show that the Cardy limit of the indices of superconformal field theories in d=3,4,5,6d=3,4,5,6 exhibit the deconfined degrees of freedom in the large NN limit. They precisely agree with the Bekenstein-Hawking entropies of supersymmetric black holes in AdS4,5,6,7_{4,5,6,7}, thus accounting for their microstates as dual deconfined quark-gluon plasma. We also clarify that the N3/2N^{3/2} deconfined degrees of freedom of M2-brane superconformal field theory (SCFT) arises from the magnetic monopole condensation. We further study the N5/2N^{5/2} deconfined degrees of freedom of 5d SCFTs and subtle roles of the instanton solitons realizing such exotic deconfinement. Moreover, we numerically study the index of 4d N=4\mathcal{N}=4 supersymmetric-Yang-Mills theory and show how the rapid oscillation of the index can be realized by the complex chemical potential saddle points of the Legendre transformation. Finally, we comment on the deconfinement transition from the index.์ด ๋…ผ๋ฌธ์€ ์•ˆํ‹ฐ ๋“œ ์ง€ํ„ฐ ์‹œ๊ณต๊ฐ„์˜ ๋ธ”๋ž™ํ™€์„ ๋“ฑ๊ฐ์žฅ๋ก ์„ ์ด์šฉํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ผ ๋ฐฉ์‹์œผ๋กœ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์— ๋ชฉํ‘œ๋ฅผ ๋‘”๋‹ค. ๋จผ์ €, 3,4,5,6์ฐจ์› ์ดˆ๋“ฑ๊ฐ์žฅ๋ก ์˜ ์ดˆ๋“ฑ๊ฐ์ง€ํ‘œ๊ฐ€ Cardy ๊ทธ๋ฆฌ๊ณ  large NN ๊ทนํ•œ์—์„œ ํƒˆ์†๋ฐ•์„ ๋‚˜ํƒ€๋ƒ„์„ ๋ณด์ธ๋‹ค. ์ด์˜ ์—”ํŠธ๋กœํ”ผ๋Š” 4,5,6,7์ฐจ์› ์•ˆํ‹ฐ ๋“œ ์ง€ํ„ฐ ์‹œ๊ณต๊ฐ„ ๋ธ”๋ž™ํ™€์˜ Bekenstein-Hawking ์—”ํŠธ๋กœํ”ผ์™€ ์ •ํ™•ํ•˜๊ฒŒ ์ผ์น˜ํ•œ๋‹ค. ์ฆ‰, ๋ธ”๋ž™ํ™€์˜ ๋ฏธ์‹œ์ƒํƒœ๋ฅผ ํƒˆ์†๋ฐ•๋œ ์ฟผํฌ-๊ธ€๋ฃจ์˜จ ํ”Œ๋ผ์ฆˆ๋งˆ๋ฅผ ํ†ตํ•ด ํ™€๋กœ๊ทธ๋ž˜ํ”ผ ๋ฐฉ์‹์œผ๋กœ ์„ค๋ช…ํ•œ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, 3์ฐจ์›, 5์ฐจ์› ๊ฒŒ์ด์ง€ ์ด๋ก ์˜ ๋†’์€ ์˜จ๋„์—์„œ์˜ ๋…ํŠนํ•œ ํ˜•ํƒœ์˜ ํƒˆ์†๋ฐ•์— ๊ด€ํ•ด์„œ ์—ฐ๊ตฌํ•œ๋‹ค. ๋จผ์ €, M2-๋ง‰ ์œ„์˜ ์ดˆ๋“ฑ๊ฐ์žฅ๋ก ์˜ N3/2N^{3/2} ํƒˆ์†๋ฐ• ์ž์œ ๋„๋ฅผ ์ž๊ธฐํ™€๊ทน์˜ ์‘์ถ•์„ ํ†ตํ•ด ๋ช…ํ™•ํ•˜๊ฒŒ ์„ค๋ช…ํ•œ๋‹ค. 5์ฐจ์› ์ดˆ๋“ฑ๊ฐ์žฅ๋ก ์˜ N5/2N^{5/2} ํƒˆ์†๋ฐ• ์ž์œ ๋„์™€ ์ด์— ๋Œ€ํ•œ ์ธ์Šคํƒ„ํ†ค ์†”๋ฆฌํ†ค์˜ ์—ญํ• ๋„ ๋…ผ์˜๋  ๊ฒƒ์ด๋‹ค. ๋”ํ•˜์—ฌ, 4์ฐจ์› N=4\mathcal{N}=4 ์ดˆ๋Œ€์นญ-์–‘-๋ฐ€์Šค ์ด๋ก ์˜ ์ดˆ๋“ฑ๊ฐ์ง€ํ‘œ๋ฅผ ์ˆ˜์น˜์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜์—ฌ, ์ด ์ง€ํ‘œ์˜ ๋น ๋ฅธ ์ง„๋™์ด Legendre ๋ณ€ํ™˜์˜ ๋ณต์†Œ ํ™”ํ•™ํผํ…์…œ ๊ทน์ ์„ ํ†ตํ•ด ๊ตฌํ˜„๋จ์„ ๋ณด์ธ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ดˆ๋“ฑ๊ฐ์ง€ํ‘œ์—์„œ์˜ ํƒˆ์†๋ฐ• ์ƒ์ „์ด์— ๊ด€ํ•ด ๋…ผ์˜ํ•  ๊ฒƒ์ด๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์•ˆ๋”” ๋“œ ์ง€ํ„ฐ ์‹œ๊ณต๊ฐ„์˜ ๋ธ”๋ž™ํ™€ ๋ฐ ์–‘์ž์ค‘๋ ฅ์— ๋Œ€ํ•œ ๋ฏธ์‹œ์ ์ธ ์—ฐ๊ตฌ์— ์ฒด๊ณ„์ ์ด๊ณ  ๋ณดํŽธ์ ์ธ ์ฒด๊ณ„๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค๋Š” ์ ์—๋„ ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Abstract i 1 Introduction 1 2 Entropy functions of supersymmetric AdS black holes 21 3 Large AdS5 black holes from 4d N=4 SYM 42 4 Large AdS6 black holes from CFT5 76 5 Quantum vortices, M2-branes and AdS4 black holes 111 6 Universal 3d Cardy block and various AdS4 black holes 172 7 Background field analysis for large AdS5,7 black holes 240 8 AdS black holes and finite N indices 262 9 Comments on deconfinement in AdS/CFT 282 A Asymptotic behavior and identities of special functions 296 Bibliography 299 ์ดˆ๋ก 325Docto

    Neuromotor Assessments and Developmental Movement Disorders

    Get PDF
    Development in motor skills and abnormal movement patterns in developing child are clearly observed and easily identified by the parents. Motor delay and movement disorder are common presentations for children with developmental disorders. Therefore, assessment for motor development and movement disorder become the major developmental focus of early in life. Physical examination has been considered as a key element for identifying developmental motor disorder. Traditionally, development of tone, primitive reflexes, postural reaction and motor milestone are commonly used as the evaluation tools for early identification of children at high risk for developmental disorder. Recently the assessment of the quality of general move-ments was introduced as a new form of neuromotor assessment of young infant. Therefore, clinical usefulness of the assessments for detecting neurological dysfunction was briefly reviewed in this paper. As well, there are a lot of movement disorders shown in child. The movement disorders can be separated into transient, paroxysmal and chronic ones according to their evolution. Since the knowledge of the movement disorders in each category enables us to understand the evolution of movement disorders, avoid unnecessary tests and treatments, and also give the proper information to the parents, the movement disorders were briefly reviewed in this paper.ope

    A comparison of acoustic & electroglottographic measures according to voiced lip trill methods

    Get PDF
    The purpose of the current study was to compare selected acoustic and electroglottographic measures (closed quotient, pitch, and loudness) among vowel phonation, traditional voiced lip trill (VLTT), modified voiced lip trill methods (VLTM). A total of 21 participants without voice complaints produced 4-second long samples using each phonation method. Results indicated that mean closed quotient of VLTM was higher than that of vowel phonation and VLTT, while its range and standard deviation measures were higher than those of vowel phonation. Mean, range, standard deviation, maximum of pitch measures of VLTM were higher than those of vowel phonation. Lastly, mean and maximum loudness of the VLTM were higher than VLTT. In conclusion, the current data indicate the possibility to use the VLTM as a training method for singing or a strategy to facilitate generalization effect of voice therapy. Current results also reflect the necessity for further study pertaining to the long-term effect of the VLTM training method. Clinical implications are discussed.ope

    ์ €์ „๋ ฅ, ์ €๋ฉด์  ์œ ์„  ์†ก์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ํšŒ๋กœ ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 8. ์ •๋•๊ท .In this thesis, novel circuit techniques for low-power and area-efficient wireline transceiver, including a phase-locked loop (PLL) based on a two-stage ring oscillator, a scalable voltage-mode transmitter, and a forwarded-clock (FC) receiver based on a delay-locked-loop (DLL) based per-pin deskew, are proposed. At first, a two-stage ring PLL that provides a four-phase, high-speed clock for a quarter-rate TX in order to minimize power consumption is presented. Several analyses and verification techniques, ranging from the clocking architectures for a high-speed TX to oscillation failures in a two-stage ring oscillator, are addressed in this thesis. A tri-state-inverterโ€“based frequency-divider and an AC-coupled clock-buffer are used for high-speed operations with minimal power and area overheads. The proposed PLL fabricated in the 65-nm CMOS technology occupies an active area of 0.009 mm2 with an integrated-RMS-jitter of 414 fs from 10 kHz to 100 MHz while consuming 7.6 mW from a 1.2-V supply at 10 GHz. The resulting figure-of-merit is -238.8 dB, which surpasses that of the state-of-the-art ring-PLLs by 4 dB. Secondly, a voltage-mode (VM) transmitter which offers a wide operation range of 6 to 32 Gb/s, controllable pre-emphasis equalization and output voltage swing without altering output impedance, and a power supply scalability is presented. A quarter-rate clocking architecture is employed in order to maximize the scalability and energy efficiency across the variety of operating conditions. A P-over-N VM driver is used for CMOS compatibility and wide voltage-swing range required for various I/O standards. Two supply regulators calibrate the output impedance of the VM driver across the wide swing and pre-emphasis range. A single phase-locked loop is used to provide a wide frequency range of 1.5-to-8 GHz. The prototype chip is fabricated in 65-nm CMOS technology and occupies active area of 0.48x0.36 mm2. The proposed transmitter achieves 250-to-600-mV single-ended swing and exhibits the energy efficiency of 2.10-to-2.93 pJ/bit across the data rate of 6-to-32 Gb/s. And last, this thesis describes a power and area-efficient FC receiver and includes an analysis of the jitter tolerance of the FC receiver. In the proposed design, jitter tolerance is maximized according to the analysis by employing a DLL-based de-skewing. A sample-swapping bang-bang phase-detector (SS-BBPD) eliminates the stuck locking caused by the finite delay range of the voltage-controlled delay line (VCDL), and also reduces the required delay range of the VCDL by half. The proposed FC receiver is fabricated in 65-nm CMOS technology and occupies an active area of 0.025 mm2. At a data rate of 12.5 Gb/s, the proposed FC receiver exhibits an energy efficiency of 0.36 pJ/bit, and tolerates 1.4-UIpp sinusoidal jitter of 300 MHz.Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Thesis organization 5 Chapter 2. Phase-Locked Loop Based on Two-Stage Ring Oscillator 7 2.1. Overivew 7 2.2. Background and Analysis of a Two-stage Ring Oscillator 11 2.3. Circuit Implementation of The Proposed PLL 25 2.4. Measurement Results 33 Chapter 3. A Scalable Voltage-Mode Transmitter 37 3.1. Overview 37 3.2. Design Considerations on a Scalable Serial Link Transmitter 40 3.3. Circuit Implementation 46 3.4. Measurement Results 56 Chapter 4. Delay-Locked Loop Based Forwarded-Clock Receiver 62 4.1. Overview 62 4.2. Timing and Data Recovery in a Serial Link 65 4.3. DLL-Based Forwarded-Clock Receiver Characteristics 70 4.4. Circuit Implementation 79 4.5. Measurement Results 89 Chapter 5. Conclusion 94 Appendix 96 Appendix A. Design flow to optimize a high-speed ring oscillator 96 Appendix B. Reflection Issues in N-over-N Voltage-Mode Driver 99 Appendix C. Analysis on output swing and power consumption of the P-over-N voltage-mode driver 107 Appendix D. Loop Dynamics of DLL 112 Bibliography 121 Abstract 128Docto
    corecore