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Abstract

Holographic approach to quantum black holes

Sunjin Choi
Department of Physics and Astronomy
The Graduate School

Seoul National University

This thesis aims to holographically study the black holes in anti-de Sitter
spacetime from the dual conformal field theories. We show that the Cardy
limit of the indices of superconformal field theories in d = 3,4, 5,6 exhibit the
deconfined degrees of freedom in the large N limit. They precisely agree with
the Bekenstein-Hawking entropies of supersymmetric black holes in AdSy 5 6.7,

thus accounting for their microstates as dual deconfined quark-gluon plasma.

We also clarify that the N3/2 deconfined degrees of freedom of M2-brane
superconformal field theory (SCFT) arises from the magnetic monopole conden-
sation. We further study the N2 deconfined degrees of freedom of 5d SCFTs

and subtle roles of the instanton solitons realizing such exotic deconfinement.

Moreover, we numerically study the index of 4d N' = 4 supersymmetric-
Yang-Mills theory and show how the rapid oscillation of the index can be real-
ized by the complex chemical potential saddle points of the Legendre transfor-

mation. Finally, we comment on the deconfinement transition from the index.

Keywords: Holography, Black holes, Conformal Field Theory, Deconfinement
Student Number: 2016-20321
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Chapter 1

Introduction

One of the most important and challenging problems in theoretical physics is to
establish the quantum theory of gravity. A complete formulation of the quan-
tum gravity is aimed at the consistent unification of two major subjects of the
modern physics: general relativity and quantum mechanics. Black holes, which
are both strong gravitational objects with event horizon and thermodynamic
objects with macroscopic number of quantum states, provide a theoretical probe
to understand the major properties of such yet unknown quantum gravity. The
goal of this thesis is to deepen our understanding of quantum gravity through
the holographic approach to quantum black holes.

In this chapter, we briefly review on the developments of viewpoints on the
quantum gravity, with great emphasis on the quantum black holes as a key to

reveal the mysteries of quantum gravity.



1.1 Why black holes?

Whereas the other three fundamental interactions of nature; electromagnetic
interaction, weak interaction, and strong interaction, are successfully elucidated
by the quantum field theory (QFT) and now unified as the Standard Model,
the gravitational interaction defies such quantum field theoretical description.

Why is it so? What makes the gravity so special?

General relativity, a classical field theory of gravity, is non-renormalizable
as a quantum field theory viewpoint. There is nothing wrong about this. It just
means that the general relativity is the effective field theory (EFT) of quantum
gravity at low energy. Then, let us recall what we have done when we have
such non-renormalizable EFT at low energy in particle physics. One of the
well-known examples is the Fermi theory of beta decay. It has a dimensionful
coupling G ~ 1/(293 GeV)?2, so it was supposed to be break down at energies
below 293 GeV. Below this energy scale, the physics changes drastically and
new particles are produced. That is the W and Z bosons of the electroweak
theory. Similar things happen when we approach to other characteristic energy
scale of the EFT, such as the QCD scale; new physics appears and new particle

are produced.

One may try to use the above approach to the EFT of quantum gravity,
the general relativity. Its characteristic energy scale is the Planck energy E, =
\/W ~ 109 GeV. The problem is that when we go beyond that energy
scale, the black holes are created. No new particles appear and we cannot learn
any new physics. Adding more energy just results in larger black holes, which
is even more classical. So naive reductionist experiment with colliders comes to

an end.



In fact, there are some deeper reasons why we cannot study the naive UV
completion of general relativity. When we say about the quantum gravity, it
means that a quantum theory of the dynamical metric. From the linearized
equation of motion for general relativity, we can get a propagating mode of the
metric, which can be viewed as a massless spin-2 particle called a graviton. Thus,
if there is an UV completion of general relativity, this massless spin-2 graviton
would be described as a bound state of two massless spin-1 particles. However,
there is a powerful no-go theorem that forbids it. According to the Weinberg-
Witten theorem [1], a QFT with a Poincaré invariant non-zero conserved stress-
energy tensor does not admit massless particles with spin s > 1. (General
relativity is still OK as an EFT since the stress-energy tensor vanishes due to

the equation of motion.)

Of course, this does not mean that we have to give up to find a quantum
theory of gravity. It signals that we are heading in the wrong direction. A
good example is the Coleman-Mandula theorem [2], which classifies all possible
symmetries of the S-matrix. One natural assumption of this theorem was that
the symmetry generators are bosonic, and it was a loophole. It missed the

possibility of the supersymmetry whose generator is fermionic.

So the lesson of the no-go theorem is to violate its assumption. But in or-
der to do so, we should understand the major property of quantum gravity.
Our Gedanken experiment somehow seems to indicate that lots of information
about quantum gravity is hidden inside the black holes. Indeed, we will see
that the black holes are not just the classical solutions of gravity, but thermo-
dynamic objects with macroscopic number of quantum states, which should be

understood statistically through the quantum gravity.



1.2 Black hole thermodynamics

Black holes are the classical solutions of the general relativity, with an event
horizon in which the gravitational interaction is so strong that not even light
can escape from it. In 1970’s, it was known that the black holes satisfy several
universal laws under very basic assumptions such as “the energy should be pos-
itive.” They are called the laws of black hole mechanics [3]. In the geometrized

units, i.e. ¢ = G = 1, they are stated as following.

The 1st law For perturbations of stationary black holes, the change of its
energy F is given by
dE = SidA +QdJ + 3dQ | (1.2.1)
m

where k is the surface gravity, A is the horizon area, 2 is the angular velocity, J
is the angular momentum, ® is the electrostatic potential, and @ is the electric

charge of the black holes.

The 2nd law Under the null energy condition, Tagk“kﬁ > 0 for every future-
pointing null vector field &%, the horizon area of black holes does not decrease

over time t:
dA
—_— >
dt —

This is also known as the Hawking’s area theorem [4].

0. (1.2.2)

These laws are very universal in a sense that they do not assume any kind of
matter or additional interaction between them, but just the gravitational inter-
action according to the Einstein’s equivalence principle. They even hold regard-
less of the spacetime dimension. This universality is reminiscent of the laws of
thermodynamics, and suggests that one should identify the surface gravity and

the horizon area with temperature and entropy of black holes [5]. Nonetheless,



at the classical level, black holes do not emit any particles, thus they have zero
temperature. Hence, these laws seem to be just the analogous thermodynamic
laws, classically. However, if one carefully analyzes the quantum field theory
near the event horizon, one will find that the black holes do emit thermal radi-

ation at a temperature

_h ok
o CkIB 2w ’
which is the celebrated Hawking radiation [6]. Then, from the 1st law of black

T (1.2.3)

hole mechanics, we can read off the entropy of the black holes given by

Cgk‘B A

Spy = ah 1 (1.2.4)

which is called the Bekenstein-Hawking entropy. Now, the 1st law of black hole
mechanics is indeed the 1st law of thermodynamics. The first term in (|1.2.1))
is nothing but Ty dSpn. Reflecting that the horizon area equals the black hole
entropy, the 2nd law should be generalized as %(S + Spm) > 0, where S is the
entropy outside the black hole horizon, which states that the total entropy of
the universe does not decrease over time, i.e. the 2nd law of thermodynamics [7].
Note that these laws of black hole thermodynamics turn out to hold even in
generalized gravity theories [§], such as Lovelock gravity [9], which take into

account the higher curvature corrections, in any spacetime dimensions.

Understanding the black holes as thermodynamic objects, a direct question
is whether we can statistically account for the Bekenstein-Hawking entropy of
black holes. Namely, can we derive the Bekenstein-Hawking entropy formula by
counting microstates of black holes as Spir = kp log 2 7 This question is hard to
answer since it basically asks about the spectrum of quantum gravity. Moreover,
the Bekenstein-Hawking entropy formula gives rise to central issues of black
holes, which are connected to the mysterious properties of quantum gravity.

One prime example is the black hole information paradox [10]. If basically



occurs since the Hawking radiation is purely thermal and does not keep any
information about the matters formed black holes. If this is true, then the
information is lost in the black holes and the unitarity of quantum mechanics
breaks down. We believe this is not the case in the consistent quantum theory
of gravity.

In order to resolve various puzzles of black holes, we should first understand
the Bekenstein-Hawking entropy of black holes microscopically. The rest of this

chapter will focus on the microstates of black holes.

1.3 Black holes in string theory

It is known that the string theory gives a consistent quantum gravity theory.
In the low energy spectrum of the string theory, there exists the massless spin-
2 particles, i.e. gravitons. Note that the string theory is nothing to do with
the Weinberg-Witten theorem since it is not a quantum field theory. The next
question will be whether the string theory can provide a microscopic picture to

understand black holes.

In the pioneered work of [11], the authors derived the Bekenstein-Hawking
entropy of certain five-dimensional supersymmetric black holes by counting
the degeneracy of BPS bound states of strings and branes in the string com-
pactification model. They considered the type IIB string theory compactified
on K3 x S'. The low energy effective theory can be described by the five-
dimensional supergravity. It admits a supersymmetric black hole solution with
three electric charges @)1, Q5, P and its Bekenstein-Hawking entropy is given
by Spu = 27m/Q1Q5P. On the other hand, this black hole can be formed by
the BPS bound states of fundamental strings with ¢ D1-branes wrapped on

S and Q5 D5-branes wrapped on K3 x S'. Degeneracy of such bound states



can be computed from the world-volume theory of branes. When the size of K3
is much smaller than S', the world volume theory of branes can be effectively
described by two-dimensional superconformal field theory (SCFT), which is a
supersymmetric sigma model whose target manifold is a symmetric product
orbifold (K3)®195%1 /S5 0. 11, where Sy is the permutation group of order N.
When the S! size becomes small, the momentum P along S! becomes large
and the partition function of the 2d conformal field theory (CFT), using the
modular invariance, is given by

mic

7 =T 2miTPy e
rle | ~exp [127

] (1 —i0"), (1.3.1)

where the central charge ¢ = 6Q)1Q5 for our CFT. Then, the Legendre trans-

formation gives the asymptotic degeneracy, which is the Cardy formula [12]:

S = 271'\/ Q1Q5P 5 (132)

which precisely agrees with the Bekenstein-Hawking entropy of black holes.

Soon after, the rotating version of the above black holes were analyzed
in [13]. While the general five-dimensional black holes can have two indepen-
dent angular momenta, the supersymmetric black holes can have only one. In
microscopic point of view, this angular momentum corresponds to one of two
R-charges of the BPS states in 2d SCFT living on the D1-D5 system. Slight
modification of the Cardy formula gives the entropy S = 27r\/m
and this coincides with the Bekenstein-Hawking entropy of rotating BPS black
holes. Similarly, four-dimensional supersymmetric black holes with four electric
charges are studied in the context of the type IIA string theory compactified
on T [14,/15]. The relevant BPS bound states forming black holes correspond
to the BPS states of the world-volume theory of ()2 D2-branes, Q¢ D6-branes,

and m NS5-branes. With large momentum P along S* C T, the entropy reads



S = 2m/Q2Qen P, which exactly equals to the Bekenstein-Hawking entropy of
the black holes.

The above approach based on string theory provides a powerful tool for
microscopic understanding of black holes. However, it has a disadvantage due
to our lack of understanding about the string theory itself. In order to account
for certain black holes, one should assume certain bound states of branes and
strings, which form the black holes. Then, one should study the effective theory
describing such bound states. This will only give us an effective description for
that certain black holes. For other types of black holes, one should design other
effective descriptions. The famous example is the black rings in five-dimensional
spacetime whose horizon topology is given by S? x S* [16-22]. The microscopic
accounting for the entropy of black rings [23] comes from not the D1-D5 CFT
we discussed above, but the wrapped M5-brane CFT [24].

All these things happen because we do not use the full description of quan-
tum gravity but just an effective one for the black holes of our interest. In
fact, the quantum gravity in flat spacetime is not fully defined due to our lack
of knowledge about the full non-perturbative definition of the string theory.
In other words, in order to systematically study the black holes and various
phases of quantum gravity, it is desired to have a set-up with a full description

of quantum gravity. It turns out to be a holographic description.

1.4 Holographic approach to quantum black holes

1.4.1 AdS/CFT correspondence

Let us go back to the Bekenstein-Hawking entropy formula of black holes. It has

a peculiar property that the entropy is not proportional to the volume but the



surface area of black holes, which implies that the information inside the event
horizon is encoded on the event horizon. This is the largest possible entropy for
a system with given surface area, which is called the Bekenstein bound [25-27].
Note that this formula or bound is very universal in a sense that it does not
depend on the matter inside the event horizon. This suggests that it is not
just a peculiar property of the black holes but the fundamental property of
quantum gravity. This idea leads to the holographic principle, which states
that the quantum gravity in any volume of space is described by the quantum
field theory on its boundary [26,27]. This violates the hidden assumption of
the Weinberg-Witten theorem: the graviton bound state as the gauge boson

constituents moves in one additional spacetime dimension.

In order to realize the holographic principle, one should first decide where to
place the holographic screen. The holographic screen should be non-penetrable
since we want an unitarily evolving quantum gravity system. The anti-de Sit-
ter(AdS) spacetime provides such a setting. The AdS spacetime is the maxi-
mally symmetric spacetime with negative curvature and a vacuum solution to
the Einstein’s equation with a negative cosmological constant. In the global
patch, the metric tensor of AdS41 is given by

ds? = % (—dt2 +dr? + sin? (f) dgg_l) : (1.4.1)

cos (%) L

where the radial coordinate r € [0, %), and time ¢ € (—o00, 00), and the angular
coordinates Q cover S?1. £ is called the AdS radius. Note that although the
AdS is non-compact, the radial coordinate r runs only over a finite range.
There is the conformal boundary at the spatial infinity » — 7, which is the
Lorentzian cylinder S4 ! x R. Thus, we can think of AdS as the interior of
the cylinder. Furthermore, due to the warp or Weyl factor 1/ cos?(r/f) of the

metric, the particles in AdS feels a strong gravitational force pushing towards



the center and cannot reach the boundary cylinder. In fact, they move along
the periodic orbits passing through the center with the same period. This fact
makes AdS spacetime like a ‘periodic box’ and suggests the interpretation of
the AdS spacetime as the IR regulated version of the flat Minkowski spacetime.
Therefore, the AdS spacetime gives an ideal setting for the holography. We can
safely place the holographic screen at the conformal boundary. (One should

demand proper reflective boundary conditions for the null geodesics [28-31].)

Note that one can get the conformal boundary manifolds other than the
cylinder by taking other limits approaching the boundary of AdS. For example,
one will naturally find a Minkowski spacetime as the conformal boundary of AdS
in the Poincaré patch. In fact, we can obtain any conformally flat manifold as
the boundary of AdS. However, in this thesis, we shall mostly focus on the case
when the conformal boundary is given by the cylinder. This is because the black

holes in AdS have the natural boundary as the cylinder.

The next task is to design the QFT living on the boundary, which holo-
graphically describes the quantum gravity on AdS. In fact, there are already
some hints on AdS. The isometry of AdS441 is SO(d,2) and this should be
realized as the symmetry of the boundary QFT,. This is the conformal group
in d-dimensions. Furthermore, the fact that all particles in AdS have the same
period means that the energy level for the free particles in AdS are integer
quantized with a lower bound. Quantum mechanically, this fact implies that
the particle states in AdS can be described by the language of the so(d, 2) con-
formal algebra such as the primary and descendant states. Therefore, we can
now say that the boundary QFT should be the conformal field theory (CFT),
that is the RG fixed point of the QFT, which is scale-invariant due to the con-

formal symmetry. One can further relates the radial coordinates in AdS to the

]
10 =4



energy scale in the CFT, which is called the holographic renormalization group
(RG) [32,33].

Now, we need two more ingredients to finish our heuristic ‘derivation’ of the
duality. In order that the bulk gravity emerges, we should impose two nontrivial
conditions to CFT. We want that the boundary CFT has large number of
degrees of freedom so that it can take into account the macroscopic degrees of
freedom of black holes in AdS. Additionally, we want the gauge boson bound
state behaves like a graviton and not like a gauge boson pair, so the CFT should
be very strongly coupled. Thus, the strongly coupled CFT with large number
of degrees of freedom is needed to holographically describe the bulk gravity. In
fact, in the large N limit, or the 't Hooft limit, of the gauge theory, where N
is the gauge group rank, the correlation functions factorize and the quantum
fluctuations are highly supperessed [34]. Thus, the large N gauge theory really
behaves like a “free, classical” theory, similar to the classical gravity, or the

string theory [35].

Note that as we shall focus on the case with the conformal boundary of
AdS is given by the Lorentzian cylinder S9! x R, we should understand how
to put the CFT on S9! x R. This can be achieved by the so-called radial
quantization. Consider the CFT on the plane R?. Using a Weyl transformation,
we can comformally map the plane to the cylinder. That is to regard the radial
coordinate in R¢ as the time coordinate. Then, we will quantize the theory in
the slices with equal radius, i.e. S9!, which we interpret as the equal time slices.
Basically, this is the radial quantization. In addition, there is one more intriguing
fact: the operator-state correspondence. We can insert an local operator at the
origin of R? and then path-integrate inside S¢~! under this insertion. Then, this

will naturally define the quantum state on S¢~! and vice-versa. Thus, the local

11 Sk



operators of CFT on R? are in one-to-one correspondence with the quantum
states of CFT on S~ xR. This can be also argued using the conformal algebra.
Note that this is only true for the CF'T, where we can map the cylinder to plane.
In general non-conformal theories, the local operator creates many different

states.

We have now arrived at the celebrated proposal, the AdS/CFT correspon-
dence [3638]. This is the most successful realization of the holographic princi-
ple. There are many more motivations and evidences for the AdS/CFT corre-
spondence. (For pedagogical review, refer to [35,39-43].) In fact, the string/M-
theory gives many explicit examples for the AdS/CFT correspondence and most
of the concrete evidences are found in these examples [35]. These examples can
be ‘derived’ from the string/M-theory studying two equivalent descriptions of
the low energy physics of a stack of multiple branes in the decoupling limit: grav-
ity on the near horizon AdS geometry of (black) branes and the SCFT living
on the branes. The most famous example comes for the stack of N D3-branes,
which gives rise to the equivalence between the 4d N = 4 U(N) supersymmetric
Yang-Mills theory (SYM) and the type IIB string theory on AdSs x S°. The
parameters; IV, the gauge group rank, and gym, the coupling constant, of SYM
determines the quantum corrections to the classical type IIB supergravity on

AdSs x S® as following:

4 4 8
Ngl%M:?Z’ 27;\[2:?8” (1.4.2)
where £ is the string scale, and £p is the 10d Planck scale. The first factor
is about the stringy correction and the second one is about the gravity loop
correction to the classical supergravity. Hence, the classical gravity description

is valid when the gauge group rank N and the 't Hooft coupling A = N g%M is

very large, as expected.

12 Sk



There are lots of other examples in other spacetime dimensions from string/M-

theory. From the decoupling limit of M2-branes, we get the equivalence between
the 3d U(N); x U(N)—1 ABJM SCFT, which is the N/ = 8 supersymmetric
Chern-Simons-matter theory, and the M-theory on AdSy x S7 [44]. Similarly,
from Mb-brane stacks, we get the correspondence between the 6d Ay type (2,0)-
SCFT [45//46] and the M-theory on AdS; x S*. Of course, there are AdSg/CFTj
examples states that certain 5d N' = 1 SCFTs [47,/48|] are equivalent to the
massive type ITA string theory on AdSg x S*/Zs [49-51]. These are the prime
examples we will cover in this thesis. We will study the black holes in AdS, 56,7
from the above SCFT3 456 duals in the large /N limit. In addition, the example
discussed in Strominger-Vafa’s work [11], in fact, can also be understood as the
AdS3/CFTy correspondence. In the decoupling limit, the D1-D5 system gives
the equivalence between the type IIB string theory on AdSs x S3 x T? and
the 2d N' = (4,4) SCFT whose target space is the symmetric product orbifold
of T4, which we discussed. AdSs x S® x T* is nothing but the near horizon

geometry in the decoupling limit of the type IIB string theory on 7% x S*.

Note that the AdS/CFT correspondence is not limited to the string/M-
theory. There is a prominent example states that the Vassiliev’s higher spin
gravity in AdS; and the 3d CFT called the critical O(N) vector model are
equivalent [52,53]. Thus, we should regard the AdS/CFT correspondence as the
basic principle describing the full quantum gravity, whatever it is, in AdS. At
least, there are lots of evidences supporting it and many physicists believe that it
is true. Some people even believe that it gives the definition of quantum gravity
on AdS as the CFT dual. Nevertheless, one can ask, under what conditions on
the boundary CFT, the classical Einstein gravity emerges in the bulk AdS, just
like the string/M-theory example. The answer is believed to be when the CFT

has a large central charge with a low-lying sparse spectrum [54].

]
13 =4



1.4.2 Black holes as deconfined quark-gluon plasma

Now, we have the systematic and ideal setting to study the black holes: the
AdS/CFT correspondence. Then, what will be the CFT dual states of AdS
black holes? Let us first consider the thermodynamic behavior of the AdS in
the canonical ensemble. At low temperature, there will be just a thermal gas of
gravitons in AdS. Due to the gravitational potential in AdS, these particles will
mostly move around the center. Then, as we increase the temperature, more and
more energy will be put into the region nearby the center of AdS. Eventually,
at the critical temperature Typ, this hot gas with large energy density will
collapse and form a black hole in AdS. This is the famous Hawking-Page phase
transition [55], which is the 1st order phase transition between the thermal
gas of gravitons and black holes in AdS. These two solutions, graviton gas and
black holes, should be understood as the classical saddle points of the quantum
gravity in AdS.

Before we move our discussion to the dual CF'T side, let us study the ther-
modynamic behavior of AdS black holes in more detail. Our concrete example
is the AdSs-Schwarzschild black holes. They have mass (energy) M, conjugate

to the temperature T'. The relations of M, T" and the horizon radius r4 is given

by
T=—> =——+UH/— M 1.4.3
2 * 2ry T+ 2 + 4 twi, ( )
where /¢ is the radius of AdSs, and w = 31\27{7(%% with 5d Newton constant

Gy, and vol(S?) is the volume of unit 3-sphere. For instance, see [56] for its
summary. r4 is a monotonically increasing function of M, and thus labels the
energy to certain extent. From the expression of T', one finds that the black
holes exist only at T" > Ty = g At given temperature T > Ty, two black

hole solutions exist, solving the first equation of (|1.4.3). The one with smaller

]
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r4 is called small black holes and has negative specific heat, 87’52?) < 0 and
thus % < 0, irrelevant for discussing canonical ensemble. However, we can
consider the small black holes in the microcanonical ensemble and this gives
the IR regulated version of the black holes in flat spacetime, which also have
the negative specific heat. Thus, studying the small black hole limit of the AdS
black holes, we can also study the physics of the black holes in asymptotically

flat spacetime. The solution with larger r is called large black holes, having

positive specific heat.

The thermodynamics in the canonical ensemble with two saddle points: large
black holes and thermal gravitons in AdSs, is what we have discussed before.
The thermal graviton phase is dominant at 7" < Typ with Typ = ﬁ, while
the large black hole is dominant at 7' > Typ [55-57|. Since the free energy
of thermal gravitons is of order O(G(])V), as they are free gas, while that of the
black hole is O(G '), due to the 1/Gy factor in the Einstein-Hilbert action, the
dominant saddle point is determined by the sign of the black hole free energy.

The transition is known to be of first order, called Hawking-Page transition.

Now, let us consider the dual CFT side. Our concrete example is the 4d
N = 4 U(N) SYM, which is dual to AdSs x S The CFT dual picture of
the Hawking-Page transition is the confinement-deconfinement phase transition
at strong coupling [56}57]. One can ask how does the phase transition exist
and what is the confinement in the CF'T, which is scale-invariant. These all
come from the fact that we put our CFT on the compact space S ! x ST,
where S! is the Euclidean time circle. When the temperature is lower than
the energy scale given by the sphere radius, we can only see the gauge singlet
composite particles, the hadrons, on the sphere due to the Gauss’ law. However,

when the temperature becomes high enough, we can see the small constituents

15 -":er -I_I' 1_-“



of the hadrons on the sphere, which is the quark-gluon plasma. This is the
confinement-deconfinement phase transition of the CFT on compact manifold
[56,/57]. The confined hadrons are dual to the thermal gas of gravitons in AdS
and the deconfined quark-gluon plasma is dual to the large black holes in AdS.
Hence, the quark-gluon plasma of CFT will be the main target of this thesis
to holographically study black holes in AdS. Also note that this sharp phase
transition on the compact manifold is only possible in the large N limit, where

there is infinite number of degrees of freedom in the theory [58].

One important properties of the confined phase is the Hagedorn behav-
ior [59], which means that the density of states d(E) grows exponentially at
large E, i.e. d(E) ~ e®/Tr_ This Hagedorn behavior implies that the confined
phase is ill-defined in the canonical ensemble above the Hagedorn temperature
Ty. This is because the canonical partition function diverges when we approach
to the Hagedorn temperature. Accordingly, it takes infinite amount of energy
to reach the Hagedorn temperature, and the Hagedorn temperature sets the
maximum temperature of the confined phase. These confined hadrons, which
are the gauge singlets, are dual to the closed strings in AdS, which serves as the
gravitons at low energy and exhibits the Hagedorn behavior at high energy [60].
The breakdown of the canonical ensemble at the Hagedorn temperature Ty im-
plies the existence of the phase transition below Tp. That is the deconfinement
transition we discussed above. The quarks and gluons, which are gauge non-
singlet, are liberated from the hadrons before the Hagedorn temperature and
the growth of the density of states is tamed down. In dual AdS, the strings are
deconfined to the string bits, which are dual to the gauge non-singlets such as
the quarks and gluons. Although we do not know how to describe the string
bits, at least in the classical level this implies the black hole formation since

deconfinement transition is dual to the Hawking-Page transition.
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When there is a phase transition, there should be the corresponding order
parameter. The conventional order parameter for the deconfinement transition
is the Polyakov loop P = tr [Texp <z 9%% Aﬂ, where Sé is the temporal circle
[61,62]. The Polyakov loop < P >= e~ ?F represents the free energy cost F of
the quark-anti-quark pair creation and annihilation along the temporal circle.
In the confined phase, this costs the infinite energy, so < P >= 0. In the
deconfined phase, the energy cost will be finite, so < P > (0. Note that while
the local operators are not charged under the center symmetry of the gauge
group, this loop operator is charged. So, one can understand < P > 0 as the

spontaneous symmetry breaking of the center symmetry [56,63].

As we are dealing with the large N gauge theory, there is another more useful
order parameter for the deconfinement transition. That is f = limy_,oo F/N?
[57]. In the confined phase, the hadrons cannot see N since they are gauge
singlets and thus, F ~ O(N?) and f = 0. In the deconfined phase, the quark-
gluon plasma have matrix degrees of freedom, so F' ~ O(N?) and f # 0. This is
consistent with the fact that the thermal graviton gas has free energy of order

O(GY,), while that of black holes are of order O(G') in the AdS gravity dual.

So far, we have discussed with the AdS;/CFT, example: 4d N’ = 4 SYM and
the gravity on AdSs x S°. However, most of the argument in this subsection can
be generalized to the other spacetime dimensions except for the N2 scaling in the
deconfined phase of CFT. It is known that the degrees of freedom of 3d SCFT
living on M2-branes scales like N3/2. For the 6d SCFT living on M5-branes, we
get N3 scaling and the 5d SCFTs exhibit N/2 scaling. These were studied from
the black brane geometry [64] or the sphere partition function |[65-67]. One goal
of this thesis is to explain such exotic behavior of SCFTs from counting states

in the deconfined phase.

]
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1.5 Overview of thesis

This thesis is devoted to holographically study black holes in AdS from the
CF'T dual. In this thesis, we will focus on the solvable sector: the supersymmet-
ric black holes with electric charges and angular momenta. One will concern
that the supersymmetric black holes exhibit no interesting thermodynamics as
its Hawking temperature is 0. However, in chapter [2| we shall see that the su-
persymmetric black holes exhibit interesting thermodynamics analogous to the

AdS-Schwarzschild black holes such as the Hawking-Page phase transition.

In the dual CFT side, we will mostly analyze the superconformal indices
[68-70], which count the excited states of the radially quantized SCFT on S9! x
R satisfying the BPS condition with (—1)¥. Like the Witten indices [71], this
quantity is invariant under the RG flow due to the supersymmetry, which makes
it exactly calculable by the supersymmetric localization [72]. However, one will
concern that, due to the (—1)¥ factor, the macroscopic degrees of freedom of
black holes is invisible in the index, and this was the standard lore [69,73].
We will see that this is not the case. Introducing the phase of the fugacity,
the index does capture deconfined degrees of freedom of SCFT, as we shall
see through chapters Furthermore, we will show that in chapter [§] this

phase precisely shows the boson-fermion oscillating behavior of the index.

The rest of the thesis is orgranized as follows. In chapter 2] we will study
the thermodynamics of the supersymmetric AdS black holes in terms of the
entropy functions. These entropy functions are simple but encode the apparently
complicated properties of the supersymmetric AdS black holes. Utilizing these
functions, we will see that they exhibit nontrivial thermodynamic behaviors

analogous to the AdS-Schwarzschild black holes.
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In chapter [3, we study the index of 4d N/ = 4 SYM on S® x R at large
angular momenta. We show that introducing the phases of the fugacities, the
index exhibits the deconfined N? degrees of freedom. This precisely captures

the Bekenstein-Hawking entropy of the BPS black holes in AdSs x S°.

In chapter 4 we study the indices of 5d SCFT on S* x R at large angular
momenta and large N. The large N free energy scales like N%/2, statistically
accounting for the entropy of the large supersymmetric AdSg black holes. In-

stanton solitons play subtle roles to realize these deconfined degrees of freedom

In chapter [5| we study the index on S? x R at large angular momenta and
large N, in gauge theories describing N M2-branes. Monopole condensation
confines most of the N2 degrees of freedom except N3/2 of them, even in the high
temperature deconfined phase. The resulting large N free energy statistically
accounts for the Bekenstein-Hawking entropy of large BPS black holes in AdSy x
ST

In chapter [6] we discuss the large angular momentum limit of 3d supersym-
metric partition functions, which allow the factorization into the hemisphere
indices: the generalized superconformal index, the refined topologically twisted
index and the squashed sphere partition function. Our result provides the mi-
croscopic derivation of the universal relations among entropic quantities of the
gravity theory in AdSy.

In chapter [7, we use a background field method on S? and S° and 't Hooft
anomalies to analyze the asymptotic free energies of the indices on S3 x S' and
S5 x S at large angular momenta. The resulting free energies exactly agree
with the entropy functions of the BPS black holes in AdSs x S® and AdS7 x S4

respectively, thus statistically accounting for their microstates.

In chapter [§, we study the index of 4d N' = 4 SYM numerically. We shall
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explicitly see the oscillating behavior of the index and how it is realized by the

complex chemical potential saddle points of the Legendre transformation.

In chapter[J] we will study how the deconfinement transition can be captured

from the index of 4d N’ =4 SYM introducing the phases of the fugacities.

This thesis is based on the author’s papers [74-80].
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Chapter 2

Entropy functions of
supersymmetric AdS black holes

In this chapter, we introduce the entropy functions of supersymmetric AdS black
holes with electric charges and angular momenta in four, five, six, and seven
spacetime dimensions. Extremizing these functions, one obtains the entropies

and the chemical potentials of known analytic black hole solutions.

These entropy functions can be regarded as the free energies of the super-
symmetric black holes. Analyzing them, we show that the supersymmetric AdS
black holes exhibit interesting thermodynamic properties analogous to the AdS-
Schwarzschild black holes, such as the Hawking-Page phase transition and the

small/large black hole branches.
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2.1 Introduction

Understanding black holes [55-57] is an important subject in AdS/CFT [36]. In
models with supersymmetry, one expects that quantitative analysis at strong
coupling would be easier in the BPS sectors of SCFTs. Supersymmetric AdS
black holes correspond to thermal ensembles of BPS states, carrying angular
momenta and also internal charges (electric charges in AdS). In AdS; with
d > 3, supersymmetric black holes have very complicated structures. First of
all, it is known that there are no BPS black holes with electric charges only,
at zero angular momenta. This is because in the dual field theory, the local
BPS operators will reduce to chiral rings which do not have enough numbers
of microstates to form black holes: e.g. see [69] for the case with d = 5. With
nonzero angular momenta, the solutions appear very involved. See, e.g. [81,82]
for d = 4, [8386] for d = 5, [87] for d = 6, and [88,89] for d = 7.

Recently, it was discovered that the apparently complicated properties of
supersymmetric AdS black holes can be encoded by extremely simple formulae,
so called the entropy functions: e.g. see [90] for the AdSs case, [91] for AdS7,
and [74] for the AdS, and AdSg cases. These simple functions provided very
useful inspirations for microscopic studies based on CFT duals. We will discuss
some of these works aiming at microscopic accounts for the BPS black holes in

the following chapters.

In the rest of this chapter, we will summarize the properties of known su-
persymmetric black holes in AdS4 5 6,7, and show that the entropy functions we
suggest encode these properties. These functions can be interpreted as the free
energies of the BPS black holes. Analyzing these free energies, we shall see that
the supersymmetric AdS black holes have small /large black hole branches, and

undergo the Hawking-Page phase transition in terms of the BPS chemical po-
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tentials. These properties are analogous to the AdS-Schwarzschild black holes,
which have non-zero Hawking temperature. Further note that these entropy
functions or the free energies can be obtained from the (regularized) Euclidean

on-shell actions of the supersymmetric AdS black holes [92,93].

2.2 AdS, black holes

2.2.1 Black hole solutions

We study the supersymmetric black holes in AdS; x S” of [82]. These are ob-
tained by taking supersymmetric limits of [94], also demanding the existence of

smooth horizons.

Black holes in AdS x S7 can carry six kinds of conserved quantities: mass
(or energy) E, angular momentum .J on S? of global AdSy, and four Cartan
charges Q; (I = 1,2,3,4) of SO(8) symmetry on S”. The last four conserved
quantities Q7 appear in 4d gravity as U(1)* electric charges. The convention
of [82] for Q7 is to take four angular momenta acting on the orthogonal 2-planes
of R8 related to S7. The most general black holes known to date have pairwise
equal electric charges, @)1 = @3, Q2 = Q4. With the last charge restrictions, the

four conserved quantities F, J, Q1, Q2 are labeled by four parameters m, a, d1, do

as (82
E= 2252 (cosh2d1 + cosh2dy) , J = %(cosh 261 + cosh 247)
Q= Qs = a=sinh20 . Q2= Qi = 7= sinh2d, | (2.2.1)
where =2 =1 — a292. The entropy is given by
2
g mrir +a%) 2.22)

G= ’

where r; = r4 +2msinh? §;. r = . is the location of the event horizon. G is the

-1
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4d Newton constant, which will be replaced by microscopic parameters later.
(In [82], all charges and entropy are computed omitting the overall é factor,
or at G = 1. E.g. the entropy is computed by dividing the horizon area by 4,
rather than S = %.) g is a parameter of the 4d gauged supergravity, and is

related to the radius £ of AdS, as g = 7.

The BPS limit of these black holes is given by
201+269 2
e =14+ —, (2.2.3)
ag

which corrects a typo of [82]. Only after this correction, the BPS relation

4
E=gJ+)» Qr=gJ+2Q1+2Qs (2.2.4)
I=1

is met. A further condition to have a regular horizon is A, = 0 having a double
root at r = r4. (See [82] for the definition of the function A,.) This happens
only after a further tuning of m. After the tuning, the horizon location r = r4

is given by
_ 2msinh 41 sinh 62

= 2.2.5
" cosh(dy +62) ( )
when m satisfies
h?(61 + 0
(mg)? = ___cosh’ (@1 +02) . (2.2.6)
e91192 sinh®(§1 + do) sinh (247 ) sinh (242 )
This again corrects the formula mg = < cosh(é+37) of |82].

e~ 2 sinh?(1402) sinh(281 ) sinh(252)
The typos found in this paragraph are also reported in [95].

Taking the BPS limit, the entropy of the supersymmetric black hole is given

by
_ 2w
- g2G(€261+262 _ 3) :

The two conditions (2.2.3), (2.2.6)) leave two independent parameters among
m,a,d1,02. Even after restricting E as (2.2.4) due to the BPS condition, the

S (2.2.7)
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remaining charges @Q1,Q2,J satisfy a relation. Together with S, we find the

following two relations after taking the BPS limit:
2 2
(Ql N Q2> S= T

G
g _ g 2Qg 20 (2.2.8)
SQ + gziGS — 47'('27172 =0.

Since these equations determine S twice, one will get a charge relation between
Q1,Q2,J from the compatibility of two equations. Explicitly, we insert the
solution of the first equation to the second equation, demanding two equations
have the same solution for S. Then, taking the unique positive solution assuming

Q1,Q2,J > 0, one obtains
g T J
EEICTE)
g g

(2.2.9)
1/2 2 201 2
J—(Q1+Q?) -1+ 1_,_1694(;2&& .
2\ g g 9 9
Thus, we have explicitly found the charge relation between Q1, Q2, J.
The black hole chemical potentials and the free energy F' satisfy
4
S=-T'FI)+T'E-T'Q]-T"> ®Qs, (2.2.10)
I=1

where T is the temperature, €2 is the angular velocity, and ®;’s are the electro-
static potentials. The chemical potentials are evaluated on the horizon. In the

BPS limit we are interested in,

A
S SN 2.2.11
4w (rire + a?) 0 ( )

because A, has a double root at the horizon. On the other hand, as one inserts

the value of the variables in the BPS limit, a = mg given by

2
(2.2.6)), and then the horizon location r — ry (2.2.5)), one finds
1+ g®rirs) _ mrysinh(247) _ mrysinh(242)

o=
179 + a2 119 + a2 riry + a2
(2.2.12)

CI)1 —1 (I)Q — 1.

) )
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Defining AE by E = AF 4 2Q1 + 2Q2 + gJ, one finds that

'S

S=-T'FI)+T'AE-T 1 (Q-g)J -T') (&, - 1)Q; . (2.2.13)
I=1

The BPS limit satisfies T'— 0, AE — 0. One first finds that

w= - lim (T7'Q—-9) . Ar= = lim (T~ (@ - 1)) (2.2.14)

are well defined in the BPS limit, by explicitly computing them (although the
expressions are very complicated). Since S is also finite in this limit, the ‘BPS
free energy’ Fps = limy_,o(T ' (F — AE)) should also be well defined. So one

finds
4

S = —Fpps +wJ + > _ ArQ; (2.2.15)
I=1

in the BPS limit. —Fppg is to be interpreted as log Z, where Z is the BPS

partition function of this system. We again stress that the BPS limit is taken

. . 2 (Coth(61 +52)71) COth2(51 +52)
by first inserting ag — e MY — \/ Sinhi(267) sinh(235) and then

2m sinh 1 sinh d2 . : : . vl )
T (0 This results in quite complicated expressions for w, A,.

After taking the BPS limit, one can show that they satisfy
1 4
A+Ar=-w = Y IA—w=0. (2.2.16)
g I=1 2
This is an alternative statement of the charge relation between @1, Q2, J.

2.2.2 Entropy function

We now present an entropy function, whose suitable Legendre transformation
in Aj,w yields the entropy S(Qr,J) and the BPS chemical potentials of the

supersymmetric black holes. Our entropy function S(Ar,w;Qr,J) is given by

3
42Nz /A1 A AsA
S(ArwiQr, ) = i V2N VEBaBsA

4
twl+Y AQr.  (2:217)
I=1

T ) 1
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We extremize S in Ay, w with the constraint
A+ D0+ A3+ Ay —w=2mi. (2.2.18)

A microscopic derivation of the entropy function from the CFT3 dual
was studied in [79] in the Cardy limit w — 0, and we will discuss it in chapter
Just like AdSs5, AdS7 black holes analyzed in 75, discussed in chapter
the constraint is given an interpretation in [79]. Here the number of
M2-branes N is related to the 4d Newton constant G as follows:

1 vol(S7)  2v2N¥2 22
PG ¢*Gun 3 g2 3
(2.2.19)

¢p is the 11d Planck scale, fg7 is the radius of S”, and ¢ is the AdS, radius

Gi1 = 16770p°, Lgr = 20 = 0p(2°n°N)V/® =

as defined in the previous subsection. We claim that the resulting extremal
value of Re(S) is the entropy of supersymmetric black holes. We shall check
this against the known solutions summarized in the previous subsection, at
Q1 = @3, Q2 = Q4 (which is equivalent to Ay = Az, Ay = Ay). Here, note that
the chemical potentials Ay, w are all complexified. With complex Ay, the square
root v/A1AA3Ay in (]wl) should be understood as to take the argument of
A1A2AzAy in the principal branch (—m, ) [79].

We show our claim by extremizing S, subject to the constraint (2.2.18]). We

introduce the Lagrange multiplier A and extremize

3 4 4
S = —z'A“/ENQ v AlAjA?’A“ twl+ Y AQr+A (Z A —w— 27ri> .

3 I=1 I=1
(2.2.20)
The extremum conditions are given by
42N?2 A DA,
A = 3 I=1,---,4 2.2.21
+ Q1 i— oA, ( s d), ( )
3
44/2N2
A—J = 1 \f2 ’ VAT A A3A, .
3w
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Inserting these charges into (2.2.20f), to eliminate the appearances of Q, .JJ, one
obtains

S = —2mi\ . (2.2.22)

Multiplying the four equations on the first line of (2.2.21]), one finds

4N 2N3
0 AN AZAy = ———(N—J)2.

A+ QDO+ Q)+ @s) A+ Q1) = 7o 5

(2.2.23)

So one obtains a very useful expression,

S S S S ON3 [/ S 2
(%i_Ql> <2m.—Q2> (m—Q:S) (271_2.—@4> =" (2m’+J> .

(2.2.24)
One needs care to treat the above expression. While the above is the quartic
equation in .S, only the half of them are the true solutions to satisfying
the constraint . The other halves are the extraneous solutions. Hence,
after solving the above equation, one should check whether the resulting solution

is a true one.

After extremizing the entropy function, one would generally obtain complex
solutions for S by solving (2.2.24). Along the spirit of [75], we shall generally
regard Re(S) as the entropy at the extremum. See [75,/79,80,(96] for the inter-
pretation of the imaginary part. We shall revisit this problem in chapter [§] in
a more concrete set-up of [80]. There, the imaginary part of the entropy will
be given a clear interpretation. (See also |96].) However, in this chapter, we are
primarily interested in comparing our results against the known black hole so-
lutions of section Therefore, we impose the charge relation of these black
holes and compare the thermodynamic quantities on that surface only. Some-
what remarkably, the charge relation of known black holes will turn out to be
Im(S) = 0 at the extremum of our entropy function. So from now on, we demand

the existence of a real solution for S in (2.2.24]), and compare the results with
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the known black holes. Demanding real S for real charges Q1, Q2, @3, Q4, J, the
complex equation (2.2.24) is separated into two real equations as follows:

N3 , 2N3J?

1 4 Z[<J Q1 2
167r4S - y= S7+ Q1Q20Q3Q4 132 9
3
_ZI leg I ZI<J<K QIQJQKS _ 2N JS . (2.2.25)
8773 2m 97

These equations determine S twice as functions of charges. From the compati-
bility of two equations, one will get a relation of @7, J. Explicitly, one may take
the unique positive solution of the second equation and insert it to the first

equation, to obtain the charge relation. One can check that this solution is a

true solution satisfying (2.2.21f) and (2.2.18)).

To compare with known black holes summarized in section [2.2.1] we set
@1 = Q3, Q2 = Q4. Then, taking the unique positive solution assuming

@Q1,Q2,J > 0, one obtains

g _ 27 [9Q1Q5(Q1 + Q) —2NJ
3 Q1+Q2 ’

0 = 2N3J24+2N3(Q1 + Q2)J —9Q1Q2(Q1 + @2)? . (2.2.26)

These can be rearranged as

W2rN:  J ™ J

S = = )
3 Qi+Q2 ¢*GQ1+ Qo

(2.2.27)

J = %(Ql + Q2) (—1 +4/1+ £Q1Q2> = %(Ql +Q2) (—1 +1+ 1694G2Q1Q2> ~

One can easily check that this solution indeed satisfies (2.2.21]) and ([2.2.18)), i.e.

it is not an extraneous solution. The above expressions are exactly the same as
(2.2.9), which we obtained from the supersymmetric black holes. Note that the
charges and chemical potentials of the entropy function ([2.2.20f) are related to
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those of supersymmetric black holes as

2
Sga =495, Jgu=J, —Qrpu =Qr ,
g (2.2.28)

wpn = Re(w), %ALBH = Re(A)).
Here, the subscripts ‘BH’ denote the black hole quantities, while the others are
the quantities used in the entropy function. The second line can be shown by
a rather straightforward but tedious calculus. One also finds that the relation
between the chemical potentials in the entropy function is equivalent
to that of the supersymmetric black holes .

To summarize, our entropy function ([2.2.20)) indeed reproduces the Bekenstein-

Hawking entropy of the supersymmetric AdSs black holes (2.2.7) and the cor-
responding charge/chemical potential relations (2.2.9), (2.2.16]), at Q1 = @3,
()2 = Q4 where solutions are known. Recently, 4 parameter BPS black hole solu-

tions with all different @;’s were discovered in [97], whose physics is successfully

described by our entropy function .

Our entropy function can be regarded as the free energy of the BPS
black holes in the grand canonical ensemble since its Legendre transformation
to the microcanonical ensemble gives the entropy. Accordingly, it can obtained
from the Euclidean on-shell action of the BPS black holes in AdS4 [93]. Analyz-
ing the free energy, we can investigate interesting thermodynamic properties of
the BPS black holes. As these properties are similar regardless of the spacetime
dimensions of the black holes, we simply omit to study them in this section. We
shall study thermodynamic properties of the supersymmetric AdSs black holes
in the next section, and most of them can be applied to the supersymmetric

AdS, black holes treated in this section.

One may think of generalizations of our results on AdS,x S7, to more general

4d N = 2 gauged supergravity models arising from string or M-theory. To see a

N 2] -2-t)) 8} 3
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natural possibility of generalization, note that the numerator ~ /A1 AsA3A,
of our entropy function (2.2.17)) is the homogeneous degree 2 prepotential of
the U(1)* supergravity [98]. The prepotential is the square root of a degree
4 polynomial. See, e.g. [99,/100] for such structures in other backgrounds. We
conjecture that, for BPS black holes in 4d N' = 2 gauged supergravity, an
entropy function like (2.2.17) can be constructed by replacing the numerator
by the prepotential of the theory. Recently, such an entropy function was found
in [97], and also microscopically studied in [77] from the indices of SCFT3 duals
in the Cardy limit w — 0.

2.3 AdS; black holes

In this section, we study the supersymmetric black holes in AdSs x S° of [82/86].
The entropy function of these black holes was introduced in [90]. Later, it was
extended in section 2.3 of [75] by checking the agreements of chemical potentials
as in the former section. This allows us to regard the real part of the entropy
function as the free energy of known BPS black holes. We will not cover the
detailed computations for the extremization of the entropy function in this
section. The procedures are essentially the same as the former section. For

details, refer to [90] and section 2.3 of |75].

Instead, we shall view the entropy function as the free energy of the BPS
black holes in the grand canonical ensemble, and focus on their thermodynamic
properties. Here, the grand canonical ensemble should be understood as the
restricted ensemble on the zero-temperature BPS sector. However, even in the
BPS sector, the BPS chemical potentials forming thermal ensemble exhibit

nontrivial thermodynamic structures such as the phase transition.

-1] 3
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The entropy function of supersymmetric AdSs black holes is given by [90]

NZAIAA; & 2
S(AnLw; Qi) = =224 Y QA+ Y Jiwi (2.3.1)
2 wiws =1 i—1
where
A1+ Ao+ Az —wyp —wo = 277, (232)

Extremizing this function, one obtains the entropies and the chemical potentials
of known analytic black hole solutions as in the former section. A microscopic
derivation of the entropy function from the CFT4 dual was studied
in [75] in the Cardy limit wi 2 — 0, and we will discuss it in chapter [3| Here
the number of D3-branes IV is related to the 5d Newton constant G as follows:
b

2G
where /£ is the AdSs radius. In addition, Q; and J; are U(1)3 C SO(6) electric

N? = (2.3.3)

charges and U(1)? ¢ SO(4) angular momenta, respectively. The Bekenstein-
Hawking entropy of the black hole is the extremal value of Re(S), at one of the
extremum solutions for Ay, w; [90]. The black hole chemical potentials are the
extremal values of Re(Ar), Re(w;) [75]. This entropy function was later obtained

from the Euclidean on-shell action of the BPS black holes in AdSs [92,93].

Now, for simplicity, let us consider the case with equal electric charges,
Q1 = Q2 = Q3 = Q, and equal angular momenta J; = Jo = J. Then, we also
set the corresponding chemical potentials to be equal, Ay = Ay = Az = A,
w1 = wo = w. The constraint on chemical potentials is 3A = 27i + 2w. Inserting

this, the entropy function is given by

9 (27Ti:—3|-2w>3
77 + 2w(J + Q) + 27TiQ . (2.3.4)

S:

We ignore the last constant term 27i(), as this will not contribute to Re(S). (In

0S8 _

2@ — 41 from charge quatization.) The saddle point equation % =0

fact, e

1l 7
32 & Ly



yields

J+Q=": ;

];]42 ((27ri +2w)3 3(27Ti + 2‘*’)2) ' (2.3.5)

w3 w
w will be complex, but since the left hand side of is real, it is helpful to
write w = wpr + iwy with real wy g. Then can be separated to real and
imaginary parts. Setting the imaginary part to zero, one obtains three solutions

for wgr at given wy:

0 for wy € (—o0,00)
W = o (2.3.6)
IEW]\/WLUII for wr € (_71',%)
If one inserts (2.3.6)) to (2.3.5)), the real part of this equation becomes
22L2(27T—w1)g7r+w1)2 if wrp=0
J+Q= ;2 o “gQ( o e, (2.3.7)
T—24W TTW .
_H—Iuﬁ 1 if wp = Fwy ;fS:’I’
Also, log Z = %2%23 becomes
Z-% (wtogf)?’ ifwp=0
log 7 = N2 ”3*53”‘“?*8“? [ mtwr N2 (m—8wy)(m+wr)? . 3m+3wr
:FTS w? 37r—9w1 - 257 w% 1f CUR = :*ZWI 7r—3w1
(2.3.8)

The solution with wr = 0 will yield imaginary log Z and therefore Re(S) =
0, making it an irrelevant solution. In the remaining two solution, the free
parameter w; is related to the unique charge combination J 4+ @ captured by

the index, which can be used to express log Z and S.

We further discuss which of the remaining solutions corresponds to black
holes. Since wg should be positive, one should choose the upper sign for 0 <
wy < §, and lower sign for —m < wy < 0. Also, since J+Q has to be positive, one

obtains wy < 0 from the second line of (2.3.7). Therefore the physical solution

3r+3wr
T—3wr

is wgp = —wry for —m < wy < 0. Various quantities labeled by w; are
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Figure 2.1: [left] Charge vs. temperature. There are small and large black hole
branches, with negative/positive specific heat, respectively. [right] Temperature
vs. free energy. The upper curve for is small black holes with positive free energy,
always losing against thermal AdS gravitons. The lower curve is for large black

holes, dominating for w < wﬁ‘%?wn with F' < 0.

summarized as

[3m 4+ 3wy .
w=-—wn——+iw;, —-T<wr<O0
71'—3(4}[

N2 (r — 2wr)?(7 + wr)
J+Q=——
54 w?

log 7 = N727r3 — 977&)5 — 8w} [ T+uwr B Z]\j (m — 8w1)(27r +wry)? (23.9)
18 w7 3™ — 9wy 54 w7

F _  Re(logZ2)
N2 — T T N2

charge Q];'QJ are shown in Fig. Let us call T = w™! the ‘temperature’ as this

The plots for the ‘temperature’ w™!, the ‘free energy’

plays this role, conjugate to @+ J. From the left figure, one finds that there are
two branches of black holes for T' > Ty = [71’ % — 1} - ~ 1.247!, similar to
the AdS-Schwarzschild black holes, which we discussed in the introduction. In
the small black hole branch, the specific heat (the slope) is negative. So we do

not consider this saddle point if we are in the grand canonical ensemble. The

large black hole branch is to compete with the thermal BPS graviton phase, at

N 2] -2-t)) 8} 3
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% ~ 0, and the Hawking-Page like first order phase transition will occur at

this point. From the graph on the right side of Fig.[2.1] one finds that the large

black hole dominates over thermal BPS gravitons for

Tl =w < whkiown = 414 — 66V/33 ~ 1.16 , (2.3.10)

=

which corresponds to Q) + J > %Nz ~ 0.486N2.

As said, these interesting thermodynamic properties are analogous to those
of the AdS-Schwarzschild black holes, which have non-zero Hawking temper-
ature. Namely, even if the BPS black holes have zero Hawking temperature,
they exhibit nontrivial thermodynamics in terms of the BPS chemical poten-
tials. Thus, studying the BPS black holes, we may further semi-quantitatively
study the physics of finite temperature Schwarzschild black holes. These ther-
modynamic structures are not unique properties of the BPS black holes in AdSs.
One can easily check that the BPS black holes in AdS, 56,7 all exhibit similar

properties although we will not explicitly show that in this chapter.

2.4 AdSg black holes

2.4.1 Black hole solutions

In this section, we study the supersymmetric AdSg black holes, and find an
entropy function which accounts for their physics. We construct an entropy
function for the solution of [87]. The solution may be regarded as describing
BPS states of any large N 5d SCF'T dual. For instance, as our favorite example,
results in this section may be understood in the context of massive type ITA
string theory on warped AdSg x S*/Zs product background. This system is dual
to 5d N =1 SCFT living on N D4-branes probing the O8-D8 system [47]. The

5d SCFT dual has a gauge theory description, with Sp(IN) gauge group, rank

1l 7
3 & Ly



2 antisymmetric hypermultiplet, and Ny < 7 fundamental hypermultiplets.
However, we expect that our general analysis can be embedded to AdSg black
holes in the backgrounds of [101-105].

The 6d N = (1,0) SU(2) gauged supergravity was obtained by a consistent
Kaluza-Klein truncation of massive type IIA supergravity on S%/Zy [106]. In
[87], the charged rotating AdSg black hole solution in this gauged supergravity
was obtained. It has four kinds of conserved quantities: mass E, two angular
momenta Ji, Jo, which describe the orthogonal 2-plane rotations on S* in global
AdSg, and one U(1) C SU(2) electric charge Q. They are given in terms of four

parameters m, a, b, § of the solution as [87]

2 1 1 =X =
EZZimH H+_+Sinh25<1+f+_b>] ) = zm~ sinh 24 ,
3GZ.,=p |20 T By 2 G=,5
Ji= 2TNE L s ink?s) o= 4 12, sink? )
= =y sin , = = sin ,
' 3GEE, ’ 27 3GE,=2 ¢
(2.4.1)
where 2, = 1 — a’¢? and 5 = 1 — b%2¢>. The entropy is given by
212 [(r2 + a?)(r2 + b%) + 2mr, sinh? 6
S = (3 +a%)(03% +5) ha I (2.4.2)

3GE,=Zy
The event horizon is located at » = ry. Here, G is the 6d Newton constant.
(In [87], the unit G = 1 is used.) g is a gauge coupling constant in 6d gravity,
setting the inverse-radius of AdSg.

This black hole solution admits the supersymmetric limit without naked

closed timelike curves. The BPS condition

E=gJi+gJo+Q (2.4.3)
is satisfied if
2
20
=1+-—" 2.4.4
¢ (a+0b)g ( )
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In addition, a smooth horizon exists only if

2 1 1 2
L (a+b)*(1+ag)(1 +bg)(2 + ag + by) ab (2.4.5)
2(1 + ag + bg) 1+ ag + bg

is satisfied. The horizon is located at

ab
=y/—. 2.4.
T+ Vl+ag+bg (2.4.6)

Taking the BPS limit, the entropy of the supersymmetric black hole is given by

o 2m2ab(a + b)
"~ 39G(1 —ag)(1 —bg)(1 +ag+bg)

(2.4.7)

The two conditions (2.4.4), (2.4.5)) leave two independent parameters among
m,a,b, 6. Even after restricting F as (2.4.3)) from the BPS condition, the re-
maining charges Jp, Js, @ carried by the supersymmetric black holes will satisfy

a charge relation. Equivalently, together with S, we find the following two re-

lations: , ) A
2 8
§8_ 2T g2 1902 (2 S+ — Ny =0,
390G 39 39*G (2.48)
Q .o 272 A% [ Q 3 o
—S JI+)S—— (=) =0
3g° 994G( 1+ J2) 3 \ 3¢

Since these equations determine S twice, one will get a charge relation between
J1, J2, Q from the compatibility of two equations. Explicitly, one may take the
unique positive solution of the second equation and insert it to the first equation,

to get the charge relation.

The black hole chemical potentials and the free energy F' satisfy
S=-T'F+T'E-T7'O0J —T'Qdo —T7'0Q , (2.4.9)

where T is the temperature, 21,{2s are the angular velocities, and ® is the

electrostatic potential. The temperature of the supersymmetric black hole is
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zero in the BPS smooth horizon limit,

2 (1+¢%r2)(2r2 +a2+0%) — (1—g*r2) (12 + a?)(r2 + b%)+8mg*r? sinh? 6 —4m?g? sinh? §

T pu—
Arr o [(r2 + a2)(r2 + b2) + 2mry sinh? ]
(2.4.10)
The other chemical potentials in the BPS limit are given by
0 — a(l + ¢*r2)(r? + b?) + 2mg®r . sinh?§ .
! (r2 +a2)(r2 + b2) + 2mr, sinh?§ 7
0 — (14 ¢?r2)(r2 + a?) + 2mg*ry sinh? § . (2.4.11)
2 (r2 + a?)(r2 + b2) + 2mr, sinh?§ 7 o
& — mry sinh 24§ 1.

(r2 + a?)(r2 + b2) 4 2mry sinh?§

Similar to the analysis in section the following limits exist,

IR TPAIS p 1 1. _ T 1 _
FBps—%lg%)(T (F-AFE)), w; Tl’lg%)(T Qi—9), A %156 (T7'(®-1)),

(2.4.12)
where AE = F — Q — gJ1 — gJo. Then, in the zero temperature BPS limit, one

obtains

S = —Fpps + w1 J1 + wads + AQ . (2.4.13)
Using the computed expressions for w;, A, one finds that
w1 + wy = 3gA . (2.4.14)

Again, this is the alternative statement of the charge relation of Jy, Jo, Q.

2.4.2 Entropy function

We now present an entropy function which encodes the physics of the BPS black

holes presented in the previous subsection. The entropy function is given by

T A3
- A (A Wy —2 ) 2.4.1
S 81g4Gw1WQ + AQ + wiJ1 +wodo + A w1 — wa T ( 5)
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where G is the 6d Newton constant as before. Having in mind the concrete

example of massive ITA supergravity on warped AdSg x S*/Zs background, one

would find g41 22‘[ \/éVLN [78]. In that case, a microscopic derivation of the
entropy function (2.4.15)) from the CFT5 dual was studied in [78] in the Cardy
limit wy2 — 0, and we will discuss it in chapter @ Here, we introduced the

Lagrange multiplier A to extremize S in A, wi,ws subject to the constraint
A — Wl — Wy = 21 . (2.4.16)

Differentiating with respect to the chemical potentials, one obtains

A2 T A3 T A3
)\ = R — )\—J = y— >\_J e y
+@ Z27g4G Wiwo ! 281946’ wiws 2 281946’ wiw3
(2.4.17)

Inserting these back to the original entropy function formula, one obtains
S = —2mil. (2.4.18)

Multiplying the last two equations of (2.4.17)), one obtains

2 A6 3 He
A= J)A = Jo) = — <81;T4G> i gﬂ A+Q)P .  (2.4.19)

Hence, one obtains

S S 3g4G S 3
(2+0) (st ) =225 (2 -0) - (2.4.20)

As in our section [2.2] and [75], we dismiss Im(S), focussing on Re(S) as our

entropy. However, again note that all known supersymmetric AdSg black holes
have a charge relation. This charge relation will coincide with the condition
Im(S) = 0 at the saddle point. So we demand real S for real charges Q, Jy, Jo.
Then, is separated into two real equations as follows:

272
33 — S? —1272Q%S + J1J2 0,
394G 3 4G
(2.4.21)
QS? + 95" G(Jl + J2)S — 7Q3 =0.
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These equations determine S twice as functions of charges. Therefore, from
the compatibility of two equations, one obtains a charge relation of @, Ji, Js.
These two equations of S, Q, J1, Jo , derived from the entropy function
, are exactly the same as those from the supersymmetric black holes
. Note that the charges and chemical potentials of the entropy function
are related to those of the black holes as

1
Su = S, Jigu = Ji, ?TQBH =Q,
g (2.4.22)

w;pH = Re(w;), 39 Apa = Re(A) .
The subscripts ‘BH’ denote the black hole quantities, while the others are the
quantities used in the entropy function. One can also realize that the relation
between the chemical potentials in the entropy function is equivalent
to that of the supersymmetric black holes .

Thus, our entropy function (2.4.15)) indeed reproduces the Bekenstein-Hawking

entropy of the supersymmetric AdSg black holes (2.4.7)), and also their chem-
ical potentials. Later, this entropy function was obtained from the Euclidean

on-shell action of the BPS black holes in AdSg [93].

While AdSg black hole solution known to date has only one electric charge
dual to R-charge of 5d SCFT dual, [78] obtained a more general form of the
entropy function, which describes AdSg black holes carrying various electric
charges, dual to R-charge, mesonic charge and baryonic charges, yet to be dis-
covered. For example, when the black hole has one more electric charge dual
to the mesonic charge, the numerator ~ A3 of our entropy function is
refined to [(A + ) (A — m)]%, where m = m + 2mi is the chemical potential

conjugate to the mesonic charge.
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2.5 AdS; black holes

The entropy function of the BPS black holes in AdS7 x S* of [88]89] is given
by [91]

N3 A2A2 2 >
S(Ar,wi; Qr,J;) = —— + Ar+ Jiw; 2.5.1
(Ar,wi; Qr, Ji) 51 w1tomn ;QI I ; ( )
where
A1+ ANy — w1 —wy — w3 =270 . (2.5.2)

Here, Q; and J; are U(1)? C SO(5) electric charges and U(1)3 C SO(6) angular
momenta. Extremizing this function, one obtains the entropies [91] and the
chemical potentials [75] of known analytic black hole solutions as in the former
sections. A derivation of the entropy function from the CFTg dual was
studied in [75] in the Cardy limit wy 23 — 0, and we will discuss it in chapter
[l Here the number of M5-branes N is related to the 7d Newton constant G as

follows:
g 3mi°

—_— 2.5.
where £ is the AdSy radius. This entropy function was later obtained from the

Euclidean on-shell action of the BPS black holes in AdS7 [93].

We will not cover the detailed computations for the extremization of the
entropy function. The procedures are essentially the same as the former sections.

For details, refer to [91] and section 4 of [75].
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Chapter 3

Large AdS; black holes from 4d
N =4 SYM

In this chapter, we study the index of A" = 4 Yang-Mills theory on S® x R at
large angular momenta. A generalized Cardy limit exhibits macroscopic entropy
at large N. Our result is derived using free QFT analysis but is valid even
in the strong coupling regime. The index sets a lower bound on the entropy.
It saturates the Bekenstein-Hawking entropy of known supersymmetric AdSs
black holes, thus accounting for their microstates. We further analyze the so-
called Macdonald index, exploring small black holes and possibly new black

holes reminiscent of hairy black holes.

3.1 Introduction and summary

It has been believed that the BPS black holes in AdS5; defied quantitative

understandings from indices of SCFTs on S3 xR [68,69]. There have been many
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speculations on why the index fails to capture black holes. A possible reason is
that bosonic/fermionic states undergo big cancelation. For instance, the index
cannot see the deconfinement phase transition at an order 1 temperature in
the unit of AdSs radius [69], which is the QFT dual of the Hawking-Page
transition of AdS black holes [55]. So the index cannot capture all the physics
of generic supersymmetric AdSs black holes. Direct studies of BPS operators at
weak coupling did not discover enough microstates for such black holes either

[107-110], at least so far.

In this chapter, we show that the index of 4d N = 4 Yang-Mills theory does
capture large supersymmetric AdSs black holes [82-86] in an asymptotic Cardy-
like limit. Our Cardy limit is more refined than [73], in that the imaginary
parts of chemical potentials are tuned to optimally obstruct boson/fermion
cancelations. The entropy of our asymptotic index is macroscopic, meaning that
it is proportional to N? when all the charges are at this order. This sets a lower
bound on the true microscopic entropy of BPS states, assuring the existence of
BPS black holes in AdSs x S°. In particular, when a charge relation is met, our
asymptotic free energy agrees with the Bekenstein-Hawking entropy of known
supersymmetric AdS; black holes [83,841[86], thereby microscopically counting
them. The asymptotic free energy of our index is the recently suggested entropy
function for supersymmetric AdSs black holes [90], in our large black hole limit.
At general values of charges, perhaps our findings may have implications to
possible supersymmetric hairy black holes in AdSs x S° [111,/112]. The last
suggestion is indirectly supported by studying the asymptotic free energy of the
so-called Macdonald index |113|. Here, depending on charge regime, the Cardy-
like free energy differs from the entropy function of [90], showing properties

reminiscent of hairy black holes in AdSs x S°.

1 3
43 M=



In the rest of this chapter, we will derive the asymptotic free energy of the
index of 4d A/ = 4 Yang-Mills theory, in a generalized Cardy-like limit. This free
energy counts known supersymmetric AdSs black holes. In addition, we study
similar asymptotic free energy of the index in the Macdonald limit, suggesting
rich structures such as small black holes and new saddle points reminiscent of

hairy black holes.

3.2 Large supersymmetric AdS; black holes

We study the the partition function of N = 4 Yang-Mills theory on S% x R,
focussing on the index limit [69]. The partition function counts states carrying
six charges. The first one is the energy E, made dimensionless by multiplying the
S3 radius. Three charges Q1, Q2, Q3 are for the Cartans of SO(6) R-symmetry,
defined to be the angular momenta on three orthogonal 2-planes on R®, being
:l:% for spinors. The final two are the angular momenta J1, J on S, being :l:%
for spinors. The BPS states of our interest saturate the bound E > Q1 + Q2 +
Q3 + J1 + Jo, but we shall impose the BPS limit at a later stage to see more

universal features. Consider the general partition function:
Z(B,Ar,w;) = Tr |e PEe™ Y1 81Qre= X "J"'Ji] . (3.2.1)

The complex chemical potentials Ay, w; satisfy five periodicity conditions Ay ~

A +4mi, w; ~ w; + 4mi. The 16 supercharges are Q?ll’JQQZ’QS. 16 possible values

of Qr, J; carried by Q are :I:%, where the product of all 5 + signs is +. The

Q1,Q2,Q3

conformal supercharges are S TiTs with five charges being +1

5, Where the

product of signs is —. Taking the trace without (—1)¥ the fermionic fields are
anti-periodic along temporal circle, twisted by Ay, w;. So the SUSY connecting

periodic bosons and anti-periodic fermions are generally broken. In a sense,

A5
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the supercharges are anti-periodic which has no zero modes on temporal S?.

However, if

2
ZSIAI—Z tiw; = 2mi (mod 4mi) , sr,t; = £1 satisfying sysesstite = +1,

=1 i=1
(3.2.2)
(3.2.1) becomes an index if one takes 8 — 0T. This is because
_A Q—w- JQs_Llsz_,s;; — e SAAQ—t-J Qﬁif?iize_A.Q_w.J Q51t,fz_,sty;e—A Q—w- J
(3.2.3)

so that translating Qsltfﬁsf’ along the trace will cause extra —1 sign, creating a

zero mode of this supercharge. So restricting Z to this hypersurface of Ay, w;,
it becomes an index which counts 15-BPS states annihilated by Q = Q%>

and § =S, %" 7. From the algebra

{0, S} =E — ZS[Q]*ZtJl, (3.2.4)

=1
one finds F¥ = s;Qr+t;J;. Therefore, havmg in mind that we shall eventually live

on one of the hyperspaces (3 , we study Z in the ‘formal high temperature
limit’ 3 — 0.

We shall analyze log Z in an asymptotic Cardy-like limit |w;| < 1. In our
limit, Ay is kept complex, O(1), and generic. Our computation is based on
the free QFT analysis, which is reliable because Z will be independent of the
coupling constant at the hyperspace .

The partition function (3.2.1)) of weakly-coupled N' = 4 Yang-Mills theory
is given by [57]

L ?{ H daa H (28111 7) exp [ Z Z (fB nB,nw;) + (=)L f(n8, nw;)

ablnl

+X3(nA1)(fB(nﬁ,nw,~) (=1)" £S5 (nB, nw;))
+x3(nAL) (fR (08, nwi)+(=1)""" fi(nB, nwi))) einaab}

15 A L) ¢

(3.2.5)



_ 3 A L3 A
where agp = g — ap, x3 = 71 €77, xg = 7, ¢ -7, and

e Pl —e2P) (et fe¥2 4 e few2) — 1 44

s = +1 (3.2.6)

(1 — e Btwr)(1 — e=Ftw2) (1 — e=F-w1)(1 — e=Fw2)

e_%'g(eA — e Re P (eWt 4 emwr) + e‘gﬂ(e_A —ePe P (e¥- 4 e7v)

(1 — e BHw)(1 — e Btw2) (1 — e Fw1)(1 — e Fw2)
e Bl —e2)
(1 — e Btwr)(1 — e=Ftw2) (1 — e=F—w1)(1 — e~ Fw2)
o e 2078 (e + e7t) — e P (e + 7))
Fm (1= e Bton)(1 — e Btwa) (1 — e B—w1)(1 — ¢ B—w2)
(C
)(

e~ 2B ((ev- 4 e™vm) — e P (e + e7wr))
(1 — e Btwr)(1 — e Btw2)(1 — e Fw1)(1 — e~ Bw2) ’

with A = %, w = % The superscripts v, ¢, a refers to N' = 1
vector, chiral, anti-chiral multiplets, respectively, with the chiral supercharges
Qu=Qu " (at (f1,12) = (+,+), (=, —))-

With the understanding that one of the BPS index conditions will
be taken, we study the B — 0T limit of this partition function. One might
worry that, before reaching 8 — 0, the factors 1 — e #+“1.2 in the denominators
will hit zeros or make the sum divergent if Re(w; 2) > 0 (for BPS states with
t1 = tg = +1). These are divergences caused by two non-BPS derivatives, losing
fugacity factors smaller than 1. In general partition function, going beyond this
point will probably have no meaning, analogous to going beyond infinite tem-
perature. However, having in mind imposing at t1 = to = 1, these poles
are canceled between bosons/fermions, so that one can reduce S below wy 2.
Anyway, later in this subsection, we shall present a complementary derivation
manifestly within the index. (However, we think the analysis presented now has
a conceptual advantage.) In this limit, one finds f5* — 0 due to the vanishing

of the equation of motion factor 1 —e~2% — 0 on the numerators. Also, one finds
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fp — 1 for the same reason. The fermionic letter partition functions reduce to

fv N (eA . e‘A)(ew+ LeWH —ewW- — e—w,) B eA o e—A
F (1—er)(1—e«2)(1—e“1)(1—e ) 2sinh% -2sinh ¥
a4 et (3.2.7)

2sinh % - 2sinh %

Z then becomes

nsyAg

doyg, ab s15983(—1)""te 2 o,
Z_)fH H(Qsm > xp ZZ L+ Z 2sinh *5% - 2 sinh %52 e
=1n= 1 S1,82,s3==+1
(3.2.8)

Note that the sum over n in the exponent is convergent with nonzero real parts
of wy 2. For instance, let us have in mind imposing > ; Ar = ), w; + 27 for an
index, with all chemical potentials having positive real part. For the terms with
given s1, s9, s3, the sum over n is separately convergent if (s1, s2, s3) # (+, +, +).

This is because, for large n, one finds

N Z (_1)n_1e—%(w1+w2)einaab€"S§A S Z le_% 2(1=s)Arginaar (39 9)

If some sy is —1, this sum is convergent at large n, due to an exponential
damping. On the other hand, the remaining terms in the exponent are the first
term ‘1’ and the term with (s1,s2,s3) = (+,+,+). The sum over each term
over n may be divergent, for instance at ag, = 0. For a # b, divergence at
aqp = 0 is fine because there is a suppression factor given by the Haar measure
(2 sinh %)2 For the Cartans, a = b, one has to study the possible convergence
of the sum of these two terms without resorting to the phase factor e®a or the

Haar measure. The sum of these two terms at large n behaves as

w1 two+27i

A+Ag+Ag
1 -1 n—1, ———=— ) 1 -1 n—1 )
§ - 1 + ( . ) - (& : 2 _ ezaab — § - 1 + ( )nw € : 2 __ elaab
n 2s1nhT1 . 281nh72 n 2s1nhT1 . 2s1nhT2
n n
1 )
~ > == (1-0(™))] e (3.2.10)

n
n
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So even at agp = 0, or a = b, the sum over n converges.

Having realized that the sum converges at ) ; A; = wi + wa + 2mi, we also
note here that it will be useful later to consider this sum slightly away from
this surface. Namely, we shall consider the approximation of the index in the
‘Cardy limit’ |w;| < 1. Imposing the relation ), A; = wy +wy + 2mi, Ap’s will
share the O(1) imaginary part 27, and furthermore will have small real parts
to match Re(w; + ws). However, for convenient intermediate manipulations, we
shall take Aj’s slightly away from this surface by temporarily demanding them
to be of order 1 and purely imaginary. This parameter deformation clearly does
not affect the convergence analysis of for (s;) # (+,+,4+). So as for
this part, the function is well defined even after slight deformations. However,
for , the convergence issue becomes tricky after the deformation. Just
working with the left hand side of with A1 + Ao + Ag being imaginary,
the second term containing Ay, w; will be convergent by itself, for any a, b, while
the first term ‘1’ will remain divergent at a = b. Therefore, in the analysis below,
we shall separate the Cartan parts at a = b and the off-diagonal parts at a # b.
The former has an exponent proportional to N, and it can be taken out of the
g integral. The latter part has N?— N terms, and only for these terms we shall
make a deformation to purely imaginary Ay’s. Ignoring the former contribution
to the free energy ~ O(N') will be justified if one obtains a free energy and
entropy of order N2 from the latter part only. So with this understanding, we
shall often ignore the exponents at a = b in the discussions below. Note also
that, for the off-diagonal parts, the term ‘1’ in the exponent completely cancels
the Haar measure part, so we can ignore this term together with the Haar

measure E

LProbably, using asymptotic properties of special functions in the integrand carefully, one
can do the approximation below without using our small deformations of A;. We just regard it
as a short-cut derivation, similar to familiar ‘4€’ prescriptions which often makes many calculus
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n2w| =t

Now we consider the Cardy limit |w;| < 1, keeping A; order 1 and purely
imaginary. The sum over n can be divided into two parts: the ‘dominant part’

till n < |w;|, and the ‘suppressed part’ from n 2 |w;|. As for the ‘dominant’

part, we can approximate 2 sinh "5 = nw;. The terms in the exponent of ({3.2.8)

from these n’s is given by

_1\n—1 s i
515283 Z (=1 (55> Fiaay ) (3.2.11)

wiw2 n<ng

where ng < |w| ™! is a ‘cut-off” which defines the ‘dominant part.” (Note again
that we considser the terms at a # b only, and we ignored the term 1 which
cancels the Haar measure.) The summation over n is now independent of the
cut-off value ng, as the summand is independent of w; and converges when

S A -
e 2 T'%b js a pure phase. So one obtains the dominant part given by

n—1
515283 Z (=1) (55 Hiaw) Moo 519283 1L <_e%+i0‘ab> (3.2.12)
wWiwz o n n? e

0

Before proceeding, we note that if one wishes, one can take the cut-off ng to be

. -1 .. 1 e"(%j”'o‘ab)
as big as [w|™". This is because at n ~ |w[™", both summands “—5_—= and

1 en(iQA-Haab)

7 sinh T2 2simh T2 are very small, much smaller than the final asserted result
o)

3.2.12) which is 7 =. So we proceed with assuming ng ~ lw|~! below. Now we

discuss the ‘suppressed’ part. It is easy to see that it is indeed suppressed at

|w;| < 1. This is because

s A -
_1)n—1en(55 Hiaan) 1 Z
8189283 ( : ) nwe : _ 5 Z ' _ . _ § |w[ (2sinhn
n  2sinh %1 . 2sinh 222 n - 2sinh 221 . 28inh %2 2
2 2] nzle? ? 2 nzfw|~!
(3.2.13)

which is indeed much smaller than ﬁ With these approximations, one then

more straightforward.
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obtains

N
1 dOéa 1 . sIAT io
Z ~ N1 y{(ll_l1 o exp —w1w2 g g s18983Li3 (—e 2 e b)

a#b s1,s2,53=*1

(3.2.14)

where we used the series definition Liz(z) = > 7 fL—Z when || < 1. The sum-

mations over a # b, (s1, s2, $3) can be arranged so that

N
1 dOéa 1 : ﬂ—|—io¢a : —ﬂ—iaa
2o P e | B (s (e o) cnay (R

a#b s1s253=+1

(3.2.15)
Here, we note an identity

333 7T2ZL‘

Lis(~€") — Lis(—¢ ") = =& — 7= , (3.2.16)

valid for —7 < Im(z) < 7, taking —e® = e®17™ —e=% = ¢~ (#+7) regpectively.
When (2p — 1)7 < Im(x) < (2p + 1)7 for p € Z, similar identity holds with
x — x — 27ip on the right hand side. This identity can be continued to include

either positive or negative real parts of x.

Now we treat the integrals over «,’s by a saddle point approximation at
|wiwa| < 1. Considering a pair of terms Lig(—e%"'mab) —}—Lig(—e%_mﬂb) at
given sy, one finds that «, derivative of these are all zero at a; = ag = --- =
ay. In fact, one can analytically prove the dominance of this U(N) saddle
point in our generalized Cardy limit. Moreover, it will reproduce the physics
of known large black holes. As a very basic check, one can confirm at N = 2
that a; = a9 is the global maximum of log Z, making its real part maximal
and imaginary part stationary, along the line of [114]. Since our free energy
will depend on various complex parameters Ay, w;, it will be convenient to test
it self-consistently at the extremal values of Ar,w; found in section 2.3, at

Q1 = Q2 = Q3, J1 = Jo. The dominance of such a saddle point was assumed in
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the Cardy limit of [73]. But it may fail to be dominant in certain models, e.g.
for other gauge groups than U(N), with fields in certain representations [114].
More conceptually, [114] discussed the relation between other possible saddle
points and the behaviors of the S3 partition function of 4d QFT reduced on
small S'. Depending on how bad the IR divergence of this partition function
is [73,/114], one may either expect more nontrivial saddle points to be dominant,
or otherwise zero modes like a4 to cause subleading N logw corrections. As we
shall discuss further in section 1 of chapter our reduced QFT on S is maximal
SYM, belonging to the latter class [73,/114]. The expected log correction at N'*
order should come from the Cartan terms that we have ignored. So mostly in this
chapter, we shall proceed with the fact that the above ‘maximally deconfining’
saddle point is dominant. (In only section 3, we discuss a different saddle point
in a non-Cardy scaling limit.)

Perhaps as a related issue, one may worry from the Haar measure factor
~ (2 sin %)2 that there is a net factor of 0 when all o, are the same,
making this saddle point suppressed. Indeed, in the usual large N saddle point
analysis (see e.g. [57]), the Haar measure provides relative repulsions between
pairs of ay’s, forbidding them to be on top of each other. However, in our Cardy
saddle point, log of Haar measure is sub-dominant O(w®). So a; = -+ = ay

should make sense only as the asymptotic Cardy saddle point at w < 1.

So assuming this saddle point, one finds

log Z ~ — N? 3 [Lig (—e%) ~ Lis (—e*”f’)} (3.2.17)

wiw
152 S18983=-+1

where we used N2 — N ~ N2. Now using the identity (3.2.16)), one obtains

10gZ~6w1 > [( 5 —27Tps> +7 <2—2pr> (3.2.18)

w
2 S18283=+1
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in the chamber defined by

3

A

(2ps—1) < TI'ZIHI (812 1) < (2ps+1)m , ps€Z , s15283 =+1. (3.2.19)
=1

Let us consider the ‘canonical chamber,” with all four p;, = 0. This chamber is
an octahedron in the space of Im(Ay). In this chamber, summing over 4 values
of s, one obtains

N2A1AsA5

logZ ~ ———M— . 2.2
og ot (3.2.20)

This is the final form of our free energy in the generalized Cardy-like limit.
Now we can continue Aj’s to have (small) real parts, to go back to one of the
surfaces . This formula is reliable at strong coupling on any hypersurface
. Note that in our notation, it appears that 73| restricted their interest
to wi = wy = w < 1, one of Ay’s 2mi + O(w), and the remaining two of
Ar’s at O(w). The partition function is trivial in this setting. However, as we
shall explain in section 2.3, complex A; ~ O(1) are required for all I = 1,2,3
to see the black hole saddle points, with minimally obstructed boson/fermion

cancelation by the phases of fugacities.

We discussed the asymptotic free energy in the octahedral ‘canonical cham-

ber,” defined by

=21 < Im(A1 + Ay + Ag) <2, 2n< Im(A1 — Ay — Ag) < 2(‘(3,221)

=2 <Im(—A; + A — A3) <27, 27 <Im(—A; —Ay+ A3z) <27 .

Here, note that we should seek for an expression on one of the surfaces .
For instance, let us consider Ay 4+ Ag + Az — w1 —wg = 27i. Since w2 are very
small in our scaling limit, our hypersurface is very close to the right boundary
of the first inequality, Im(A; + Ay + Ag) = 27w. Whether one is within the

octahedral chamber or not will depend on the small imaginary parts of w;’s. So
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one may wonder if the expression ([3.2.20)) can be used or not. This issue does
not matter, as (3.2.18)) is continuous across A + As + A3z = 2mi. To see this,

note that one uses

Lig(—¢®) — Lig(—e®) = — 7 ‘627”')3 A s (3.2.22)

outside the boundary, instead of (3.2.16|), where x = %. However, the
differences between the right hand sides of (3.2.22)) and (3.2.16) is 7i(z — mi)?,
being continuous and differentiable at x = mi. We shall therefore use (3.2.20))

at the surface (3.2.2)).

Note that we used large N limit very trivially so far, just to ignore the
Cartans. We basically relied on |w;| < 1 to approximate the calculations. This
is similar to the Cardy limit of 2d QFT’s describing black holes or strings. There,
central charge c is kept fixed while the chemical potential 7 conjugate to the left
Hamiltonian is taken small. However, the entropy in the Cardy limit is useful
to study black holes with large ¢ [11], sometimes beyond the Cardy regime. To
derive the true large N free energy in the non-Cardy regime, one should consider
the large N saddle point approximation of o, integrals, at finite A7, w;. As we
explained above, we expect a more complicated saddle point. Also, we are not
sure how the graviton phase will get converted to the black hole phase as we
change chemical potentials. In section 3, in the Macdonald limit, we find that
(3.2.20) may not be true in general. However, still there might be other regime
in which is true, which we shall partly probe in the Macdonald limit.
With this in mind, in section 2.3, we shall also explore the ‘thermodynamics
phenomenology’ of beyond Cardy limit, especially pointing out the

existence of a Hawking-Page transition of this free energy.

So far, we took the limit 5 — 0 first, having in mind imposing the index

condition ([3.2.2)) later. We think this is completely fine, but some people might
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think that this way of thinking is dangerous. Appreciating possible worries, we

start from the index given by [69] and rederive (3.2.20) at (3.2.2]). A direct

consideration of the index will also give interesting lessons beyond the Cardy

limit, in the Macdonald limit [113]. Let us insert the following shifted values to

the chemical potentials in ,
Ar—>Ar—f8, wi—w —0F, (3.2.23)
after which the partition function is given by
Z(8, Ar,w;) = Tr [G_B(E_ZI Q=% Ji>e—AIQ1—wl‘Ji} . (3.2.24)

Now imposing the condition A; + As + Ag — wy —we = 2mi, the measure in the
trace commutes with the supercharge Q7 *+, S, 7, at any value of 3. We take
8 — 00 to suppress the contributions from all non-BPS letters. Let us redefine
one of the chemical potentials, say Ay — 27i as the new A1, so that the index
condition becomes

A1+ Ao+ A3 =wp +wsy . (3.2.25)

Then, the shift by 2mi generates extra e 2™Q1 = (—1)F in the trace formula
(3.2.24), making it a manifest index. (This redefinition can be made with any

one of the five chemical potentials.) After this redefinition, and taking 8 — oo

in (3.2.5)), one obtains [69]

daa MAgh
N'/H H 2sn b) PE (1_(111[,531( 1—t3/y ) ;le a
(3.2.26)

where v;’s satisfying vivavs = 1 are the fugacities for SU(3) C SO(6) part of
R-symmetry. The parameters t,v;,y are related to our parameters in (3.2.5)
by (e™1,e7%2, e A1) = (t3y,t3 /y, t>vr), manifestly satisfying (3.2.25)). This is
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rewritten as

dag, =1 H§:12sinh”TAI al

< [T T (oo e (30 (1 TR ) 57 e
a<b n=1 a,b=
(3.2.27)

We again take |w;| < 1, keeping them complex with Re(w;i2) > 0. Had
we been taking this limit with real positive A;’s, which is the canonical range
for the chemical potentials, A;’s should also vanish at order O(w;2) due to
the relation . This will make the free energy to be small, ~ %s < 1,
making the index uninteresting. However, we keep finite imaginary parts of A;’s
while taking the limit w; 2 — 0. Physically, we take advantage of the possibility
of tuning the phases of bosonic/fermionic terms to maximally obstruct their
cancelations. The asymptotic limit of is A1+ Ag + Az =~ 0, so we take
all A;’s to be purely imaginary whose sum is zero, and continue back to complex
numbers later. The details of the approximation is the same as we presented
above. Following very similar procedures, again taking out the Cartan parts

and ignoring them, one obtains

do 1 s A | s s A -
“ exp |- Lig (¢"8 00 ) iy (o0 )
2o [ Mg 3 (0 s
(3.2.28)
Here, note that Lis(e?) — Lig(e™%) = (27”) Bs3(5%) for Re(z) > 0 and 0 <

Im(z) < 27, with By(z) = 23 — 322 + 1z. After some computations using this

formula similar to the above, one can obtain
2 3
[I(ar +2nming) (3.2.29)
=1
where 2mp; < —iA; < 27(pr+1) (pr € Z),and ny = 14+pa+p3, ne = 1+p3+

log Z ~

20)10)2
p1, n3 = 1+p1 +po, satisfying Z?:l ny = +1. (For detailed computations, refer

to |75].) This agrees with the previous analysis, supposing that A; + Ag + Ag
there and here are related by a shift of 27i (mod 47i).
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Now, let us consider a Legendre transformation of the free energy (3.2.20]) to
the microcanonical ensemble, as the macroscopic saddle point approximation of
the inverse Laplace transformation. One should extremize the following entropy

function

N2 A ALA
S(An,w; Qr, i) = 5 ——— ZQ1A1+ZJM- (3.2.30)

2 W12

Since this free energy is reliable only at one of the surfaces (3.2.2)), we make
variation with 4 independent variables, which couples to four combinations of
5 charges. This is our ignorance due to restricting considerations to the index.

We consider the surface
A1+ Aoy + Az —wy —wy = 277, (3231)

for BPS states saturating £ > Q1 + @2 + Q3 + J1 + J2. The above is noth-
ing but the entropy function of the BPS black holes in AdS; x S°, which we
considered in section [2.3| Thus, assuming the charge relation, the lower bound
of entropy given by our index saturates the black hole entropy. Namely, we
have microscopically accounted for the microstates of large BPS black holes in
AdSs x S°.

Even though we managed to derive the free energy only in our Cardy
limit, it is correct one describing the known black holes. However, beyond the
Cardy regime |w;| < 1, it is not guaranteed that there are no more black hole
saddle points, so that the true free energy of large N A/ = 4 Yang-Mills may be
more complicated. Indeed, in the next section, we find that the true free energy
may be more complicated than , by studying another special limit. Now
focussing on our Cardy limit, it demands that the four combinations of charges
Q7+ J1, Jo — J1 are much larger than N 2 This is all one can say intrinsically

from the index. However, we can discuss the implication of the Cardy limit on
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the known black hole solutions that we have just counted. Their charge relation

in the Cardy limit becomes

2
(Q1+ Q2 + Q3)(Q1Q2 + Q203 + Q3Q1) — Q1Q2Q3 ~ N7J1J2 . (3.2.32)

When all charges are equal, = @, and also when all angular momenta are equal
= J, it becomes (J/N?)? ~ 16(Q/N?)3. So our Cardy limit on known solutions
demands J/N? > Q/N? > 1.

As emphasized, is the free energy of known black hole saddle points.
Our microscopic analysis assures that this is the dominant one for large black
holes in the Cardy limit. But for not-so-large or small black holes, the situation
is unclear. In particular, numerical studies are made recently on hairy BPS
black holes [111], predicting more general black holes as one approaches the
zero temperature BPS limit. In particular, as far as we see from the reported
charge regimes in [111], evidences for new black holes are found for small angular
momenta, at around ﬁ < 0.05. If we take these results seriously, the true free
energy may deviate from for small black holes. Of course, there could be

a possibility that the intrinsic prediction from the index has its own ambiguity,

in that the physical charges ), J cannot be separately be specified.

Before end this section, let us make a basic consideration on what the ex-
tremization of does. Although the entropy function has real co-
efficients only, it should have complex solutions for Ay, w; due to the constraint
(3.2.31). During the extremization, we will be led to distribute 27i on the right
hand side suitably to the 5 chemical potentials. We assert that one should pay
attention to nontrivial distribution of this phase to the fugacities. Allowing non-
trivial imaginary parts of Ay, w; (mod 27i) satisfying , one can hope to
reduce unnecessary boson/fermion cancelations in the index. Namely, we insert

(—=1)¥ in the index because we want pairs of bosonic/fermionic states related

. 2] -2-t)) 8} 3
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by Q,S to cancel. If the index does not acquire contributions from such states,
it can be computed at any coupling constant. However, inserting —1 factor to
all fermions, it may cause unnecessary cancelations between bosonic/fermionic
states which are not superpartners of each other. So as long as it is allowed by
(3.2.31)), we attempt to insert extra phase factor e~ for each state, defined
by e Hm(ArQrtwili) = (—1)Fe~#, trying to maximally obstruct cancelations.
Converting to microscopic ensemble at definite charges, the ‘entropy’ is counted

with such phase factor inserted for each state:

eS(QI,Ji) ~ Ze—ich o Z e—ich _ Z e—ian + Z e—i((,DF-l—Tl') ) (3‘2.33)
B F B F

Morally, the real parts of chemical potentials are extremized to tune the system
to definite charges in the microscopic ensemble, while imaginary parts are tuned
to make (3.2.33)) maximally unobstructed. However, the two extremizations are
intertwined, so that both real and imaginary parts participate in both processes.
If one is lucky so that all phases ¢, pr+ at a saddle point are same (mod 27)
for all microstates, then Re(S) of the index would be the true BPS entropy. In
the unlucky case that one cannot make all these phases collinear, Re(S) would
be smaller than the entropy. In any case, Re(S) computed from our index sets
a lower bound on the true entropy, and there is no a priori way of knowing
when this bound saturates the true entropy. In particular, there seems to be
no a priori reason to care about Im(S), as the saturation may happen or not

irrespective of whether Im(.S) assumes a specific value.
3.3 The %-BPS Macdonald sector

In this section, we investigate the Cardy-like and non-Cardy-like free energy of

the index in the so-called Macdonald limit [113]. We first explain the Macdonald
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index in the context of N'= 4 Yang-Mills theory. Consider the index
Z =Tr[(—1)F e BrQrwidi] (3.3.1)

at A1+As+ A3z = wi4ws, which is obtained from ((3.2.24)) by shifting a chemical
potential by 2mi, and by sending 8 — oo. This is an index counting %—BPS
states preserving Q7T and ST . Eliminating wy = Ay + Az + A3 — wy, one

obtains

7 —Tr [(_1)F6*A1(Q1+J2)*A2(Q2+J2)*A3(Q3+J2)*w1(J1*J2)] (3.3.2)

in terms of four independent variables Ay, w; with positive real parts. Now we
take the limit A3 — oo, projecting to states satisfying Q3 + Jo = 0. One can
show that this projection demands the BPS states to be annihilated by an extra
pair of supercharges, in_, S;:+. A quick way to see this is that the new pair
demands the BPS energy relation £ = Q1+ Q2 — Q3+ J1 — Jo, which is satisfied
by imposing the original BPS bound E = Q1 + Q2 + @3 + J1 + J2 and the new
projection condition Q3+ Jo = 0. This is a limit which takes Ag, ws — 00, with

6—23 — 1. One also has to keep Az —wy (= w1 — A1 — Ay) finite. This way, one

obtains the Macdonald index for %-BPS states depending on A1, Ag, wy.

In the weakly interacting theory, 1—16—BPS operators are made of: 3 anti-chiral

scalars %! with (Qr) = (1,0,0), (0,1,0), (0,0,1); three chiralinos ¥/

+3.+3
111
with (Qr) = (—%,%,%), (%,—%,%), (%,%,—%); two gauginos \Ifi’g’;%, one self-

dual component of field strength fiq 41; two covariant derivatives D1 g, Do 1.

In the Macdonald limit, %—BPS operators are made of: two complex scalars

—1,0,0 =0,1,0 l+l+d o . .

P , ® Ii ;i ?; one derivative D1 . Despite preserving
272

enhanced SUSY, the full spectrum of this sector is not completely solved yet

; two fermions W

even at weak coupling, to the best of our knowledge. This is in contrast to other

%—BPS sectors of N/ = 4 Yang-Mills theory. There are two more inequivalent
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f—BPS subsectors of the above canonical 5-BPS sector, specified by either
J1+ Jo =0 or Q1 + Q2 = 0. The former is the well-known chiral ring sector,
completely solved in, e.g. [69]. The solution in the second sector can be found,
e.g. in [109]. It might be surprising that the last %—BPS sector given by the
Macdonald limit is still unsolved. As we shall see below, perhaps the reason is

that this sector is too rich to admit a simple exact solutionﬂ

We shall study a new Cardy-like limit and a non-Cardy-like limit of the
Macdonald index at |w;| < 1. Although we also call the former a Cardy limit,
it is different from the one in section 2 in that ws is sent large. In a way, the
previous one is a 4d Cardy limit, acquiring large contributions from two BPS

derivatives. Here, it is more like a 2d Cardy limit.

In the Macdonald limit As, ws — 00, Az/wy — 1, the index (3.2.27)) reduces

to
da, S, Qe emtn) L
N'/H a H 25111—) exp Z:ln<1— el_einwle >;16 ab
(3.3.3)

As before, we ignore the exponents for the Cartans, a = b, which will give O(N1)
contribution to the free energy. Then, for a # b, the term ‘1’ in the exponent will
cancel with the Haar measure. Taking w; < 1 with the remaining non-Abelian
terms, with Aj9 kept fixed, and again assuming the maximally deconfining
saddle point oy & --- &~ ay, one obtains

2

N
log Z ~ —— [Liz(1) — Lig(e™®1) — Liz(e™22) + Lip(e721742)]  (3.3.4)
1

with unconstrained Ay, Ag, wy. This is the Macdonald-Cardy limit of the index.

*However, [115] solved the Schur index problem which is an unreﬁned version of the
Macdonald index. The Schur limit of the general -BPS index is defined as Az = wo.
In the Macdonald index, to be studied shortly, one further unreﬁneb as A1 + Az = ws to get
the Schur index.

) 3 1] &=L —
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On the other hand, had or the result of [90] been exact for general
w12, one would have obtained a very different result from . Namely,
taking the Macdonald limit of assuming its validity at general wq o,
As, wy — +00 with Az/wy — 1, one would have obtained

N2A1A

3.3.5
2o (3.3.5)

log Z ~

without any constraint on Ay, Ag,wi. But keeping w; < 1 and A 7 finite, we
derive (3.3.4]) instead of (3.3.5)) (assuming maximally deconfining saddle points).
So the true phase structure of black holes may be richer than simply the known

%—BPS Macdonald sector.

black holes, or [90], even in the

However, before proceeding, we explain that there appears to be a scaling
limit of the Macdonald index which yields . To see this, let us scale
w1 < 1, but also take A1, Ay < 1 keeping A{}J—f? finite. In this case, we take
large N and disregard the integrand factors for the Cartans, a = b, assuming
that this O(N1) term will not affect our scaling free energy at O(N?). In fact, as
we shall see later, the last assumption will fail, with an interesting implication:

however, let us proceed for now to derive (3.3.5) first. With the summation in
the exponent restricted to a # b, (3.3.3) can be written as

doyg A A
2~ N / H > - Z ) eimea (3.3.6)
n=1 a#b
Since
Z Z einday Z Z eintap _ Z (21 (g —ap) — 1) (3.3.7)
n=1 a#b n#0 a<b a<b
one obtains
7~ /H 20 exp [ S Virlow —on)| Ve () = 2222 [2rs(0) — 1] |
a<b w1
(3.3.8)
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where §(0) is the delta function on a circle, with 8 ~ 6 + 2x. Therefore, by
keeping Re(AjJ—lAQ) > 0, one finds an effective potential with very small repulsive
core. Whether this is satisfied or not will be controversial at the end, for a reason
to be explained shortly. In any case, let us assume this and proceed. In this case,
if a,’s are not equal, the potential is at its flat minimum, with constant negative
energy. Since the repulsive core is scaling to zero size in our scaling limit, one can

take Veg = —A‘}JilAz for most values of «,. It makes real part of log Z maximal,

and imaginary part stationary. Therefore, one approximates

(N2 —N)A1Ay  N2A1A
2wy T 2w

log Z ~ (3.3.9)

In fact, as we will show below, the assumption that O(N') terms are ignorable
will fail, by the free energy (3.3.5) failing to have nontrivial large N saddle
point with log Z ~ N2. But we shall use this free energy as a probe of small

black holes.

We shall now discuss the thermodynamic aspects of two free energies (3.3.4))

and .

It is first illustrative to see what is the consequence of . As we em-
phasized in section 2.3, we can regard as describing known black holes,
even beyond the Cardy limit. Firstly, from the known black hole solutions, one
can show that the horizon area vanishes as one takes limit Q3+ Jo — 07. To see
this, we start from the charge relation of known black holes. Setting Jo = —Qs,

and rearranging, one obtains

0= (Ql + Q2+ A;) <Q1Q2 + Q2Q3 + Q3Q1 — ]\;(J1 + J2) + Q%) ;
(3.3.10)
where we suitably inserted back Q3 — —Js on the second factor. The first factor
is positive since Q1 + Q2 > 0 in the BPS sector. On the second factor, Q3 > 0

for the last term. The remaining terms in the second factor are simply square
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of the black hole entropy (%)2 So the solution becomes meaningless if this
is negative. So from the vanishing of (3.3.10) on the solutions without naked

singularities, one finds

S

2 2
Q3 —0, QiQ2+ Q2Q3+ Q3Q1 — N?(J1 +Jp) = (27T> —0. (3.3.11)

We conclude that the known black solutions become ‘small black holes’ in the
Macdonald limit. Here ‘small’ and ‘large’ is an entropic notion, different from
those used in the other part of this chapter: the above configuration has small
entropy at large charges. Collecting all the conditions, the charges carried by

these small black holes satisfy
N2
NQ2=—FJ1, @3=/=0, (3.3.12)
where the first relation is the vanishing condition of the horizon area when
Q3 =J2=0.
Similar conclusion can be obtained from , in a rather curious manner.
Note that

N2A A
) o

o1 (Q1 + J2)A1 + (Q2 + J2) Ao + (J1 — Jo)wr (3.3.13)

is homogeneous degree 1 in three independenet A1, Ao, w1. Therefore, the over-
all scaling mode of them plays the role of Lagrange multiplier, making the
extremized entropy to vanish. Since the remaining two ratios of the chemical
potentials determine three charges Q1+ Jo, Q2+ Jo, J1 — Jo, the charges satisfy
a relation. The relation is
N2

(Q1+ J2)(Q2+ J2) = T(Jl —Ja) . (3.3.14)

We find it as closest as one can get to from the index, without extra

input on the charges that the index cannot see (such as ‘Qs = Jo = 0’). However,
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we emphasize that both approaches predict small black holes S — 0 in the %-
BPS Macdonald limit. And coming back to the derivation of ignoring
O(N?') terms, we simply arrive at the conclusion that we may have to include
them to obtain the leading entropy. In any case, both known black hole solutions
and the QFT analysis in the non-Cardy scaling limit predicts small black holes.

As an additional comment, we cannot determine in this framework whether

Re (AilA2> is positive or not, because an overall scaling mode is a Lagrange

multiplier which cannot be determined. The sign of this quantity was important
above, when we want to regard as derived from the Macdonald index
in a scaling limit. Perhaps it is related to the degenerate nature of this saddle
point, which one may resolve clearly by going slightly beyond the Macdonald
limit and doing a more careful calculation. We leave a more detailed study to

the future.

Now we study the free energy (3.3.4). We study the associated entropy

function:

S = log Z + Q1401 + Q2As + Q3A3 + Jiwy + Jowo
N2

== [Liz (1) — Lip (e7®*) — Lip (e72?) + Lip (e7217%2)]  (3.3.15)

+(Q1+ J2)Ar + (Q2 + J2) A + (J1 — J2)wr -

Extremizing, one obtains

2

Q1+ J2 ZJZ— [— log (1 — e‘Al) + log (1 — 6—A1—A2)] :
1

2
Q2+ Jo :i\}i [— log (1 — e‘A2) + log (1 — e_Al—AQ)] ’
1

2
Jy—Jo=— % [Lig (1) — Lio (e_Al) — Lis (e_A2) + Liy (e—Al—Az)] )

1
(3.3.16)
From now on, we shall use some identities of Lis to make a semi-analytic study.

However, all solutions below are cross-checked numerically against (3.3.16]).
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Using the following identity (W. Schaeffer, 1846)

1—=x

Lis (2y)—Lis () —Lis (y)+Lis (1) = Lis <11_—xxy> —Liy (yl — :):y> +log(z) log <11_—xxy> ;
(3.3.17)

the extremized entropy becomes

N2 . 1—e ™ . 1—e A2
() ()

(3.3.18)
From this formula, one finds S < 0 if A1, A, w; are strictly real and positive.
This is because Liz(x) is an increasing function of = > 0, so that first plus third
terms are negative, and second plus fourth terms are also negative. Hence, in
order to get black holes with Re(S) > 0 at positive chemical potential, we
should turn on the imaginary part of chemical potentials. Physically, this again
implies that one should turn on phases of fugacities to obstruct boson/femrion

cancelation in the index to see black holes.

Now, for simplicity, we consider the case with equal charge: ()1 = ()2. Below,

we will frequently use (3.3.17)) at z = y and the Euler’s reflection formula:

Liy (¢2) — 2Liy (z) + Liz (1) = Liy <1ix> — Lis <1ix> —log(z)log (1 + z),

Lig(x) + Liz(1 — z) = Lia(1) — log(x) log(1 — x).

(3.3.19)

Then, setting A = Ay = As, one obtains

_ Qi +Jy QatJy 1 _A
R A (1+e72), (3.3.20)

. J1— s 1. . .

== = —w—% [ng (1) — 2Lis (e A) + Liy (e 2A)]

N [ (1) — 2Liy S (log (1 +e72))
w% +ef

) 3 1] &=L —
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‘ ‘ . (b) (Re[f(r)],Im[f(r)]): Arrows
10 -05 0.0 05 denote an increase of r. Yellow and
(a) Re[f(r)]: Green line denotes real parts of green lines are complex conjugate
both yellow and green lines in Fig. 3(b). to each other.

Figure 3.1: Various solutions f(r) of (3.3.21)

7 - % [Lip (1) — 2Liy (1 — e"%1)],
w1

s 2 1 1
2 9(gA+jwr) = = |Lig [ ——— ) —Lip [+
Nz~ 2eA ) = [ 2 <1+eA) 2 (1+e—A)}

— wi [Lig (1 — e_qwl) — Liy (e_qun)] _ 2W1(j _ q2) _p» log(l _ e_qwl)
1

= 2q [rf (r) —log (1 - e_f(r))} ,

s =

where r = q% -1, f (;—2 — 1) = qwi, and f(r) is defined implicitly by the

following equation:
f(r)?r = 2Liy(1 — e~ F M) — Liy(1). (3.3.21)

Note that Liy(1) = %2. We expect macroscopic physical solutions only when
g > 0 and 7 > 0. Indeed, with some efforts, one can check this fact explicitly
from the above formulae.

Due to the complexity of these equations, we numerically /graphically solve

this problem. For r = qi — 1 > 0, one finds that f(r) is a double-valued,
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(a) wy as a function of ¢ at j = 300 (b) A as a function of ¢ at j = 300

Figure 3.2: Blue/yellow line denotes the real/imaginary part of (a) wi, (b) A.
Red line denotes wy, A corresponding to f(r) described as the red line in Fig.
(a), which we dismiss.

while for —1 < r < 0, it is single-valued. See Fig. We find that only
when r > ro = 0.2003559478..., Im(f(r)) # 0. If r is smaller than this critical
value o, f(r) is strictly real. Then, one finds that wy, A are also real, from the
definition of f and the first equation of , since f = qw; > 0. Namely,
only when j > (1 + 79)¢?, Im(w),Im(A) # 0, and we may expect a solution
with macroscopic entropy and positive chemical potentials. One can see that
we have two distinct solutions f(r) = x(r) £ iy(r) when r > 7. In fact, one
can analytically show that if f(r) = z(r) + iy(r) is one solution of its defining
equation (3.3.21)) at certain r, then (f(r))* = z(r) — iy(r) becomes another
solution. Correspondingly, for given j, ¢, one will find the following form of two
distinct solutions for the chemical potentials and entropy: wy = wf +iw!, A =
AR +£4iAT and S = S% 4 iST. So the directly observable physical quantities,
given by the real parts wfz, AR SE are uniquely determined in terms of j,q.
As commented below , the region r < rg does not yield sensible saddle

points.

For r > rg, we study whether Re(A), Re(w;) are actually positive. In Fig.
w1, A are plotted with respect to ¢, at fixed j. Note that among two solutions
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(a) s(q) at 7 =300 (b) s(j) at ¢ =10

Figure 3.3: s(q,j) at particular slices: blue/yellow line denotes its
real /imaginary part.

of f(r), we chose the blue one and the yellow one in Fig. 3.1} From Fig. [3.2(b),
Re(A) decreases to zero as ¢ increase to a finite quantity, gmax(j). We find that
only for r > r. ~ 1.9488532..., i.e. j > (1 + re)g? ~ 2.9488532¢2, Re(A) > 0.
So at given angular momentum j, a sensible saddle point at Re(A) > 0 exists
only when the electric charge ¢ is smaller than a maximal value gnax(j) =
I~ 0.582336]'%. If r is smaller than this critical value r., Re(A) < 0.

1+rc
Note that in the BPS partition function, Re(A) — 07 is analogous to infinite

temperature limit, since its dual charge is positive. It is curious to find such
an ‘infinite temperature limit’ at finite gmax(j). See a related comment below.
In Fig. 3:3] s is plotted with respect to j,q. As before, we chose the blue and
yellow solution of f(r). One can see that Re(s) > 0 for arbitrary j,q > 0. Also,
when j > (1 + r.)¢?, the entropy S increases as the charges j, ¢ increases, as

expected.

One may want to find explicit forms of chemical potentials and entropy,
in terms of charges, at least in certain asymptotic regime. This amounts to
knowing the function f(r). An explicit asymptotic form of f(r) can be deduced

at very large r. When r > 1, f(r) — 0. Hence, we can approximate the equation
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(13.3.21)) as

. . . 1 T
(1P ~ 2Lia(0)) — Lia) ~ 25(0) ~ Lia(D) = f05) ~ + (1im [
(3.3.22)
So when 7 > 1, i.e. j > ¢2, one obtains the asymptotic formula of the chemical

potentials and the entropy in terms of j, ¢ as follows:

w12f5;)~q1r<1:l:i7r\/z> N;(qi’iﬁ\/z>,

A = —log(e®™ —1) = —log(ef ") —1) ~ —log f(r) ~ logr — log <1 + zw\/z>

1 1 2 1 1 2
N§logr—ilog%qilogiwilog(‘]%—?log%:ﬂogi,

J m? 2J

s = 2(qA + jwi) ~ qlog? + <2 - logg F 2logi> qim\/;.
(3.3.23)
One finds that the Cardy-like condition |w;| < 1 is met in this regime, since
Re(wy) ~ % < 1 and Im(wy) ~ j_% < 1. In fact, just as a side comment, the

above approximate entropy formula is very well-fitted even from r 2 r.. At,

~ 0.07.

S*Sapprox
S

r=Te,

We study the validity of our Cardy approximation wi < 1 for more general
q,j’s, at v > r.. This can be easily seen in Fig. [3.4], where we showed the lines
with constant |wi| on the ¢-j space. We can highly trust our approximation
when |wi| < 1. When r > r., one can see that if j 2 200, then |wi| < 0.1.
Therefore, we can say that when r > r. and j 2 200, our results are within the

Cardy regime.

In summary, only when j > (1 4 7.)¢%, or ¢ < Qmax(j) = lJZrc ~

0.582532]'%, all chemical potentials wy, A and the macroscopic entropy S have
positive chemical potentials. Otherwise, we find solutions with Re(A) < 0,

which we disregard.
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Figure 3.4: |w;| > 0.1 in the region encircled by the red dashed line.

So far, we presented a semi-analytical analysis, using some identities of Lis
functions to simplify the structures. However, to be absolutely sure, we plugged
in our numerical saddle points back to the original extremization conditions
(13.3.16]) without any analytic treatement, to numerically reconfirm the correct-
ness of our results, at least when Re(A) > 0 in which case Liz(e™?), Liz(e=24)

are very safely well defined.

We also note that, in the regime ¢ < gmax(j), we numerically analyzed the

Hessian
_ 9"Re(S(Q))
0Q;0Q);

for S at the saddle point, to study the local thermodynamic stability. At least

for ¢ < gmax(j), we find that both eigenvalues of H;; are positive, implying that
all susceptibility parameters are positive. Also, we find that log Z at the saddle
point is always positive in our Cardy regime with large charges, making it more

dominant than the gravitons.

Now we turn to discuss some aspects of our results. First of all, it is in-
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teresting to see where the small black holes satisfying Q% = NTQJl are lo-

cated. Since Jo = 0 on the known solutions, this charge condition translates
1

toq= % ~ 0.707j%. This is the charge region where our new predicted saddle
points cannot exist, since its ¢ is larger than gmax(j). So to conclude, our free
energy predicted new %—BPS black hole-like saddle points with macroscopic en-
tropy, when ¢ < gmax(j) = ﬁ ~ 0.5825323'%, in the Cardy regime. Since no
such black holes are known so far in this sector, including the small black hole

limits of [83,84,86], one may ask where to seek for such objects in the gravity
dual.

Here we note that there has been some endeavors to construct black holes
beyond those known in the literature, based on allowing condensations of mat-
ters outside the event horizon. These black holes are called hairy black holes. In
the context of global AdSsx S°, [116,117] made studies of hairy black holes with
one electric charge @ = Q1 = Q2 = Q3 at J; = Jo = 0. At zero angular mo-
mentum, one finds that the hairy black hole horizon disappears as one reduces
the energy to its BPS bound E Y\, 3Q), with fixed ). The end point is either a
smooth AdS soliton when @ is smaller than a critical value @, or a singular
horizonless solution if @@ > Q.. Studying the temperature as F \, 3Q, the sub-
critical solutions have zero temperature T' = 0, while the supercritical solutions
have T' = co. As for hairy black holes with nonzero angular momenta, [111,/112]
studied those at nonzero QQ = Q1 = Q2 = Q3 and J = J; = Js. In this case, as
FE is reduced to its BPS bound M Y\, 3Q + 2J at fixed @Q, J, one still finds black
holes with nonzero entropy. Again here, one finds a signal of two different types
of endpoints. In the subcritical region @ < Qmax(J), the temperature of the
limiting hairy black hole goes to 0. In the supercritical region, @ > Qmax(J),
the temperature blows up to co. The critical charge depends on J. It seems

that due to numerical limitations, the precise value of Qmax(J) could not be

, ]
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determined [111].

Even if the hairy black holes explained above are in a different charge sector,
we find some qualitative similarities with the new saddle points that we find
in the Macdonald-Cardy limit. This is because our new saddle points also exist
only in a subcritical region ¢ < gmax(j) =~ 0.582532j%. The reason why this
gets spoiled at ¢ = gmax(j) is because the chemical potential Re(A) approaches
zero, which is analogous to the high temperature limit in the BPS sector. It

will be interesting to see if this more than just an analogy.

3.4 Discussions and future directions

We first discuss possible subtleties of our results. We also try to suggest con-
servative interpretations of our results, in case some readers might be worrying

about subtleties.

e Throughout this chapter, we mostly took (with one exception) Cardy-
like limits which suppress the fluctuations relying on large J. However,
general black holes are semi-classical saddle points at large IV, rather than
large charges. So we are assuming an interpolation, which connects large
N saddle points given by black holes and large J saddle points of our
QFT. This often turned out to provide the correct quantitative results,
starting from the seminal work [11]. The fact that our Cardy free energy
successfully captures known black holes of [83-86] makes us to hope that

a similar situation is happening here.

e In our Cardy limit, we took the U(N) gauge holonomies «, to be at the
maximally deconfining point. One cannot imagine such saddle points at
finite charges (or finite w), because the Haar measure repulsion forbids

a,’s to be on top of another [57,/69]. We expect our maximally deconfining
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saddle point to actually mean that the distances of a’s are suppressed
by small w. It is easy to check that this is the local saddle point in the
Cardy limit, but one may ask if this is the global minimum of free energy.
There are examples of 4d NV = 1 QFTs in which this fails to be true
[114]. Considering the empirical relation between more nontrivial saddle
points and the behaviors of Z[S3] [114], it seems that our model should be
safe of this issue. Indeed, one can analytically prove that the maximally

deconfining saddle point is the global minimum in our model.

The fact that BPS black holes exist only with a charge relation might be
somewhat puzzling from the QFT dual side, especially after we claimed
that we have counted them (at large charges). We have little to comment
on it, especially in our Cardy regime in which other solutions seem to be
unknown so far [111[112]. Especially, intertwined with the ignorance of the
index on one of the 5 charges, the possibility of more general black holes
seems not easy to address within our results. However, technically from
the gravity side, such charge relations of BPS black holes are ubiquitous.
Familiar examples are single-centered 4d black holes |118] at zero angular
momentum, or 5d BMPV black holes [13] with self-dual angular momenta.
By now we know much richer families of BPS black solutions, such as
4d multi-centered black holes [119] or 5d black rings [20-22,(120}|121],
which violate such charge relations. In AdS, one can naturally seek for
hairy black holes. The BPS version of such black holes were recently
reported [111,112], even though it appears not in our large rotation regime

(at least from the data presented there).

We studied Cardy-like and non-Cardy-like scaling limits of the %—BPS

Macdonald index. In the latter, we have identified the small black hole

1 3
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limit of the known BPS solutions (third reference of [83,/84,/86]). In the
former, our Cardy free energy is quite nontrivial, and exhibits rich saddle
points. These saddle points exhibit properties very reminiscent of hairy
black holes [111,/116]. If one can again trust the smooth interpolation
between our Cardy saddle point and the large N saddle point, we can
claim that we have predicted new (hairy) black holes in the Macdonald
sector. Since no solutions are actually constructed yet, we are much less
confident about the issues raised above in this section. Perhaps actual

constructions of such gravity solutions can clear the uncertainty.

We think there are many interesting future directions to pursue. We finish

this chapter by briefly mentioning some of them.

e Having seen macroscopic entropies from the index, one should expect
an explicit construction of such operators at weak-coupling. At 1-loop
level, the BPS states are mapped to cohomologies of the supercharge
Q. 169,107-110]. Considering the free QFT analysis of section 2.1,
and comments above it, fermionic fields may be responsible for our asymp-
totic free energy. [107,|108|] considered a class of such operators called
‘Fermi liquid operators.” Unfortunately, the operators discussed there were
shown to be (weakly) renormalized, even at weak coupling. As already
mentioned in [108] as a possible scenario, dressing these operators with
other fermion fields might yield large number of new BPS states. Perhaps
a clever ‘ansatz’ for such operators using all four fermions should be dis-
covered, generalizing [107]. [110] performed a systematic analysis of this
cohomology at N = 2,3, up to certain energy order, without using an
ansatz. However, it is not completely clear to us whether the energy or-

ders covered in [110] are definitely well above N2. For instance, our Cardy
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limit demands w to be small. Its conjugate J is given by J ~ % So even
if one generously accepts w ~ 0.1 to be small, the associated charge will

be J ~ 103, definitely out of reach in [110].

On the other hand, the roles of fermions seen around might be an
‘emergent’ one. This is because, if we study the Cardy limit honestly from
the index, (|3.2.28)) is obtained by both bosons and fermions. Here, note
that there is a known toy model in which a fermion picture emerges. This
is the half-BPS sector of 4d N' = 4 Yang-Mills theory, exhibiting a Fermi
droplet picture [122}/123]. It may be interesting to clarify the true nature
of the ‘fermion picture’ we think we see around .

As also commented at various places earlier, it will be interesting to see
what one obtains by going beyond the Cardy limit, seeking for large IV
saddle points of IV integral variables, again carefully tuning the imaginary
parts of the chemical potentials. The analysis of [69] already seems to set
some limitation of this approach, but it would be interesting (if possible)
to see how their results at order 1 chemical potentials get connected to
our results in the Cardy-like limit. However, at least at the moment, this

appears to be a very challenging calculus.

In the %—BPS Macdonald sector, our studies ‘predict’ that there should be
black holes, in case one believes that our Cardy saddle points will trans-
mute to large N saddle points. Known black holes reduce to small black
holes with vanishing entropy in this limit. Considering some qualitative
aspects similar to the recently explored hairy black holes, we speculate
that they might be hairy %—BPS black holes. Since one is now equipped
with 4 real Killing spinors, perhaps combining the general SUSY analysis

with a clever ansatz may shed lights on such solutions.
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Chapter 4

Large AdSy black holes from CFT’;

In this chapter, we study supersymmetric AdSg black holes at large angular
momenta, from the index of 5d SCFTs on S* x R in the large N and Cardy
limit. Our examples are the strong coupling limits of 5d gauge theories on
the D4-D8-08 system. The large N free energy scales like N%/2, statistically
accounting for the entropy of large black holes in AdSg. Instanton solitons play

subtle roles to realize these deconfined degrees of freedom.
4.1 Introduction

Superconformal field theories (SCFTs) in spacetime dimensions d > 4 were
discovered indirectly from string theory. First examples are [45] in 6d, and [47]
in 5d. These QFTs defy microscopic descriptions from traditional Lagrangian
methods so far. One interesting aspect is that they have much larger numbers
of degrees of freedom than conventional gauge theories, at given gauge group

‘rank.” For instance, if the QFTs are engineered by N (> 1) branes, the 6d/5d
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QFTs of [45] and [47,48] exhibit N3 and N°/2 degrees of freedom respectively.

This is much larger than N? for gauge theories on D-branes at weak coupling.

Recently, formulae for certain supersymmetric partition functions for these
SCFTs have been suggested and explored. We shall be interested in the index
of 5d SCFTs on S* x R [70]. Its matrix integral formula has been obtained in
[124]. This formula has been providing new channels to quantitatively study 5d
SCFTs. In this chapter, we shall add one more intriguing finding, by exploring
novel deconfinements of large N 5d SCFTs and the holographically dual black
holes in AdSg spacetime. We study 5d SCF'Ts engineered on D4-D8-0O8 systems
[47./48]. In this setting, the large N deconfined degrees of freedom would be
visible in the high temperature phase. The gravity dual of deconfinement is
the nucleation of black holes after the Hawking-Page phase transition [55}56].
Our deconfined index successfully counts the microstates of the supersymmetric

AdSg black holes of [87], in the framework of [74].

We study a Cardy limit of the 5d SCFT index in this chapter. We shall
take large N limit, and also take the chemical potentials wq 2 conjugate to the
two rotations on S* to be small. The last limit partly defines our Cardy limit.
See section 2 for the precise definition. Apparently, the large N calculation
in the Cardy limit turns out to be rather simple. The index on S* x 8! is

" C G holonomies o, on S which are all

given by an integral over the U(1)
periodic variables on a circle, where G is the 5d gauge group of rank r [124].
The integrand consists of a pair of instanton partition functions |125], or more
abstractly the Omega-deformed partition functions of 5d SCFTs in the Coulomb
phase. We seek for the large N saddle points of «, also taking the Cardy

limit |w; 2| < 1. To get the relevant saddle point, it turns out that one has to

complexify «, to variables living on cylinders, and spread them over a large
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interval of length ~ IV 3. This is similar to the partition functions of 5d SCFTs
on S° [67], and especially to the topologically twisted indices on suitable spatial
manifolds [126,|127] which counted certain black holes in AdSe. It seems that
the physical implications of such novel large N saddle points were not fully
discussed in the literature. We find this especially novel, having in mind the
deconfinement phase transition to N 3 degrees of freedom. The novelty partly
has to do with the rather mysterious instanton solitons in higher dimensional
gauge theories, concerning their noncompact internal zero modes and infinite

towers of bound states. We shall comment on these aspects briefly.

The rest of this chapter is organized as follows. In section 2, we study the
large N Cardy limit of the index for 5d gauge theories having AdSg gravity
duals in massive IIA string theory. These Cardy free energies precisely account
for the large BPS black holes in AdSg, using the recently discovered entropy
functions [74] for these black holes. We also comment on subtle aspects of our
free energy, especially concerning the physics of instantons. In section 3, we

conclude and discuss some open questions.
4.2 Cardy limit of large N 5d SCFTs and black holes

We first briefly review the large N 5d SCFT models that we shall discuss in
sections 2.1 and 2.2. 5d N/ = 1 SCFTs of our interest live on N D4-branes
probing an O8-plane and Ny < 7 D8-branes on C?/Z,, [47,48,50,51]. Note that
Zy, orbifold is transverse to D4 branes, while O8, D8’s are parallel to them. So
in the probe limit, the net spacetime is given by R*! x Rt x C2%/Z,, where
RT =R/Zy is the direction transverse to the O8-plane.

When n = 1, the low energy dynamics on D4-branes is described by an

Sp(N) gauge theory with one rank 2 antisymmetric hypermultiplet and Ny <7
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orbifold || gauge group matter flavor symmetries

Zy;, Sp(N)x SU(2N)*1x Sp(N) | 32F_ (2N}, 2N;,1) Uy x U5t xU(1)5+
73, SU(2N)k A+ NG 2N ) F AL | U xU ) xU 1)k
Zows1 || Sp(N) x SU(2N)¥ SF@NL2N ) + A | UM x Uk xU(1)kH

Table 4.1: Properties of the quiver gauge theories. A; denotes rank 2 anti-
symmetric hypermultiplet of the ¢’th node, and fundamental matters are not
shown.

fundamental hypermultiplets [47.,|48]. When n = 2, there is a Zy orbifold. If it
is the orbifold without vector structure, the worldvolume theory on D4-branes
is SU(2N) gauge theory with two rank 2 antisymmetric hypermultiplets and
Ny < 7 fundamental hypermultiplets [50,51]. The other orbifold theories for n >
2 are quiver gauge theories [50,/51]. Gauge groups, matter contents, and flavor
symmetries of these quivers are shown in Table[£.1] In all these models, the ¢’th

)

gauge node of the quiver may have N}q fundamental matters, which should
satisfy >, N J(cq) = Ny. In the table, Z3, denotes the orbifold without/with
vector structure, respectively. They are associated with two choices for the
orientifold projection in k-th twisted sector. Z;k projects onto even states, i.e.

this is the ‘ordinary’ orbifold [50].

Bifundamental and antisymmetric fields in these quiver gauge theories can
form various gauge invariant operators: a meson, ny di-baryons of the bi-
fundamental fields, and n4 Pfaffian baryons of antisymmetric fields. Numbers
of the baryon operators (nr,m4) in each quiver gauge theories are given by
(k,0), (k —1,2), (k, 1), respectively. These baryon operators are not all inde-
pendent since a product of them is related to the meson operator. The mesonic
U(1)p symmetry rotates all the antisymmetric and bifundamental fields of the
quiver, with charge 1 and 2, respectively. We shall introduce a mesonic charge

@, na+ng baryonic charges @, , @B, and their conjugate chemical potentials

1 3
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m,ba, br. Then we impose a constraint

naA nr
D ba+2> br=0, (4.2.1)
A=1 I=1

which reduces the number of independent baryonic charges by one. See [50] for

more details.

The strong coupling limits of these gauge theories are 5d SCFTs. In the large
N limit, these SCFTs are dual to the massive ITA string theory in the warped
AdSg x (S*/73)/Z,, product background [49-51]. The SU(2)g R-symmetry
of the SCFT corresponds to the SU(2) part of SU(2) x U(1) isometry of
(S%/Z3)/Zy. The overall U(1)y; mesonic symmetry, acting on all the antisym-
metric and bifundamental matters, corresponds to the remaining U(1) part of
SU(2) x U(1) isometry. When n = 1, 2, the U(1); mesonic symmetry is en-
hanced to SU(2)y;. This corresponds to the fact that the isometry of S*/Zs or
(84)7) | Zs is SU(2) x SU(2).

The gravity duals of other global symmetries — U (1) +ra=1 haryonic sym-
metries, U(1); instanton symmetries for every gauge nodes, and flavor symme-
tries acting on the fundamental matters — are also well understood [47,481/50,51].
In particular, when n = 1, U(1); x SO(2Ny) is enhanced to En, 1 [47,48,/128
132] . In the dual gravity, the states charged under EN,+1 are localized at D8~
08, the boundary of S*/Zs [49,50]. The SO(2Ny) part comes from perturbative
open strings on O8-D8. The U(1); charge at n = 1 is carried by DO-branes in
the gravity dual [49,/50]. Since the inverse-dilaton field diverges at the boundary
of S%/Zs (i.e. at the 8-brane), the DO-branes are attracted to the 8-branes and

nonperturbatively render En, 11 enhancement.
When n > 2, there can be more U(1) instanton symmetries if there are more
than one gauge nodes, and there are U(1) g baryonic symmetries as well [50,51].

The bulk duals of these symmetries are given as follows [50]. These symmetries
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basically come from the Z, orbifold. Z, acts freely on the S base of S*/Zs,
yielding the Lens space S3/Z,. The full compact internal space (S*/Zs)/Zy
has an A,_; singularity at the pole. There are n — 1 vanishing 2-cycles at the
pole, and also n — 1 dual finite 2-cycles since the internal space is compact.
These cycles should be identified pairwise by the O8-orientifold. When n is
odd, the O8 action leaves ”T_l vanishing 2-cycles and "T_l finite 2-cycles. When
n is even, we should be careful about the F-th unpaired 2-cycles. If the Z,
orbifold is without vector structure, 5-th vanishing 2-cycle is projected out,
while §-th finite 2-cycle is mapped to itself. So there are "T_Q vanishing 2-cycles
and 5 finite 2-cycles after the O8 projection. On the contrary, when Z,, is the
orbifold with vector structure, 5-th vanishing 2-cycle is mapped to itself, while
5-th finite cycle is projected out, leaving 5 vanishing 2-cycles and ”T_Q finite
2-cycles after O8-projection. Baryons are described by D2-branes wrapping the
finite 2-cycles. Instantons are dual to DO-brane and D2-branes wrapping the

vanishing 2-cycles, i.e. fractional D0-branes. These explain all the symmetries

listed in Table [4.]
4.2.1 Sp(N) theories

In this subsection, we study the large N index for the 5d N/ = 1 gauge theories
with Sp(IV) gauge group, one rank 2 antisymmetric hypermultiplet, and Ny < 7
fundamental hypermultiplets [124]. We shall consider the radially quantized
theory on S* x R. We choose a supercharge  to define the index, so that
we count %-BPS states annihilated by the supercharge ) and its conjugate
conformal supercharge S = Q. We will denote by ji, j the Cartan generators
of SU(2)1 x SU(2)2 C Sp(2) = SO(5) rotation symmetry, and by R the Cartan
generator of SU(2)r R-symmetry. We introduce the fugacities e™?, z, y for
{Q, S}, j1 + R, j2 in F(4) superconformal symmetry, which commute with the
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supercharges @ and S. Since the antisymmetric representation of Sp(IN) group
is real, the antisymmetric hypermultiplet splits into two half-hypermultiplets,
which transform as a doublet under Sp(1)y = SU(2)s global symmetry. We
call its Cartan generator h. This system also has SO(2Ny) flavor symmetry
rotating the fundamental quarks. We call their Cartan generators H;, with
I =1,---,Ny. Finally, there is a U(1); topological symmetry related to the
current j, ~ x5tr(F'AF),. The corresponding conserved charge is the instanton
number k. We introduce the fugacities e, e=™’s, and ¢ for h, H, k. The index

is defined as [70,/124]
Z(x,y,m, My, q) = Tr | (—=1)Fe @S 20148 22 p=mh o= 35 Mlquk} , (4.2.2)

where F' is the fermion number operator. The trace is taken over the Hilbert
space of the QFT on §* x R. This index counts BPS states, for which the eigen-
value of {Q, S} is 0. So the index does not depend on /3. For the Sp(N) theory
with one rank 2 antisymmetric hypermultiplet and N; fundamental hypermul-

tiplets, this index is given by [124]

Z(x,y,m, My, q) = f[da] PE [fvec(:v,%em“) + [ (@, y, €', ™) + fﬂi?d(w,y,e“’“,em)]
% H Zinst(x:t17yi1, e:l:iaa’ e:tm7 6:tMl’q:|:1) 7 (423)
+

where [da] including the Haar measure is given by

[da] = 2N1N! [ﬁ ‘2‘2‘: (2sinaa)2] 11 [QSin <O‘“;ab>]2 [2sm (a“;abﬂQ .

a=1 a<b

3 =11 =1
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Joees frodi™, fﬂ;’;d are the letter indices for the vector, antisymmetric, and fun-

damental hypermultiplets, given by

N N

z(y +1/y) i(Eaata) “%ia 2ia
= — a a a N| (4.2.5
e e (R PO H (T ) 4 N (429

N
fasym _ x (6m/2 +6—m/2) Zei(:l:aazl:ab) +N
mit = T ap)(i—afy) 2 ’
N Ny
fund —iog—M, o— M, —iaq+M, ao+M,

T = 0 ) 1—x/y ZZ T T e R )

Our notation is that the terms with £+ are all summed over: for instance,
eilfaatar) = g—ica—ioy, | p—iqatiap | giaa—ioy 4 gicatiop Zinst 1s the Coulomb

branch instanton partition function [125], taking the form of
o0
Zinst = quZk(x, y, e em My Z1 =1, (4.2.6)
k=0

where Zj, is the k-instanton contribution. Z; can be computed using the meth-

ods of [132-134]. PE in (4.2.3)) is the Plethystic exponential defined as

ELf({t})] = exp [Z if({t"})] , (42.7)

where {t} collectively denotes all fugacities for gauge and global symmetries
appearing in f.

For later convenience, we redefine the fugacities as e™**, e~*2 for the angular
momenta J; = ji + jo, Jo = j1 — jo, which act on the orthogonal 2-planes of R
which contains S4. We also define e=2 = ¢=(A=2m) for R. They are related to

the original fugacities as

e =y, e =afy, e S =17, (4.2.8)

The new chemical potentials satisfy A—wj —we = 27i (mod 47i). Since R, Jy, Jo

are normalized to be half-integers, all chemical potentials have 47¢ periods. This
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is the reason for the mod 47 in the last equation. Below, we shall always take

A —w —wy =2mi . (4.2.9)
The Haar measure can be rewritten as
do N N
a i(fagt —2iag 2ty
= gy T e P Soctonson - 3 et gazao
a<b a=1

Combining th1s exponent of PE from the Haar measure to fyec, one obtains

r 1+ a? i(faatay) —2ia 2l 1+ a?
— a a a 1 _ N
fuec [Ze +Z +e ) + (1 —z9)(1—2/y)

(1 —zy)(1 —z/y)
1—i—e‘A
+ (1 S (l—ew)(1— e‘w2)> N

N
- (1 — 6_15—1_ — [Ze +aatap) + Z (€—2iaa + eQiaa)
a=1

a<b

2 COSh 2 f: pilEaatap) | i (€—2iaa X eQiaa) 1o 2005}1% N
~ 2sinh “’1 -2 smh 2 2sinh ¥l . 2sinh 2
a<b a=1 2 2
(4.2.11)
We used (4.2.9) on the last line. Other letter indices are given by
2 cosh 2 N ZNf 2cosh M; S, . 4
asym _ 2 i(faatay) N fund _ =1 l iog —ia)
Jmat 2sinh ¥ - 2sinh 2 [Z € +  Jinat 2sinh ¥ . 2sinh £2 Z (e te )
2 2 la<b 2 2 a1

(4.2.12)

Now we consider a Cardy-like limit |w;| < 1 [75]. We will keep w;’s complex
with Re(w;) > 0. Due to , A will be close to 27i. Namely, its imaginary
part is O(1) and close to 27i, while its real part is small at order |w;|. However,
as in [75], for convenient intermediate manipulations, we shall temporarily take
A to be pure imaginary, and continue back to a complex number with small
real part later. The other chemical potentials m, M;’s are kept purely imaginary
(which may be continued back to suitable complex numbers later, if one wishes).
Then following the similar procedures used in [75], ignoring the Cartan parts
of Sp(N) at large N, the PE of the letter indices are approximated as

1 0o 6n(A;27‘ri) + ein(A;27ri) N N
~ —27 a 21 a i(faat
o] o o (i)

n=1 a=1 a<b

) 11 =1
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Lo (e2)"+ (=) (R 2i - i(taatap)

n=1 a=1 a<b
1 N Ao N A )
= exp [ — (Z Li3(—ei?i2w‘”) + Z Lig(—eizi’aai’ab)> = exp [—
Wiz \ .o a<b
(4.2.13)
asym 1 = 1 +aqtap)
PE [fiat ] ~ exp WMZ@@ > te Ze
n=1 a<b
1 & £ g, i Frat (@ay m)
= exp Z Lis(e 1) | = exp [—mat } , (4.2.14)
) b Wiw2

Ny

N
L R S SR S P) W]
=1 a=1

mat

(4.2.15)

Here, we used the power series definition of the trilogarithm function in ap-
pendix A. A here can be taken back to be the one satisfying . It is
important to remember that the imaginary parts of chemical potentials may be
kept nonzero and O(1), to obstruct boson/fermion cancelations as in [74}75].
(Especially, those of A and m will play important roles later.) On the other
hand, the real parts in the Cardy limit are either kept small (for A) or just set
to 0 (for m, M, since we are uninterested in such continuations). The integral

contours for the variables e’®e’s are all along the unit circle, |e/®| = 1.

The instanton part Zing is subtler, and needs a more careful study. So far,
Zinst 18 understood only as a series expansion in certain fugacity. Canonically,
the fugacity ¢ for the U(1); flavor symmetry is the expansion parameter of Ziyst.
As we shall consider dual AdSg black holes which do not carry flavor charges, we

set ¢ =1 (or to a generic order 1 value so that it does not provide an expansion

. A L) ¢

Fvec(aav A)

wiw?2

Al fund
[ ZZZ(Lis,(eiMl“%)+Lig<eiMl—m>>]zeXp[ f<M>]
Wi i T = Wiy

|



parameter). This qualitatively corresponds to taking the 5d gauge coupling to
infinity. So apparently, the series which sums over the instanton number & is
unsuppressed. The proper way of understanding , was explained
in [124], as a series expansion in the fugacity . However, in our Cardy limit,
we take |z| — 17, so that it is unclear how to understand Zi.s part. Here,
we quote an idea explored in [67], which is to focus on a particular large N
saddle point of N integral variables. The integral variables of [67] are N real
scalars ¢, while the analogous N variables in our problem will be analytically
continued a,’s in their imaginary directions. (Namely, —ia, > 0 with purely
imaginary «,’s will play the role of ¢ of [67].) [67] considered a saddle point in
which the N scalars are spread with a wide width N 2 (which is assumed to be
the dominant one), and self-consistently showed that the instanton parts can
be approximated to Zinst ~ 1. A simple argument for ignoring the instanton
part was presented in [67], based on the renormalized gauge coupling in the
Coulomb branch of 5d SCFT. In the next paragraph and in appendix B of 7§,
we shall correct some naive 1-loop arguments in [67] made for this conclusion.
However, this will not spoil their final conclusion that Zj,¢ =~ 1.

The idea of [67] is that, if the scalar VEV ¢ is nonzero, there is a nonzero 1-
loop contribution to the 5d gauge coupling in the Coulomb branch. The 1-loop

effective coupling which depends on the scalar schematically takes the form of

1
ggﬁ(@

at infinite bare coupling (corresponding to ¢ = 1 in our setting). This expression

~ (8~ Np)lgl (4.2.16)

is in fact slightly imprecise. This is because ﬁ is the coefficient of the kinetic
eff

term of the Coulomb branch fields, so should be an N x N matrix in our Sp(N)

theory. The above expression should be understood as a schematic expression

for the eigenvalues, where ¢ denotes a component of the N Coulomb VEVs.
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The key argument of [67] is that the mass of instantons is basically the inverse-
square of the gauge coupling, so in the Coulomb branch it should also acquire a
contribution of the form . If this is the case, and if the saddle point values
of ¢’s are large, the k instanton correction would come with a suppression factor
of ~ e FE=NPIYl with |¢| ~ N3. This was the argument for self-consistently
approximating Zinst &~ 1. However, we find that such a 1-loop argument is
incomplete, for the following reason. In the brane setting, e L

o (@)
the running dilaton field sourced by O8-D8, where ¢ is the coordinate for the

is given by

transverse direction to the 8-branes. If a D4-brane is at the location ¢, the

DO-brane (~ instanton) bound to it will find -~ is its mass. However, if one

ggﬁ‘(¢)
studies the detailed structures of Zj,¢ for this system, DO-branes can be stuck
not only to N separated D4-branes. They can also be bound to the O8-plane
at ¢ = 0, still contributing to the 5d QFT spectrum. Details are explained

in appendix B of [78]. Therefore, the 1-loop argument of regarding —1— as

g§ﬁ(¢)
the instanton mass and the suppression factor is incorrect. Had such a claim
been true, one would have expected the suppression factor of e ¥=N)I9l ot k
instanton sector, with real ¢ = —iac ~ N 3, However, as explained in appendix

B of |78], the D0O-branes bound to O8 turns out to have lighter quantum masses,

so that the true suppression factor for k instantons turns out to be
Ny #0 @ ~ e H9l (4.2.17)
Ny=0 : ~ e 2kl

For most values of Ny, this is larger than the naively estimated suppression

factorsﬂ In any case, although the detailed estimates in the literature are in-

correct, the final conclusion Zj,g ~ 1 will not change. Among the N eigenvalues

'More fundamentally, such exotic masses are allowed since the instanton masses cannot
be determined just from the 5d effective action in the Coulomb branch. For instance, the
argument above for D0-D4 bounds uses string theory.
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g, most of them will take large imaginary values o< IV %, so that the above sup-
pression factors are indeed small. o, will not be large for some eigenvalues, but
their number is much smaller than N so that the leading large N free energy

will not be affected [67].

In our problem, we shall consider the large N and Cardy limit wi2 — 0
together, seeking for a similar saddle point. Our large N saddle point will com-
plexify the angle variables «,, into cylinders. The complexified «,’s will be
spread at order (’)(\/N ) in their imaginary directions. This is very similar to
the studies made with the 5d topological indices [126]. Therefore, with such
spreadings of eigenvalues assumed (to be shown later in this section), the in-
stanton contribution to the free energy is exponentially suppressed at large V.
So we shall ignore the instanton contribution to log Z from now. More comments
on these large N saddle point, and the subtle roles of Zj,g, will be postponed
to section 2.4. With these understood, approximately setting Zi,st =~ 1, one

obtains the following expression for the large N Cardy index at |w;| < 1:

N
1 do fpertOZ?A’m’M
Z(wy, w2, &, my My) ~ oy f II 27: xp [_ ( Z)l(AJZ l)]
’ a=1

N d
- i I [ 7
2N N o ’
a=1

%)
(4.2.18)

where FP¢ is the perturbative part of the effective action.

At |wi2] — 0 and N > 1, one can evaluate by a saddle point
method. We assume that the eigenvalues are spread at order O(N®), with 0 <
a < 1, in the imaginary direction at large N [67,|126]. The ansatz for the
eigenvalue distribution is given by

ag =iN%%, (0 <z, <) . (4.2.19)

Here, z,’s are of order O(NY), and the value of a will be determined later.
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We restricted Im(a,) > 0 and also ordered z,’s to be increasing, using the

Weyl symmetry of Sp(IV), setting 0 < z1 < z2 < --- < zy. Since we assume

0 < a < 1, the N eigenvalues will be densely distributed on an interval of length

~ N¢. The range (0, z,) will be determined later. We take the continuum limit

by defining the continuous variable x € (0,z,) and introducing the density
1 da

function of eigenvalues p(z) = 5 3% normalized as [ p(xz)dx = 1. Then we

replace the sum over a by an integral of the form

N T
azl — N/o dzp(z) (4.2.20)

in the N — oo continuum limit.

Before proceeding, we note again that the chemical potentials m, M; all
have 4mi periodicity. We shall assume that all parameters m, M; are purely
imaginary, and put them in the ‘canonical chamber’ (0,47%). The expressions
of the free energy in different chambers can be found by periodic shifts of the

variables. Applying the ansatz (4.2.19) and taking the continuum limit (4.2.20)),

the contribution of the antisymmetric hypermultiplet is given by

Flsym — N2 / " drp(x) / *dx/p(:cl)z [Lig(e—N“@W)i%)+Lig(e—N”—W’)ﬂt%)(4.2.21)
0 T 1

+Lig(eN @S ) 4 Lig(eN °‘<—x+x’>i%)}

~ §N2+a /Ox* dzp(x) /;* da’p(z) [(3% (% - 2m') — 271'2) o+ N2 (2" 4 3x2x')] ,

where m is in the range (0,47i), as explained above. Here, we used the trilog-
arithm formulae in appendix A at N — oo. Similarly, the fundamental hyper-

multiplet contribution is given by

Nf T
Foai' = N3 /0 drp(z) Y [Lig(e™ " ¥ 4 Lig (M #M)]
=1 +

1 oL e N 2
~ 3N1+3°‘Z/0 dap(z)z® = ;N1+3a/0 dxp(x)z® (4.2.22)
=1
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Finally, the vector multiplet contribution is given by

= N/ dep(z) Y {Lig(—e_QNaxi%>+Li3(—€2NQIi%):| (4.2.23)
0 +

+N2/ ) dxp(x)/ ) da’p(x') Z {Lig(—efNa(Hxl)i%) + Lig(—e*Na(*H’”l)i%)
0 T T

—I—Lig(—eNa(gH—x/)i%) + Lig(_eNa(—x+a:’):t%):|

~ _§N1+3a / d:rp(x):n?’
3 0
—I—N2/ dx,o(ac)/ da’ p Z |:L13 Na(w+m’):tw1+w2) —|—L13( (—x+x’)i$)i|
0 T

+

~ _8N1+3a/ deO(m)x:')
3 0

2 = o A A
—3N2+°‘/ dxp(:v)/ da’p(x') [(3 <2 + m’) <2 - m’) —27T2> x + NQO‘(QC'3+3:L‘2$')} ,
0 T

where A ~ 27i, and we also used (4.2.9) E| Note that in the final expressions of

. Fuee, the last terms ~ N 2a(x’3 + 3222 ) in the integrand look more dom-
inant than the remaining terms. We keep the apparently subdominant terms
in foresight, as they will be dominant after a partial cancelation at the saddle

point.

Collecting all, one obtains

8 _ N Tx Tx Tx
Frert _fN1+3a/ dq;p(l’)$3—|—2")/N2+a/ d:rp(x)/ do'p(z)x’,  (4.2.24)
0 0 T

3
vy = ?(?—2%1’)—(2—}—772’) <§—m’>>0 with 0 < —im <4m, A=~27i.

For later convenience, we will use the following alternative expression for the

2Here we applied a trilogarithm formula in appendix A valid for —27 < —iA < 27. The
value A = 274 constrained by is actually close to the edge of this interval, so one might
wonder if using this formula is valid. We performed a similar calculus for 27 < —A < 67 and
confirmed the continuity of Fye. at A = 274, so that using near A = 274 is fine.
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last integral:

/Ox* dmp(x)/:* 2 p(a)e = / dx/ dz p(z)p(z')z _/ dac/ dx’ p(x
= 2[/0 d:n/o dx’ p(x)p(x a:+/ de/ dx’ p(z)p(z")x’

1 Tx T —
= / / dx da'p(z)p(x) ztaltjz—a . (4.2.25)
2J)o Jo 2

We extremize (4.2.24) in p(z), where p(x) is nonzero only in 0 < x < x,,
and satisfies [ p(x)dz = 1, p(z) > 0. To find a nontrivial saddle point at

N — o0, all terms should be of the same order in N. So we set
1
NI — N2Fe 5 o = 3 (4.2.26)

which implies F o< N 3. Also note that this setting justifies ignoring the instan-
ton corrections, as explained earlier in this section. Introducing the Lagrange

multiplier A for the constraint fgg * p(x)dz = 1, one should extremize

Ty 8S—N T Tu [Tx / o
F=N3 [—)\ </ p(x)dx — 1> 2 dmp(m)x?’—i—'y/ / dx da’p(z)p(x) v tlz-a |] .
0 3 Jo 0o Jo 2
(4.2.27)

The other constraint p(z) > 0 is to be confirmed later, after obtaining the

extremal solution. Extremizing this functional with p(z), one obtains

8_Nf 3 _ o / / / WA ’ / / o / Nt
A— 3 =7 da'p(x) (x + 2’ + o —2'|) =2y |z [ da'p(a’) + dz'p(x")z"| .
0

0 T
(4.2.28)

Differentiating this equation with x, one obtains

(8 — Np)a* =24 {/Ox da'p(z") + xp(z) — p(:c)x} =2y /Ow da'p(x’) . (4.2.29)

Differentiating once more with x, one obtains

ple)=—=2>0 (xel0,z]) . (4.2.30)
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p(x) is always positive for > 0, since v > 0 and Ny < 7. From [ p(z)dz = 1,

2y
o= _ 4.2.31
x SN, ( )

A is determined by (4.2.28)), whose solution is A = 2(8;Nf )3::2’. Inserting these
solutions (4.2.30)), (4.2.31)) into (4.2.27)), one obtains

82 N3 3

one obtains

F o~ — 2, 4.2.32
15 8 — Nf’y ( )
So the large N and Cardy free energy is given by
5 3
2 N2 2
log Z ~ _8V2 N2 4 , (4.2.33)
15 8 — Nf Wiw2
where
_m /m . A N (A N\ (A+m)(A—m)
7—2(2‘2“)‘(2+“><2‘“>—‘ 1 >0,
(4.2.34)

where we defined m = m — 2mi.

To summarize, the large N and Cardy free energy of the index (4.2.33) is

given by . \
V2 NE [(A+m)a—m)

log Z ~ —i— , 4.2.35
& 15 \/m w19 ( )

subject to the constraint
A — w1l — Wy = 211 y (4.2.36)

in the Cardy-like limit |w;| < 1. A?—m? appearing in the square-root is negative
in our canonical chamber. The expression and similar expressions at
the end of section 2.2 are obtained with the convention (—1)% = —1i. In section
2.3, we shall explain that this free energy counts the dual BPS black holes in
the background of warped AdSg x S*/Zy product. Here we simply note that
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the leading large N free energy oc NV 3 does not see the flavor symmetries, e.g.
My’s and g for SO(2Ny) x U(1); C En;41. This is natural in the bulk dual
because the states charged under E, 11 are localized on a codimension 1 wall,
S3 ~ 0(S*/Zs), so that the leading large N bulk physics does not see them.
However, the value of Ny itself is visible in the leading free energy. This is

because the number of D8-branes affects the bulk dilaton field.

4.2.2 SU(2N) theories

Similar to the studies of section we analyze the large N and Cardy free
energy of the index for 5d N' =1 gauge theory with SU(2N) gauge group, two
rank 2 antisymmetric hypermultiplets, and Ny fundamental hypermultiplets.
The related geometric settings are explained at the beginning of this section.

The index is defined as [124]

Z(w1,we, Aym, M, q) =Tr [(—1)F675{Q’S}e*‘”1‘]167”‘72e*(A*Q“")Re*mhM*the* 2 Mlquk} )
(4.2.37)
We introduced the fugacities e™™, e~ for the Cartans hys, hp of SU(2)y x
U(l)p = U(2) acting on two antisymmetric matters, and the fugacities e~
for the Cartans H; of U(Ny) acting on fundamental matters. As before, the

parameters should meet the constraint A —w; —wy = 27i for Z to be an index.

Again, the index is given by [51,|124]

Z(WLQ,A,m,b, Mva) = f[da]PE[fvec(WLQ,A,Oéa) + fgi%m(wlzymv b7 Oéa) + frj:;é?d(wl,Qleaaa)]

X [ [ Zinst (Fwr1, wa, £A, £m, £b, £M;, +o, ¢*) (4.2.38)
+

a 2w

The Haar measure is given by [da] = W [T, “=] [T,y [25in (22522)] 2, with

Z?L]:Vl o, = 0. Sum of all a,’s vanishes because the gauge group is SU(2N). The

) -11 =1
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letter indices are given by

- 2 cosh 2 N o 92 cosh &
- _ 2 —10q 10y, 10 — 1, 1— 2 IN—-1
Juee 2sinh 2 - 2sinh 2 [2(6 N g zemny ) BV Y
a
2 cosh 2N b
Tat" = 2sinh < - 2s21nh =3 Z (eQeraerb ez mb) )
a<b
Ny aN
fund _ 1 SO (Mrtion 4 - Miioa) (4.2.39)
mat " 9ginh 4L . 2sinh % gt ’ -

where A = A — 27i. As in section 2.1, the Haar measure contribution is ab-
sorbed into f},ec. The instanton part Zi,s can be computed from the ADHM
construction of multi-instantons [132]. We assume Zins; ~ 1 at the large N sad-
dle point that we shall present below. We believe this can be shown using the
methods of [132]. With this assumed, and following the steps similar to section

PE of the letter indices in the Cardy limit |w;| < 1 are given by

L Y Ly aw)] = o [ Tl 2]

PE [fuec} ~ €exp

w wiw
| W2 o r 1w2
FEY™ (g, m, b
PE [fﬁlﬁm] ~  exp ZZL13 +24(2 +’L()éa+lab))] = exp [_ mat ( a> M, )
w1w2 a<b +,£ wWiw2

Ny aN

wiw2

fund
PE [f;j;?d} ~ exp W1W2ZZZLI3 Mz+iaa))]EeXp[ M]@.Q‘

I=1a=1 £

The index is then given by the following expression,

doy, Frert(ag, A, m, b, M)
Z (w1, wa, A, m, by, M) ~ 2N y{H exp [ 1o ]
_ ]{ H daa  Fuce + o™ + Fhund
- 2N w12 '

(4.2.41)

We study the saddle point in the large N and Cardy limit. We again take

} ]
94 =4

|
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the following ansatz for the eigenvalue distribution:

2N
aqg =iN%%,, » #a=0, (4.2.42)

a=1

where Z,’s are of order O(N?), and 0 < o < 1. We order #,’s to be increasing
using the Weyl symmetry of SU(2N), i.e. &1 < &g < .-+ < Zoy. With the
ansatz ([(1.2.42), F,." is given by

R = SO [isfe MR ) ¢ LigeN s
a<b =*
2N
1 3m+b/m+b , 3m—b b N

~ 3NQZ|:{22<2_2 >+22<2—27TZ)—27T}’[L‘&+$I]’

a<b
3 T T 7 i~ ~ ~
_iNab sgn(:ca + xb)‘ffa + -Tb’2 + N2a|l‘a + $b‘3] : (4'2.43)

where m =+ b are understood to be in the range (0,47i). Here, we used the

trilogarithm formulae in appendix A at N — oo. Similarly, Flund Frec are

mat
given by
Ny 2N Ny oy v
sl 38 ey e A 38 Y S
=1 a=1 i
(4 2. 44)
and
Fvee = Z > [Lls *(EatEB)ET) | Lig(—eN® me)t%)}
a<b =+
- Z D Lig(eN" et (4.2.45)
a<b =+
2N
1 A A
a<b

where A &~ 27i, and we used A—wi—ws = 27i. Again, we have shown apparently

subleading terms in N~! in foresight, which will turn out to be dominant after
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extremization and cancelations. Collecting all, FP¢"t = F, .. + f&ﬁm + F fund

mat
is given by
Frert o NN S o8 4 LN (0 51 2l ) - NS (2 + 2l — [0 )
6 a 2 m a a 3 a a
a=1 a#b aF#b
1 2N 1 2N
—4N2°‘b% sgn(Tq + Tp)|Ta + Tp|> + 6N30‘ % (12 + Zal® — |7 — 7a]®)
a a

1 m+b (m=*b , (A N\ (A .

Tn =g zi: S <2 - 2m> . YA = <2 + m) (2 - m) . (4.2.46)
At this moment, the leading contribution to (4.2.46]) at large N comes from

the last term which is of order O(N?3%). So we extremize the last term. The

analysis is similar to [67]. To find a saddle point of the last term, we define

_ ToN4l1-a — g ToN41—a + Ta
IN4l—a = = 5 5 YUN4l-a =5 (1<a<N).

(4.2.47)

Let us first consider the extremization with yn11_,’s. Differentiating the last

term of (4.2.46)), one obtains

9 2N 9 9 2N
0 = —— 93+5:3—35—i3:(~+~> Ty 4 Zo|® — | By — To?
OYnt1-i %;) (| b a 12 d ) 0ToNn41—i 0y agb (‘ b al 12 al )
2N
= 6 (sen(d + Za)(Ei + Fa)® — sgn(& — Za)(Ti — Fa)”) (4.2.48)
a#i
2N
+6 > (sen(fani1-i + Fa)(@anr1-i + Fa)® — sgn(Fan i1 — Fa)(Fan1-i — Fa)?)
a#2N+1—i

where 1 <7 < N. One can find that a solution is given by [67]
— .fa = i’QN_H_a = TN+1—a (1 <a< N) . (4.2.49)

So on this solution, we can take N variables x,’s as the remaining variables to

extremize with. They are ordered as 0 < x1 < x2 < -+ < xn. Note that this
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solution satisfies the condition ZZJL Zo = 0. As in [67], we assume that this
solution for dyni1_o variation is the relevant one for our problem. Then, the

remaining problem is to extremize with x,’s. Inserting the saddle point solution

for y,’s (4.2.49) to the last term of (4.2.46)), one finds

N3a 2N 8]\/’304 N
6 Z (|-f7b + §TQ|3 _ |1~jb — ;fja‘g) — 3 ng — O(N1+3a) )
a#b =1

—Za=Z2N+1-a

(4.2.50)
This is of the same order as the first term of . So from now on, one should
also consider all other terms in at the same order. The possible leading
terms in are of order O(N1'*3%) and O(N?+2%) at large N. However,
imposing , one can easily check that the terms at order O(N?+2%) vanish
because of the sgn(zZ, + &) factor in those terms. Then we are finally left with
terms at O(N1T3%) and O(N?*®) orders. These two terms will be balanced and

provide leading terms. Note that there are also subleading terms at O(N'*?)

order after inserting (4.2.49) into (4.2.46)), which we ignore.

So inserting (4.2.49) into (4.2.46]), one obtains

FrPert —M‘N?’aix?’jﬂz\m%mﬂz | (4.2.51)
3 ¢ 2 “ -
a=1 a#b
S_ N N N S_ N N N
~ —TfN“Zrci +AN S (22 + 74) + 2z — 7)) = —Tngasz +AYNTY
a=1 a<b a=1 a<b
~ 3N1+3a/ dl‘p(:ﬂ)ﬂ?3+4’yN2+a/ dxp(x)/ dx'p(z)x’
0 0 T
where
1 m=xb (m=b , A N\ (A .
Y= VYm — VA = 527 <2—2m> - <2+m) <2—m> >0

(4.2.52)
if we take A ~ 27i and m 4+ b purely imaginary within the canonical range

(0,4mi). The above effective action is essentially the same as that for the Sp(IV)
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gauge theory, (4.2.24)). The only difference is that double integral part for the
SU(2N) gauge theory is twice that of Sp(IV) gauge theory. Thus, the remaining
extremization procedures are the same as those presented in section 2.1. The

resulting free energy is given by

V2 N3 [(A+ (b)) (A = (m+D) + (A + (1 — b)) (A — (1 —b))]

logZ ~ —i— )
& 15 \/8—Nf wiw2

(4.2.53)

3
2

where A — w1 — w9 = 274, Th = m — 27i.

It is straightforward to generalize this result to the quivers for the general
Z,, orbifold [50,51]. Assuming Zi,st &~ 1, we simply present the final result for
the large N and Cardy free energy:

g7 o Y2 NP [ A(A+ (b)) (A= (tba) + 235, (At (b)) (A= -+ b))

1E’\/m W1Ww2
NfEZNJ(fq)§7’ rhzm—27ri, ZbA+22bI:O’ A—OJl—WQ:?Tri _(4_2'54)
q A I

[SIIe

4.2.3 AdSg black holes

In this subsection, we explain that the large N Cardy free energies derived in
sections 2.1 and 2.2 account for the BPS black holes in the dual AdSg back-
grounds. A crucial ingredient is the universal entropy function of such black

holes found in [74].

In principle, general black holes in AdSg can carry various electric charges
dual to the R-charge, mesonic charge, and baryonic charges. However, BPS
black hole solution in AdSg known to date was found in 6d N = (1,0) SU(2)
gauged supergravity [87]. For instance, this 6d theory can be obtained by a
consistent Kaluza-Klein truncation of massive type ITA supergravity on S*/Zs
[106]. This black hole solution has only one electric charge, corresponding to

the SU(2) R-charge R. So to compare our field theory results with known

] [, 11 =1
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AdSg black holes of [87], we should perform Legendre transformations of the

free energies (4.2.35)), (4.2.53)), (4.2.54) at zero mesonic and baryonic charges.

Firstly, at generic n > 2, one should extremize the following entropy function,

S(A,m,bar,wi; R,Qun, QB Ji) = log Z+AR+mQM+Z ba,1QB,  +wiJ1t+wats
Al
(4.2.55)

subject to the constraints

D ba+2) br=0, A—w —w=2mi. (4.2.56)
A I

log Z is given by either (4.2.53) or (4.2.54). To compare with known black holes,

we set

Qu=0, Q@Qp,=0, @Qp, =0. (4.2.57)

Let us first consider the baryonic chemical potentials. For SU(2N) gauge theory

at n = 2, one should extremize

LY2NE (A (i B)(A (D) + (At (=)A= (=)o

1
15 w/S—Nf wiw?2 (4258)

with b at Qp = 0. The extremal solutions are given by b = 0, £/ A% — m?2.

However, for the latter two solutions, one finds that log Z = 0 after inserting
these values of b. Making further Legendre transformation of log Z = 0 in wq 2’s
and 7 would yield zero entropy, which means that b = +v/A2 —m?2 will not
yield the dominant saddle point. So we take the solution b = 0. Similarly, for
the most general case with n > 2, one can easily show that the dominant saddle

point at zero baryon charges is given by

by=0, by=0. (4.2.59)
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Inserting this solution (4.2.59) to (4.2.55)), one obtains

V2 nINS [(A+m)(A—m)?

ZE«/8—NJ€ wiw?2

S(A, mywi; R, Qur, Ji) = — +AR+mMQy+wiJ1+waJa
(4.2.60)

where m = m — 2mi. Here, note that for the Sp(N) gauge theory at n = 1, the

free energy of section 2.1 agrees with the above formula at n = 1. So

one can use this entropy function for A, m,wi 2 as universally describing the 5d

SCFTs labelled by n > 1 at zero baryon charges.
We then Legendre transform in m, at Qa; = 0. The saddle points for m
variation at QQp; = 0 are given by

m=0, +A. (4.2.61)

Again, the latter two solutions have log Z = 0, so that further Legendre trans-

formation with wy o will yield zero. So the dominant saddle point is given by
m=0 — m=2mt. (4.2.62)

Inserting this solution for m, we finally obtain the following entropy function:

V2 n%N§ A3

§= Y= M
15 8—wa1w2

4+ AR+ w1 J1 + wads (4.2.63)

subject to the constraint A —wy — ws = 2mi. This form of entropy function was
shown in [74] to precisely account for the entropy and chemical potentials of
BPS black holes in AdSg. However, the entropy function there was expressed
universally, in terms of the Newton constant G of 6d gauged supergravity in-
stead of the microscopic parameters n, N, Ny of our models. In the remaining
part of this subsection, we explain the conversion of these parameters to estab-

lish the microscopic account for the BPS black holes.

To find the relation between G and N, Ny, n, we need the explicit metric of

AdSg x (S*/7Z) /Zy, in massive type IIA supergravity. It is a warped product of

) -1l =]
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AdSg with radius ¢ and half of S4/Z,, with radius %Z. The 10d metric in string

frame is given by [49]

402

1
(%ds*(AdSg) + 5 (da® + cos® ads®(S*/Z,))| . (4.2.64)

ds%o = - 1
(sina)3

where ds?(AdSg) is the metric of AdSg with unit radius, and ds?(S3/Z,) is the
metric for S2/Z,, whose volume is vol(S®/Z,) = % The range of « is given
by (0, %] The gauge coupling constant ¢g in 6d gauged supergravity is related
to the radius £ of AdSg by g = ¢! [87,[106]. Also, from the quantization of the
4-form flux, ¢ is related to N by [50467]

4 B 1872nN

¢4 8—Nj '’

S

(4.2.65)

where /4 is the string scale. We will also need the dilaton field, given by [67]

3
~ Np)3VaN
o2 BB Np2VN o 0% (4.2.66)
2V/2r

The 10d Newton constant is given by 2x%;, = 167G19 = (2m)7¢3 [67]. The

6d Newton constant is obtained by reducing the 10d Einstein-Hilbert action on
(8*/7)/Z,,, down to 6d Einstein-Hilbert action. During this reduction, the 6d

metric g, is embedded into the 10d metric Gy as

1
ds%o = GundzMdzN =

4 2
(oin a)% [gwdm“d:n” + é (do® + cos® a ds*(S°/Zy,))

(4.2.67)
The 10d Einstein-Hilbert action reduces to 6d as

1 1
G/dww\/—Ge_Qq)GMNRMN(G) — G/dﬁa;\/—gg“”Ru,,(g). (4.2.68)
10
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1
G

This leads to the following relation:

= 1/ d*z\/G/g e ?® x (sina)%
G10 J(54/22) /7

1 [% 402\ * 3(8 — Nf)2v/nN 5
= — 2,)3. 3 . f . 5o —
237T6€§/0 do \/( 9 ) (cos? a)3 - vol(S°/Zy,) (sina)s - (sina)

221

v
= ot V)

ol

IN 9  27V2 niN3
n 20 5wl /8- N; '
Here the factor (sin a)% on the first line comes from the relative factor between

GMN and g" appearing in (4.2.68)). Using (4.2.69), (#.2.63)) can be rewritten

as
3

T A
= —4—+——+ AR J J 4.2.70
28194Gw1w2+ + wid1 + wado , ( )

subject to the constraint A —wq —wo = 2mi. This in fact is the universal formula
found in [74] and discussed in chapter [2] for any R-charged BPS black holes in
AdSg, irrespective of its string theory embedding. In [74], it has been shown that
extremizing the above entropy function, and imposing the characteristic charge

relation 87| satisfied by these black holes, one obtains the Bekenstein-Hawking

entropy and chemical potentials of such black holes.

Before briefly summarizing the key results of [74], let us comment on the
intrinsic studies that can be made from the index. Since A = 27 + w1 + wa, S

takes the form of

B i (210 4wy + wo)3 .
S=TRG wne +wi(R+J1) +wa(R+ Jo) + 2miR . (4.2.71)

Therefore, only the two combinations R + J;, R + Jo of charges appear non-
trivially in the Legendre transformation, which is natural since this is the free
energy of the index. The saddle point value Si(R,J;2) after the extremiza-

tion would be complex. One should really consider the degeneracy rather than

102 J’—'! - ll

Wk

(4.2.69)



entropy, so we study eS*. This takes the following form:

eS*(R,Jl,JQ) — eQﬂiR-‘y—iImf(R-i-Jl,R-l-JQ) . eRef(R+J1,R+J2) . (4272)

Here, f is a complex function of R+.J;, R+ J2 that one obtains after extremizing
the first three terms of . The first factor is a phase factor which depends
on the macroscopic charges R, .Ji,.Jo, which rapidly oscillates as one changes
these charges. For instance, let us first consider the factor 2. Although R
is macroscopic, we know that R is quantized to be a half-integer. Then by

2mil will hop between +1 and

changing R by its minimal quantized unit, e
—1. However, it looks highly unclear in general whether the whole phase factor
¢!@mR+Imf) ig real and hops between +1 as the charges are changed by quantized
units. At the dominant saddle with largest e®®/, one may change the logic
here and demand that the unitarity of QFT guarantees this phase factor to
be either £1. It appears meaningless to try to check this with the results at
hand. This is because we have made a macroscopic saddle point approximation
at large charges, and such quantized properties are generally expected to be
visible only after including subleading corrections. Anyway, in this strategy,
Ref(R+ J1, R+ J2) would be the macroscopic entropy that one can extract out
intrinsically from the index, dressed by the 41 factor which is represented by a
phase in our macroscopic calculus. This has been often the attitudes assumed
in [75,[76).

Now to summarize some key results of |[74], we first note that the known BPS
black holes of [87] carry two independent parameters. So the charges R, Ji, Js
satisfy a relation upon the known solutions. [74] imposed this relation, and

showed that Ref agrees with the Bekenstein-Hawking entropy Spp of these
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black holesE| The resulting Spg = Ref is given by [74]

272 8t
3 2 2 2
SBH — 7394GSBH —127*R SBH + 7394671!]1‘]2 =0
272 472
RS3y+ ——(J1 +Jo)Sgyu — —R> = 0. 4.2.73
BH+994G( 1+ J2)SBH 5 ( )

This is a result derived from QFT by imposing extra charge relation by hand.
Solving these two equations, Sy acquires two apparently different expressions
in terms of R, J1,Jo. The compatibility of the two expressions is the charge
relation imposed. It was shown in [74] that the Bekenstein-Hawking entropy of
the black holes of [87] satisfies precisely the same equations. This establishes
the QFT account for the BPS black holes in AdSg.

Since we have derived log Z of the dual SCFTs in the Cardy limit |wy 2| < 1,
we have microscopically derived the thermodynamics of corresponding large
BPS black holes in AdSg. The Cardy limit |w; 2| < 1 on the known black hole
solutions demands Ji,Jy > R > N°2. Similar to the AdS5/CFT4 models
studied in the literature [75.,|76], we generally expect that there could be more
complicated and yet unknown black hole saddle points beyond the Cardy limit.
However, as shown by [135] in AdS5/CFTy, the known black holes should still
represent local large N saddle points, irrespective of whether they are most
dominant or not. Here, we note that the entropy function was shown
to describe known black holes even beyond the Cardy limit [74]. If the instanton
corrections Zing can still be ignored to ~ 1 in the large N non-Cardy regime,
it may be technically doable to search for such saddle points. This is beyond
the scope of this chapter.

3Technically, one finds ImS, = 27R + Imf = 0 after imposing the charge relation, so that
f on these solutions is actually real and equals Sga. We lack an intrinsic QF'T understanding,
if any, of this phenomenon.
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4.2.4 Comments on instantons and 5d deconfinement

While making the saddle point approximations in sections 2.1 and 2.2, we used
the perturbative parts of the index only. Here, one might feel confused about
the following point. From large N perturbative Yang-Mills theory, one would
not expect more than N? degrees of freedom. One expects to capture some
interesting SCFT physics from formulae like |[124] through the instanton part
Zinst in the integrand. But in all the large NV analyses in the literature for 5d
SCFTs, it naively appears that only the perturbative integrand contributes to
the large N free energy, with Zj,¢ =~ 1 suppressed. So one may wonder if there
are any roles played by Zins at all. We would like to comment that it plays a

subtle role in ‘disallowing’ the N? scaling of the free energy.

Let us first ask the following question. Had the integrand for the index only

consisted of the perturbative part,

fveC(xv Y, eiaa) + Z fnl}at(x7 Y, eiaa, emR)
R

Zoert (2,9, {m}) = 7{ [da]PE

(4.2.74)
without factors like Zingt, what would have been the expected Cardy free energy
in the limit |w; 2| < 17 (Here, R runs over representations of the gauge group
G for hypermultiplets.) The natural answer is already presented in [75}[136}137]
for 4d N' = 4 gauge theory, and is extended to 4d N/ = 1 theories in [13§].
Namely, in 4d SUSY gauge theories whose indices take the form of ,
the Cardy saddle point for the gauge holonomies o, is such that GG is unbroken

at the saddle point. In other words, all €’ appearing in fu. and f&,

; can be
effectively set to e!® = 1, so that the system is maximally deconfining in the

Cardy limit 1

“In 4d Yang-Mills theories, this has been naturally assumed in the literature, e.g. in [57)
inspired by the high temperature limit of the Gross-Witten-Wadia model [58}139].
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Had the 5d index been just (4.2.74), we would naturally expect the same
holonomy saddle structure because the letter indices basically take the same

. cq. 1 .
forms. Most importantly, the letter indices take the form of e =2y =

L times finite polynomials of fugacities, both in 4d and 5d. So

(1—e=vw1)(1—e—w2)

it is natural to expect the same large N and Cardy saddle point structures
for these integrals. At these saddle points, the free energy of the index (4.2.74)
would be proportional to N2, naturally agreeing with the combinatoric interpre-
tation of this formula which counts gauge invariant operators of the free theory.
Therefore, although Zi,s can be ignored at the final stage of our saddle point
analyses in sections 2.1 and 2.2, Zj,st should somehow play subtle intermediate
roles to disfavor the saddle point e'® ~ 1, rather preferring the complexified
saddle point with —ic, ~ N2> 1.

In fact, one can see that the possibility of the saddle point e!** ~ 1 becomes
highly unclear with the presence of Zj,g, for the following reason. For instance,

the 1 instanton part of Zi,s in our Sp(N) theory is given by [124}/132]

Ni oo v My TIN o i1, metiag
[ 11,2 2sinh 5! [[,—; 2sinh ™52

Ny M, N mEtiog,
1,2, 2cosh 5 [],—; 2 cosh ™= ]

. w1,2 . maw N . witiag . w1,2 . mtw N witiag
2sinh =2 - 2sinh “=**+ [[,_, 2sinh *#5=¢  2sinh =52 - 2sinh =5~ [],_; 2 cosh =52

1 Hl]\;fl 2sinh % + Hl]\;fl 2 cosh %

. . M
2 2smh% . 2smh%

where wy = 15¢2 In the Cardy limit |w; 2| < 1, this becomes

2wW1wo 2sinh 2 2 sinh % 2sinh

a=1 a=1

(4.2.76)
This diverges at o, = 0 (and also at «, = 7). From the physics of instantons,
this divergence is due to the non-compact zero mode of instanton size becom-
10

ing massless. More physically, if one expands Z; in the fugacities ¢***’s in the

Coulomb branch, at Im(cy) > 0, one finds infinite towers of BPS bound states

1 3
106 M=

1 [Hl]ifl 2 sinh % <ﬁ 2 sinh Li;a“ B 1) N Hfifl 2 cosh % (ﬂ 2 cosh 7"”:;%

2 cosh %

(4.2.75)

_1>].



10

with increasing U(1)"Y C Sp(N) electric charges, since 2sinh(*3¢) factors ap-
pear in the denominator. So the divergence at a, = 0 comes from these infinite
towers of non-perturbative charged states in the Coulomb branch, if one ceases
to weight them by fugacity factors e?@e. Since this divergence is caused by re-

placing sinh &Qw‘“ by sinh £ the divergence actually represents an extra

factor of % ~ — in the naive Cardy limit. As one goes to higher
(2sinh =) wy’

instanton numbers k£ > 1, there appear more infinite towers of charged fields.
The extra divergent factor becomes wQ—lNk An easy way to see this is to note
that there are 2cok = 2(NN + 1)k complex zero modes in the k instanton back-
ground, where co = N + 1 is the dual Coxeter number of Sp(N). Among these,

2k comes from the position zero modes of k instantons, so that it only causes

1
w1w2

divergence in the free energy. The remaining 2Nk complex zero modes

come from the internal degrees of freedom, yielding extra ﬁ factor.

Had this been the true saddle point, the Cardy free energy is not behaving

like the one for a reasonable 5d CFT, which we expect to be proportional to

1
wiwz

times a coefficient representing the number of degrees of freedom in this
CFT (whichis ~ N 3 in our problem). It is not even clear whether the sum over
k would make senseﬂ So collecting all, we find that it is highly unclear whether

e ~ 1 is a legitimate saddle point in the presence of the Z,g factor.

On the other hand, as we have seen in sections 2.1 and appendix B of [78],
the saddle point with —ic, ~ O(N %) has suppressed Zi,st ~ 1, and one can self-
consistently show that only the ‘perturbative integrand’ needs to be Consideredﬁ

As a result of such spreading of eigenvalues, it apparently seems that N? -

®There is even a signal that this is a divergent series [140]. We thank Antonio Sciarappa
for telling this to us.

Tt may be misleading to simply call it ‘perturbative’ part, which often refers to the per-
turbative non-Abelian gauge theory. It should be more precisely stated as the 1-loop Coulomb
branch contribution, with both massive instantons and W-bosons integrated out (whose masses
are proportional to large Coulomb VEV).
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N3 ~ N3 enhancement happened, if we just consider it in the context of the
partition function (4.2.74)). However, with Zj, factor in mind, we think this
interpretation is misleading. This is because the instanton part of the free energy

2NE in k, possibly reflecting an inconsistency

at e’ ~ 1 rapidly grows as ~ w™
of the (grand) canonical ensemble due to the rapid growth of density of states as
k is increased. Compared to this, the saddle point with —ia, ~ O(N %) exhibits
a sensible growth of free energy in w™!. The former is perhaps analogous to
the Hagedorn-like growth of density of states in the confining phase of 4d free
QFT [57], which is made much more extreme in 5d by the additional infinite

towers of instanton bound states.

Deconfinement in AdS;/CFT, implies that the growth of density of states is
slowed down after the transition. This is made possible by breaking the infinite
towers of ‘hadrons’ into deconfined quark-gluon partons. It is also associated
with absorbing latent heat during the transition, after which extensive quan-
tities show the enhancement N — N? in large N. From the gauge theory
side, this is achieved by setting e®’s closer to 1. In AdSg/CF T3, it seems that
there should be more ingredients to achieve the exotic deconfinement in 5d
SCFTs. Taking e’ ~ 1 partly liberates quarks and gluons, from the view-
point of non-renormalizable perturbative gauge theories. However, the system
still has infinite towers of bound states made with instanton solitons. A wild
speculation that has been made in the literature is that these instantons are
also made of certain partons [141},/142]. The non-compact internal zero modes
were interpreted as the position moduli of such hypothetical partons. If such a
conjecture is true, liberating the instanton partons should make N? — N 3 en-
hancement possible, while the rapidly growing density of states in the ‘energy’
k will be tamed after this deconfinement. From the gauge theory viewpoint, un-

derstanding the distinctions between the 4d saddles e'®s ~ 1 and our 5d saddles
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—iag ~ N 3 should encode some details of such hypothetical deconfinement. In
a sense, one can regard the real ic,’s as the ‘inverse-temperature’ variables for
the electric charges. The saddle point icg = 0 of the 4d Cardy free energy can
be understood as such ‘temperatures’ sent to infinity, to maximally liberate the
quark-gluon partons. In our 5d gauge theory analysis, the true saddle point with
i, < 0 may be understood as going beyond this infinite temperature point.
This looks like a natural direction in which the remaining instanton-partons can
be liberated. We would very much like to make such speculations more precise

in the future.

Supplementing the thoughts in the previous paragraph, we finish this sub-
section by contrasting the differences between apparently similar 4d and 5d
indices. Namely, with the nonperturbative completion of by Zinst, we
argued that the saddle point with e’ ~ 1 is obstructed (or at least its exis-
tence is made non-obvious) by nontrivial Zj,s. For certain 5d gauge theories,
we instead explored alternative large N saddle points in which —ia, ~ N 3,
To make the speculations of previous paragraph more sensible, one would like
to make an obvious sanity check that similar saddle points with analytically
continued o, do not exist in 4d indices, which also take the form of . In
particular, dimensionally reducing our main 5d examples given by Sp(N) gauge
theories, one obtains 4d A = 2 gauge theories. Since the 4d system makes sense
as long as Ny < 4 with very similar field contents, one may technically wonder
if similar analytically continued saddle points can exist in its 4d version. How-
ever, we have explicitly checked that such analytically continued saddle points
do not exist in the 4d N = 2 index, even for precisely the same gauge theories
reduced to 4d. Therefore, the analytically continued saddle point which is in

charge of N 3 scaling is indeed a 5d phenomenon.
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4.3 Conclusions

In this chapter, we studied the index of a class of 5d SCFTs on S* x R, by
taking the large N and Cardy limit. Our large N Cardy free energy precisely

accounts for the thermodynamic properties of large BPS black holes in global

AdSe.

The basic calculus is very similar to those made in different supersymmetric
partition functions [67,126]. In our context, like [126], the gauge holonomies e
have to be analytically continued away from the unit circle to reach the relevant
saddle point. At the final stage of calculus, the so-called instanton correction
to the partition function is suppressed to Zi,st &~ 1 at our saddle point. We
have discussed the physical meanings of such a calculus, pointing out the subtle
roles of the instanton part and contrasting it to the indices of 4d QFTs. This
has close relations to the mysterious deconfinements in 5d SCFTs. Our results
should shed concrete lights on getting a better physical picture of such novel
deconfinements, and hopefully a better quantitative picture on the instanton

partons.

We have focussed on a very small subset of 5d SCFTs, engineered on D4-
branes in massive type IIA string theory. Recently, a much broader class of
5d SCFTs have been discovered: e.g. see |143,|144] for geometric engineering,
and [145-147] for brane engineering. Also, there have been explorations on the
large N AdSg duals of 5d SCFTs, engineered by the 5-brane webs [101-105]. In
the generic setting in which the numbers of external (p, ¢) 5-branes are at similar
order ~ N, various physical quantities are known to scale like N* [101}103].
Although we find these examples more difficult to study in our framework,

perhaps numerical studies similar to those of [148}|149] could be made.
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Chapter 5

Quantum vortices, M2-branes and
AdS, black holes

In this chapter, we study the partition functions of BPS vortices and magnetic
monopole operators, in gauge theories describing N M2-branes. In particular,
we explore two closely related methods to study the Cardy limit of the in-
dex on S? x R. The first method uses the factorization of this index to vortex
partition functions, while the second one uses a continuum approximation for
the monopole charge sums. Monopole condensation confines most of the N2
degrees of freedom except N 3 of them, even in the high temperature decon-
fined phase. The resulting large N free energy statistically accounts for the
Bekenstein-Hawking entropy of large BPS black holes in AdSy x S7. Our Cardy

free energy also suggests a finite NV version of the NV 3 degrees of freedom.
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5.1 Introduction

M2/Mb5-branes provide valuable insights to quantum field theories at strong
coupling. An intriguing feature is that N M2/M5-branes exhibit N 3 and N3
degrees of freedom, respectively. These behaviors were first discovered from
their black brane solutions [64]. Recent studies from field theory shed more
lights on it, e.g. from the partition function on S [6566] or S° [150-155]. How-
ever, these studies on N %, N3 have been on vacuum properties, such as vac-
uum entanglement entropy or vacuum energy. For M5-branes, more interesting
quantities could be studied using anomalies [156], which see N3. For instance,
certain higher derivative terms proportional to N3 are studied in [157], and
the N3 scaling of the D0-D4 system at high temperature was studied in [158],
which are all related to 6d anomalies. More recently, these anomalies are used
to count the microstates of BPS black holes in AdS7 [751/159]. For M2-branes,
3d QFTs deformed by topological twisting were studied, in which one finds a
macroscopic number of ground states [160]. The entropy of these ground states
scales like N %, which accounts for the magnetic/dyonic black holes in the AdSy
dual [160,/161].

In this chapter, we study N 3 degrees of freedom of the radially quantized
SCFT on M2-branes. We shall find the N2 scaling of an entropic free energy,
by counting excited states of this CFT. This free energy will account for the
thermodynamic properties of the electrically charged rotating BPS black holes
in AdSy x S7 [82,97]. From the field theory side, we find the deconfined N3
degrees of freedom at high ‘temperature’ (meaning a suitable inverse chemical
potential). The physics of magnetic monopoles or vortices makes the structures
much richer and subtler than 4d deconfinement, whose details we explore in

this chapter.
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As an intermediate observable, we first study an index for vortices in the M2-
brane QFT deformed by massive parameters. Our QFT lives on N D2-branes
and 1 D6-brane. This is a 3d A/ = 4 Yang-Mills theory with one adjoint and
one fundamental hypermultiplet, which flows in IR to the N/ = 8 SCFT on M2-
branes. It has been a useful setting to study M2-branes [162,/163]. We shall study
its vortices in the Higgs branch, after a deformation by the Fayet-Iliopoulos (FT)
parameter. This index is related to our main observable, the index on S? x R
[70,164,{165], in two closely related ways. One is by the factorization of the latter
into various vortex partition functions. Another relation is obtained by taking
the large angular momentum limit on S?, which we call the Cardy limit. In this
limit, we make a continuum approximation of the magnetic monopole’s charge
sum, finding another asymptotic factorization to vortex partition functions.
Using these relations, we compute the asymptotic free energy of the index on
S? x R at large temperature-like parameter, also in the large N limit. This
free energy is proportional to N %, and precisely accounts for the Bekenstein-
Hawking entropies of large BPS black holes in AdSy x S7 [82,/97]. A crucial role
is played by the so-called entropy function of BPS AdS, black holes, recently

discovered in [74].

The structures of our Cardy and large N saddle points are intriguing. In
4d Cardy formulae studied recently, the Cardy saddle point (or high temper-
ature saddle point) is ‘maximally deconfining’ in that the gauge symmetry is
unbroken by the Polyakov loop operator. This makes the N? degrees of freedom
fully visible. In 3d gauge theories, one also has to sum over the GNO charges of
magnetic monopoles. We argue that this GNO charge sum will forbid the anal-
ogous maximally deconfining saddle point for the M2-brane system, following
the ideas of [166,167] for the vector-Chern-Simons model. On the other hand,

magnetic monopole operators condense at the physical saddle point. The con-
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densation effectively breaks the gauge symmetry of the QFTs, confining most
of the N? degrees of freedom even at high temperature. The number of the

remaining light degrees of freedom scales like N 3

Our Cardy approximation is applicable to the Chern-Simons-matter theories
[44,168H170] such as the ABJM theory, which we explore. Also, one can study
the Cardy asymptotic free energy at finite V. We find a finite N version of N 3
in this set-up.

The rest of this chapter is organized as follows. In section 2, we study
semi-classical vortices in the Higgs branch, and study their index. We also
explain how the index on S? x R factorizes into vortex partition functions. In
section 3, we explain a Cardy approximation of the index on S? x R, based on
approximating the GNO charge sum by an integral. We compare it with the
vortex factorization formula of section 2. In section 4, we study the large N
and Cardy limit of the index on S? x R, which accounts for the entropies of
the dual AdS4 black holes. We also comment on the monopole condensation,
partial confinement and the behaviors of the Wilson-Polyakov loops. We then
study the Cardy limit at finite IV, suggesting a finite IV version of N 3. Section

5 concludes with remarks.
5.2 Vortices on M2-branes and their indices

We first explain the 3d QFTs that describes M2-branes. Among others, there
are Chern-Simons-matter type theories at level 1 [44,/168-170]. We find this
approach somewhat tricky for various reasons. The subtle aspects will be com-

mented on below, but we shall also use these QFT approaches in section 4.3.

The gauge theory description that we shall mainly use is a Yang-Mills-

matter theory engineered on N D2-branes on top of one D6-brane. The UV

A5
114 M=



theory has 3d N/ = 4 SUSY and U(N) gauge symmetry. It consists of the
following fields:

vector multiplet : A, , ' | fermions (5.2.1)
adjoint hypermultiplet : ¢4 = (¢, (Z)T) , fermions
fundamental hypermultiplet : ¢4 = (¢,¢'), fermions

where i = 1,2,3 is an SU(2), triplet index, and A = 1,2 is an SU(2)r doublet
index. The N/ = 4 SUSY is associated with SO(4) ~ SU(2), x SU(2)g R-

symmetry. The adjoint hypermultiplet can be decomposed to two half-hypermultiplets,

®A — GAq, with a = 1,2 being a doublet index of SU(2), flavor symmetry. The
SU(2)p x SU(2)r ~ SO(4) acts on R* along the D6-brane, transverse to D2’s.
SU(2), acts on R? transverse to the D6-brane. Finally, there is a topologi-
cal U(1)7 symmetry coming from the current j, ~ tr(xF,). In string theory,
this corresponds to the DO-brane charge, or the momentum charge along the
M-theory circle. Here, note that the D6-brane (with transverse direction R?
spanned by ®?) uplifts to a single-centered Taub-NUT (T'N) space in M-theory.
So the QFT describes N M2-branes probing the transverse space R* x TN. In
the asymptotic R? x S! region of Taub-NUT, U (1) acts as the translation along
the circle. The circle is fibered over R? to form R* near the Taub-NUT center.
Near the center, U(1)7 x SU(2), enhances to SO(4) rotation symmetry of R?.
In particular, U(1)7 becomes a Cartan of the rotation symmetry of SO(8) act-
ing on R®. The strong-coupling limit of 3d QFT corresponds to the large circle
limit of M-theory, so the Taub-NUT effectively decompactifies to R*. So this
QFT is expected to flow to the AV = 8 SCFT describing N M2-branes on flat
spacetime. In particular, SU(2), x SU(2)g x U(1)r x SU(2), symmetry of our

gauge theory is expected to enhance to SO(8).

We are interested in the Higgs branch of this system, and the vortex solitons
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in this branch. We study the system with nonzero Fayet-Iliopoulos (FI) param-
eter. One can turn on three FI parameters ¢/, where I = 1,2, 3 is a triplet index
of SU(2)g. We shall only turn on ¢ = ¢ > 0, which breaks SU(2)g to U(1).
The Higgs branch vacuum condition is given by the following triplet of D-term

conditions:

00t — g +16.67+16.61=C, qi+]6d=0. (5.2.2)

q is an N x 1 matrix, ¢ is a 1 x N matrix, and qﬁ,& are N x N matrices. These
equations describe the moduli space of N U(1) instantons, which is real 4N
dimensional after modding out by the U(N) gauge orbit. The instanton moduli
space appears since the Higgs branch describes N D2-branes dissolved into the

R* part of D6 world-volume. ¢! come from NS-NS B-fields on R*.

We study the vortex solitons on a subspace of the Higgs branch. With ¢ > 0,
we shall consider the subspace ¢ = 0 with nonzero ¢. The vortex partition
functions appearing in the factorization formulae in section 2.2 will all assume
G = 0. Adjoint scalars ¢, qg may have very rich possibilities which allow vortices.
In most of our discussions in this chapter, we shall consider a simple subspace
in which only ¢, ¢ are nonzero, with § = 0, ¢ = 0. Only in section 2.2, we shall
briefly comment on branches with nonzero g, ¢, QB, and the vortex partition

functions in these branches. Setting § = 0, gg = 0, the vacuum condition is

99" + ¢, 6" = (Inwn - (5.2.3)

q satisfies ¢fqg = N¢. We can set ¢ = (VNC,0,---,0) using U(N) rotation.

Then one obtains

[6,0'] = ¢ diag(—(N —1),1,--- ,1) . (5.2.4)
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A particular solution to this equation takes the following form:

0

N-1 0

0 VN=Z 0 -
o=vC| ) . (5.2.5)

0 \@ 0 0
0 0 1 0

This vacuum breaks U(N) gauge symmetry. There are more general solutions
labeled by 2N real parameters. Below, we discuss the classical vortex solitons
only at the point (5.2.5), which will provide enough intuitions to understand

our partition function.

In the above vacuum, vortex solitons are semi-classically described as fol-
lows. Each U(1) of the spontaneously broken U(1)N C U(N) can host its own
vortex charges, i.e. a U(1) flux. On the other hand, vorticities are given by
space-dependent VEV’s of the N nonzero elements of ¢ and ¢ above, with
winding numbers at asymptotic infinity of R?. Consider the following energy
density, involving ¢1 = q1,¢; = ¢ii—1 (i =2,--- ,N), Ay, where pp =1,2:

N

N
E = 10— iAo + 310 — (AL = ATNGP + 55— 3 (Flo)*(5:26)
i=2 Iy M =

2
+9Y7M [diag(|611% — |02f2 — C. 6ol — 632 — €, low]? — C)]2

1

N N-1

= N D+ iDa+ S 2; (Fiy + g2 (612 — |61 — O]

i=1 i=1 “YYM

1
too— g [FS + gva(lonl? = Q)] +CZF12—26“ Za ¢rD,d;)

205 1
Here D,,’s are covariantized with AV AZ—AY - AN AN for ¢y, o, -, 0N,

respectively. The last surface term can be ignored if D, ¢; falls off sufficiently

1 2 1 3
117 ot -3 1_-]| :



fast at infinity. One thus obtains the following BPS equations for vortices in

this Higgs vacuum:

(D1+1iD2)di =0, Fiy = gin(C =il + [disa|*) . Fiy = gia(C — lon]?) -
(5.2.7)
The vorticities n; > 0 for ¢; are defined by the number of phase rotations made

by ¢; at spatial infinity. This is related to the fluxes k; carried by AZ by
7’L1:k1, TLQZk‘Q—/{?l, ety nN:k:N—kN_l, (5.2.8)

from the ways in which AZ appear in the covariant derivatives. Therefore, from
the second term of the last line of ([5.2.6)), one finds the multi-vortex mass given
by

N
M=2r¢> ki , ki <kg<---<ky. (5.2.9)
=1

The vortex masses are proportional to (. The masses for elementary particles
in the Higgs phase are proportional to gy - (VEV) ~ gyn( 3. Therefore, at
‘weak coupling’ gyn < ¢ %, vortex solitons are non-perturbative and much
heavier than elementary particles. At ‘strong coupling’ gy pr > ¢ %, vortices are
lighter than elementary particles. We stress that the IV vortices are constrained
as ki < kg < --- < ky. This is an important aspect which will enable the
partition function to have a smooth large N limit. These vorticities are natu-
rally parametrized by Young diagrams with N or less rows, whose lengths are

kn,kn—1,--- , k1, respectively.
5.2.1 Indices on D, x S' and R? x S*

We study an index which counts the BPS vortices discussed so far. This is a

partition function on R? x S', where S is for the Euclidean time, in the Higgs
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branch. The index is defined by
Z(q,t,2,Q) = Tr [(—1)F gtrt2gh-r 2T | (5.2.10)

with suitable boundary conditions for fields assumed at infinity of R2, to be
explained below. r, R, L are the Cartans of SU(2), x SU(2)gr x SU(2)r, T is
the U(1)r charge (the vorticity), and j is the SO(2) angular momentum on R2.
The factors in the trace are chosen so that they commute with a supercharge
within the N = 4 SUSY. More concretely, the NV = 4 supercharges take the form
of QéB, where A, B and « are doublet indices of SU(2),, SU(2)r, SO(2,1),
respectively. The supercharge Qf* has charges r = R = %, j= —%, L =0,
T = 0, so it commutes with the whole factor inside the trace. This supercharge
and its Hermitian conjugate Qi_ annihilate the BPS states captured by this
index. The supercharges Q;H and their conjugates Q;_ define a 3d N = 2
supersymmetry. So the index will be computed below using various techniques
developed for 3d N/ = 2 theories. From the N' = 2 viewpoint, R + r is the
SO(2) ~ U(1) R-charge, while R—r is a flavor charge. The index on R? x S! can
also be regarded as the index on Dy x S*, where Dy is a disk. One should impose
suitable boundary conditions at the edge of Do, which should be chosen to allow
the nonzero Higgs VEV for the partition function on R? x S'. The alternative
formulation of this partition function on Dy x S* will have a technical advantage,
when one studies the grand partition function summing over all vortex particles.
The integral form of the N' = 2 gauge theory index on Dy x S' was derived
in [171]. We summarize the results of [171], focussing on our model. See [171]

for more details on SUSY QFTs on Dy x S*.

We first explain the boundary conditions on Ds. To realize the boundary
conditions which admit nonzero VEV for ¢ and ¢, we impose Neumann bound-

ary conditions for them: see eqn.(2.18) of [171] for the full boundary conditions
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for the corresponding chiral multiplets. As for the N' = 4 vector multiplet,
we decompose it into A" = 2 vector multiplet (containing A,, ®3) and an ad-
joint chiral multiplet (containing ®1 +i®s). We impose the boundary condition
given by eqn.(2.10) of [171] for the N/ = 2 vector multiplet. We further need to
specify the boundary conditions for: the anti-fundamental chiral multiplet con-
taining ¢, the adjoint chiral multiplet containing é, and another chiral multiplet
containing ®; + i®y which originates from the N/ = 4 vector multiplet. Once
the boundary conditions are given for ¢, ¢ and the N' = 2 vector as above, the
boundary conditions for the remaining fields can be naturally fixed as in section
6.4 of [171]. Namely, we give Dirichlet boundary conditions for the chiral multi-
plets ¢, gg, and Neumann boundary condition for the chiral multiplet ®; + i®5.
This choice naturally guarantees the cancelation of boundary gauge anomaly.
We shall assume these boundary conditions below. The partition function with
these boundary conditions will also naturally appear as a holomorphic block of

the factorized index on $? x R[]

The contour integral form of our index on Dy x S! is given by [171]

N N _1 3 -1 N — _1 3
?é [ dsa 8_27”(:| (Sat 2q2; q2)oo . Ha;éb(sasb ) q2)0° . (Sasb 1Zt 2q2; q2)oo
a a=1

= L2misa © (50120750200 [Lape1 (508 7105 0%)00 opmy (Sasp 267075 02)0c
(5.2.11)
where
[ee)
(a; @)oo = [ [ (1 — ag") (5.2.12)
n=0

is the g-Pochhammer symbol. The second/third /fourth product in the integrand
come from the fundamental hypermultiplet, N' = 4 vector multiplet, adjoint hy-

permultiplet, respectively. All g-Pochhammer symbols in the denominator come

!We also tried to define the Do x S function of the ABJM theory [44]. However, we were
not sure about the natural and simple anomaly-free boundary conditions. However, see section
4.3 for related discussions.

1 3
120 M=



from scalars assuming Neumann boundary conditions, while those in the numer-
ator come from fermions whose superpartner bosons assume Dirichlet boundary
conditions. (The argument t~1q in the factor (sasb_ltflq; q2)Oo corrects a typo
in [171].) s, are N holonomy variables of the vector multiplet on S*. Their
integration contours are given by unit circles, |s,| = 1. Here, we note a subtle
phenomenon that the FI parameter on Dy x S! is quantized, 27r( € Z, where
r is the radius of the hemisphere Ds. This is because the standard FI term is

I curvature correction given by a 1d Chern-Simons term

accompanied by a r~
along the time direction [171], which demands the quantization of . Clearly, the
factor s, 2 i makes sense only with this quantization The extra pa-
rameter 27r¢ > 0 still admits one to introduce another fugacity-like parameter
Q = ¢*"¢, which will be the fugacity for the vortex number. The quantization
of ¢ is an artificial constraint as we regulate our problem on R? x S! to that on

Dy x S'. After all the computation is done for the integral, we can continue ¢

back to an arbitrary parameter.

If @ is small enough, one can write the integral as a residue sum by evalu-
ating s, integrals one by one. For 27r¢ > 0, since the factors from sz 2™ damp
to zero at s, = oo, there is no pole at s, = co. We take residues from poles
outside the unit circle. We assume |tq| < 1, [t71¢| < 1, |zt%q%| <1, |q <1,
for convenience. The poles contributing to the residue sum take the following

form, up to N! permutations which cancel the overall % factor of (5.2.11)):

s1 = t2¢ 27 (ng >0), (5.2.13)

Sa = Saflz_lt_iq_%_%za (a=2,---,N;ng, >0) .

2More precisely, the chemical potential ¢ induces a mixed anomaly with the U(1) C U(N)
gauge symmetry. To make the system free of gauge anomaly including this effect, one has to
quantize ¢ after shifting it suitably by the chemical potentials. ( appearing in is the
shifted FI parameter.
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The value of s; is determined by the poles from the fundamental hypermulti-
plet, while other s,’s are determined by the adjoint hypermultiplet. If poles are
chosen from other denominators than the above, one can show that the numer-

ator vanishes so that they are actually not poles. Iterating the second line of

(5.2.13) to decide s,’s, and defining k, = Y7 ; n;, one finds
Sq = u tyTotlgT ke (5.2.14)

for a = 1,---,N, where u = (tq)%, v = z(tq)%, and k1 < ko < -+ < kp.
k,’s labeling the poles will turn out to be the U(1)" vortex charges ky,--- , kyx
that we introduced in the context of classical solitons. This correspondence can

be understood by noting that n, in the pole (5.2.13)) originates from a factor

(a_qlg)oo ~ 1_;12%, which comes from the mode of a bosonic field with winding

number n,. Residue of this pole corresponds to a partition function with vortex

defect inserted [172], confirming the vortex interpretation. The residue sum for
(.2.11)) is given by

00 N —a+1

1 —1 2kq 2mrC (u™ q
D DI (T

(q q )OO 0<k1<--<ky a=1

2— 2ka’ q2)

ka; g2,

—a+b, —2k,+2k —2,,1—a+b 2—2kq,+2kp. 2
a+ at2kp . i q ) ( v a+ at b7q )

q q
x H
- 1 fzv atbg2—2kat2ky; g2) o (v1-atbg—2kat2hy; o2)7
a,

= (5.2.15)

—2n

where (a; ¢?), means (a;¢%)s if a # ¢~2" with any non-negative integer n, and

(2" g?) = aiqulzn m , (5.2.16)
Using
(@ @) (C(LZ;‘;JL) (5.2.17)
for n > 0 and
(@q)n= — = (‘fnq.)oo (5.2.18)
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for —n < 0, one finds that (5.2.17) is true for any integer n. Using this, the
second line of ([5.2.15]) can be rearranged as

IJ_V[ (v=a +bg—2ka+2ky . o2 ) (u72vlfa+bq272ka+2kb,q )oo (52.19)
Al (u—20—0+b2=2kat2ky: ) (p1—atbg—2kat2ky; o2/ e
_ H (Ufa+b;q2)go ( —2,1- a+bq2 q) ( —2 b aq2 q) ' ( 1- a+b,q)
i (wPeme e g?) g (el gl (0= ¢° )krka (u=20!=0t0g% )krka
_ N _
_ ( —2 b aq2 q) . (vl a+b§q2)kb7ka H (U a+1;q2)go (u v a+N+1q2 q )
Al (V2= @)y (u=201=0+bg2; ) 4 41 (vt N1 2) T (w200t g2 ?)
The product over ¢ = 1,--- , N on the first line of ([5.2.15) and that on the last
line of (5.2.19)) combine and get rearranged as
N 9 _ _ _ 9 _
H (uaa—lq%a)zmc (u 21) a+1q2 2ka;q2)oo (v a+1;q2)go ( 2 a+N+1q2 q)
44 (v=atlg=2ka; 2) (0= N+ g2) 0 (w2070 g2; ¢2) o
(N—1)727T 7a+1. 2 2,,a,2.
_ [UNUN ]\; :| Qk1+ kN H 14 ) . (u Va4 ) , (5220)
_2'1} a+1q q ) (va’ qZ)OO
where Q = ¢*™¢. So one obtains
N(N-1) N _ _
g (uNU 2 )27rrC H (u 2v“q2;q2)oo Z le+ Ak H a+1 2)_ka
(% ¢*)o a=1 (v%54%)o0 0<k1<-<kn 72“ aH 4*)—ke
( a+b+1 q ) ka+kb(u v a+bq2 q ) ka+kb (5 2 21)
ab=1 (U_a+b ) kq +k‘b( 21) a+b+1q yq )7ka+kb

In the last expression, one can relax the condition 27r{ € Z,, so we can now
regard () as an independent continuous parameter. Here, let us decompose

Z into three factors, Z = Zjietactor Lpert Zvortex; Where each factor is given as
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follows:

s (UNUN(]\;l))Q”TC p ﬁ (u~ 2y042. q)
fact = t =
prefactor (q q ) ’ per 1 (va,q )
Zyortexs = Y QNN Z ok (5.2.22)
<k1<---<kn
N _ _
Zioiw = |1 (v %)k, (0" 62) i, (P07 6P) i
1, KN i (U_2'U_a+l;q2)—ka it (U—a—i—b ) ko +kb( QU—a—i—b—Hq i q )—ka+kb

Here, Zy,... o = 1 by definition. In the rational function Z, ... 1, appearing in
(5.2.22)), one finds further cancelations between denominator and numerator. In
fact, since k1 < --- < ky define a Young diagram with k boxes, Zj, ... 1, admits
a simple expression in terms of this Young diagram Y = (kn, kn—1,- - , k1) after
cancelation. To explain the final result after the cancelation, let us introduce

the following ‘distance functions’ on the Young diagram:

a(s) : arm (horizontal) length = number of boxes to the right of s
I(s): leg (vertical) length = number of the boxes below s
x(s) : horizontal position = number of boxes to the left of s

y(s) : vertical position = number of the boxes above s
(5.2.23)

Here, s labels the boxes of the Young diagram. For instance, for the two boxes

s1, s of Y = (6,5,3,2) below, they are given by

S1 ‘
S92 a(s1) =4,1l(s1) =3, z(s1) =1, y(s1) =0

(5.2.24)

Using these notations, Zyotex 1S given by
t Z Q|Y| H 1 —u- q 2a(s)vfl(s))( —u vq2q2a(3)vl(5))(1 _ UNQQCE(S),Ufy(S))
Zvortex = —2a(s s (s —2,2,N 22(8)0y—y(s)) °
SGY ()’U ())(1—1}(} () ())(1—u q“viVq (),U y())
(5.2.25)
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We checked this expression up to Q' order, till N < 10. One can also prove
(5.2.25)) analytically, which is explained in appendix B of [79].
N(N—-1)

We also explain other factors, Zprefactor and Zpert. The factor (uNo ™2 )2mr¢

in Zprefactor i the ‘zero-point energy’ factor, weighting the ‘ground state’ if one
expands Z in fugacities. The factor (¢, ¢?).o N of Zprefactor comes from N chi-
ral multiplets containing the N complex scalars, which form the Higgs branch
moduli. These scalars are the massless fluctuations from the reference point
. This part will not play any important role in the rest of our works.
For instance, Zprefactor Will not appear in the factorization formula on 52 x St
later. (More precisely, one can regard it as the two Zpefactor s canceling in the
factorization formula.) So Zprefactor Will be mostly neglected. Z,eq comes from
‘perturbative’ massive particles’ contribution in the Higgs branch, which will
be important later. Normally, the Higgs branch partition function on R? x S*

refers to Zg2y g1 = Zpert Zvortex-

Now we have two alternative expressions for the index, the integral form
(5.2.11)) and the residue sum ({5.2.21)), ([5.2.25)). The latter expression is a series
which is useful for sufficiently small |Q|, but ((5.2.11]) can be used more generally.

Before closing this subsection, we study the case with NV = 1, for single M2-
brane. In this case, the index given by the residue sum becomes simplified. This
is because the CF'T on one M2-brane is expected to be a free QFT, consisting
of four free NV = 2 chiral multiplets. In fact, studying to certain high
orders in @), we find that can be written as

13 . 13 3.1 4
Ins = (t)™ (t72¢2;¢%)x  (@®Qi0M)0 _ (0™ (2t724%;¢)) (42t3Q1¢%)0
B (q2§q2)oo (zt%q%;qQ)oo (t_IQQ§q2)oo (q2;q2)oo (zt%q%;qQ)oo (tféq%Q;QQ)oo
(5.2.26)

at N = 1. This can also be shown analytically by using the infinite g-binomial

theorem. Here we defined Q = q%f%Q. The first factor of ([5.2.26) is sim-
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13

(2t72¢2;¢%) o0
T 1

(2t2q2;q%) o0

from the adjoint hypermultiplet of the A" = 4 theory, which is free at N = 1.

Ply Zprefactor, Which we ignore. The second factor Zpex = comes

The factors in the denominator /numerator come from the chiral multiplets with

Neumann /Dirichlet boundary conditions, respectively. The last factor Zyortex =
(@12 4% 1%)o0
(O 2923¢%)c
two chiral multiplets in it are given Neumann/Dirichlet boundary conditions,

makes the contribution from another free hypermultiplet, where

respectively. In fact it is well known that the ‘vortex field’ makes a free hyper-
multiplet in this case. To see this, first note that with the adjoint hypermultiplet
decoupled at N = 1, this theory is simply an /' = 4 SQED with Ny = 1 flavor.
In [173], N =4 U(N) SQCD with Ny = 2N — 1 flavors was studied. It was
argued that a monopole operator becomes free and decouples in IR. The re-
maining system in IR was argued to be the U(/N —1) SQCD with same number
Ny =2N —1of U(N — 1) fundamental flavors. Since the last theory is void at
N =1, SQED at Ny =1 in IR is dual to the free hypermultiplet. Indeed, the
vortex partition function of this SQED was shown to be precisely that of a free

hypermultiplet [174]. Defining ¢; (I =1,2,3,4) as

N
N

(tr, to, b3, ta) = (t22,82271, 720,620 | (5.2.27)

satisfying t1totsty = 1, the Abelian index can be written as

3 3
ty' 424" (ty 421 4
ZpertZVOrtex - (2 1 2)00( 4 1 ’2 )OO . (5228)
N=1 (t14234%)00(t3075¢%) oo

In section 4, we shall be interested in the large N free energy of the index,
in the limit 8 — 01 where ¢ = e~?. Here, we make such a study at N =1 as
a warming up. We shall first study the limit 8 — 0 from the exact expression
(5.2.26)), and then discuss how to recover the same result from the saddle point
analysis of the contour integral expression .
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To perform the f — 0 approximation, one should understand the 5 — 0
limit of (a;e™2%) 4. We are interested in taking 3 — 0 while keeping it complex,
with Re(3) > 0. Also, other fugacities ¢; are kept as pure phases: |t;| = 1, while
satisfying t1totst4 = 1. It is important that these phases can be substantially
away from 1. This defines our ‘Cardy limit’ of the index. The importance of
these phases was noticed in 75|76, which will be seen again in our later sections.
In this set-up, one obtains

(a: )0 = [[(1=ag®") = exp [_ 1"”] 9 o [_ Ry 22] - [_Lma)}

~ 1— 2n
n=0 n=1 n q

when «a is a phase, |a| = 1. Therefore, in our Cardy limit, the index (5.2.26) is

given by

log Zn—1 ~ ;‘5 [Lin(Qt%) — Lin(Qt}) + Lin(zt?) — Lin(zt™) + Lin(1) | 47rC log

(5.2.30)
Here, we define £ by 27r{ = % (Q = e7%), and keep € fixed as one takes 3 — 0.
Then, defining F by

log Z ~ -z (5.2.31)

20
in the 8 — 0 limit, one obtains

Fno1 = LiQ(zf%)—Lig(zt%)+Lig(Qt%)—Li2(Qf%)—Lig(1)—g logt . (5.2.32)

Now we make the saddle point analysis of the integral expression (5.2.11)),
at N =1 and in the limit 8 — 0. (5.2.11)) in this setting becomes

d 1
ZN=1~ / 27:;8 exp [—2’56 log s + 33 (Lig(zt%) - Lig(zt_%) + Lip(t71) + Lig(t%s) - Liz(t_$8)):|
(5.2.33)
where the contour is over the unit circle |s| = 1. In the Cardy limit, we can

ignore the quantization condition of ¢ and keep general complex £. Taking & to
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be purely imaginary, and ¢, z to be phases, we try to find the saddle point for

s at || < 1. One needs to extremize
¢log s + Lig(st2) — Lip(st2) . (5.2.34)

The saddle point should satisfy

1
1—st72
0=&+Liy(st™3) — Lig(st2) = € —log — . (5.2.35)
1—st2
The solution is given by
£_1 inh &
5o = —< _ s (5.2.36)

¢35 —¢3  sinh HTT

with t = e”. sq is real for purely imaginary &, 7. Plugging in this value to the

1
integrand of ([5.2.33)), sg = 3 17t71QA, one obtains precisely the same F as

1-t72Q
(5.2.32]). The last statement can be shown analytically by using the identity

Lia(2y/)—Lia(2)— Lis(y)+Lia(1) = Lis < 1 )—L12 <y 11__;;) +log(z) log ( 1w ) :

11—y 11—y
(5.2.37)

5.2.2 Factorization on S? x S!

So far, we examined the vortex partition function Zygtex that is captured as
a part of the R? x S! index, or equivalently the Dy x S! index with a certain
boundary condition at the edge. In the literature, it was discussed that the
vortex partition function can be a building block of many other supersymmetric
partition functions on compact 3d manifolds such as S? x S and S} [175/{182].
We shall develop a similar factorization formula along the line of [183]. More
precisely, once we consider an S! fibration on S? where the angular momentum
fugacity is turned on, the fields are effectively localized at the poles of S? and

probe local R? geometry. Thus, the supersymmetric partition functions on those

3 =11 =1
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manifolds are written in terms of the vortex partition function as the following
universal form:

Z = Z Zpert Zvortevaorte)v (5238)

Higgs vacua

Only differences are the perturbative contribution Zpe¢ and how to glue two
pieces of the vortex partition functions, i.e., how to define Zyortex, which has
the same functional form as Zygtex up to redefinitions of variables depending
on the background geometry. For our example, the index on S? x S! will take

the form of

ZSQXSl(Q t,z q Z pert t z CI) vortex(Q t, z, q)Z\%rtex(Q—17t_1aZ_1>q_1)>

YeHiggs
(5.2.39)

where the points ) in the Higgs branch will be specified below.

Our theory of interest includes one fundamental and one adjoint hypermul-
tiplets. Since a 3d N' = 4 vector multiplet contains an A/ = 2 chiral multiplet
as well, we have in total three N/ = 2 chirals in the adjoint representation. In
the previous section, we showed that the chiral from the A/ = 4 vector does not
yield any contributing pole. Thus, the factorization of our partition function
mimics that of a theory with two adjoints. The factorization of a 3d N = 2
theory with two adjoints is recently discussed in [183]. It was shown that the
D-term equations of the N' = 2 theory restrict its Higgs vacua such that they
are represented by 2-dimensional box diagrams; e.g., see figure Further-
more, if the theory has a superpotential, there will be extra conditions from the

F-term equations. In our case, we have the following F-term condition:

94+ ¢, 8] = 0, (5.2.40)

which is a part of the A/ = 4 D-term conditions. As we have shown in the pre-

vious section, the vacuum solutions have vanishing ¢ and accordingly vanishing

'y 3 1] 3
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Figure 5.1: The Higgs vacua of the (massive) N' = 2 U(3) theory with one
fundamental and two adjoint chirals are represented by 2-dimensional box di-
agrams due to the D-term conditions. If there is a superpotential, they are
further restricted.

[0, QE] The condition [¢, gg] = 0 demands that only the first, third and fifth di-
agrams in figure [5.1] are allowed; in general, only the Young diagram types are

allowed.

To establish the factorization formula with the structures outlined in the
previous paragraph, we start from the known expression for the index on S2 x S*

[70,[164], which is [163|[165}[184]:

Zg2,51(Q,2,t,q) = (5.2.41)
e N
1 ds, -
- _Pa mat—\ma|/2 [mal/2
{m}z_oo Weyl({m}) 7{ (g 27TisaQ q X

a=1

N o —1—1 St |mal. 2 1 24|mal. 2

L <afb<N (Sat%q%+|ma|;q2) (Sglt%q%+\ma|;q2)

1 3 1 3
(s "sutq" Immat ™l 2) (s sy T T2l ) (s syt T2 g Tl g2)

-1, - . -1 11 a— . -1 _— 11 a— .
ap=1 (sasy tolgtHmamlig) (s otz gzt memmel g2) (g5 et g tIme el g2)

Here the integration contour for each s, is taken to be the unit circle. Weyl({m})
is the order of the Weyl group remaining unbroken for given magnetic flux
{m} € Z"/Sy. In the following computation, however, it will be more conve-

nient to distinguish the permutations in {m} and to take the symmetry factor

1 3
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N! instead of Weyl({m}). In other words, we replace the flux summation by

[e.e]

1 1
> Wesl(fm]) — N > (5.2.42)

{m}=—o0 " {m}ezN
From here, we also use a shorthand expression (a;q) = (a;¢q)oo in the rest of

this chapter.

We are aiming to evaluate this integral using the residue theorem. Assuming
lg| < 1 and |t| = |z| = 1, we take the poles outside the unit circle, which are

given by the intersections of the following hyperplanes:

1 1
sa =1 2¢ 27 Imal "2,

Sq = sz_lt_%q_%q_‘ma—mb|—2ka’
(5.2.43)

1 1 _ _ _
S = spat”2q 2g eI

Sq = Sbtq71q7|ma7mb|72ka

where k, > 0. However, poles sitting at the hyperplanes of the fourth type have
vanishing residues. In the set-up of the previous paragraph, this implies that
there are no poles from the adjoint chiral in the N' = 4 vector multiplet. The
relevant poles are only determined by hyperplanes of the other types. Thus, as
we noted already, the residue evaluation of our theory resembles that of the
two adjoint theory. While a pole is typically determined by N hyperplanes, for
a general two adjoint theory, it may happen that a set of hyperplanes degen-
erate such that more than N hyperplanes meet at the point. In such cases,
one encounters a double or higher order pole when the N-dimensional integral
is evaluated iteratively. Nevertheless, a particular choice of the superpotential
sometimes yield extra zeros by imposing conditions on the fugacities so that
the higher order poles become simple. Indeed, our N' = 4 SYM example turns

out to be such a case.
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At first let us forget about the issue of higher order poles and just focus
on how we organize N linearly independent hyperplanes. Once we pick up N
hyperplanes intersecting at a pole, they can be represented by a binary tree
graph of NV nodes where each node is accompanied by a label of three parameters
(@, 2q, kq). While the meanings of the tree and the labels (a, zq, kq) are rather
clear from , let us explain them briefly. The first parameter a, which is
an integer in the range 1 < a < N without repetition, can be used to label the
nodes. Namely, we will refer to the node with (a, z4, k4) as the ath node. Then
one can represent a tree graph using a map p: {1,...,N} — {0,...,N}. pis
defined such that p(a) = b if the bth node is the parent node of the ath node.
If the ath node is the root node, which doesn’t have a parent node, p(a) = 0.

The other two parameters are chosen such that

1, p(a) =

0,
kq > 0. (5.2.44)
z? z ) p(a) # 07

Za —

Note that z, distinguishes whether the ath node is the left child or the right
child of the parent node, which are two available choices in a binary tree. Once
a tree p and (a, kq, z4) for each node are given, they specify the hyperplanes as

follows:

t=2g g Imal=2ka pla) =

0
e |2k (5.2.45)
a=Mp(a) @, p(a) #0.

Sq =
—1,-1 1 _
Sp(a)?a 172q 2¢q

Consequently, each s, at the pole is given by
lg—1 . la *Zla_1|m “m \722l“_1k
Sq = H Zpn(ay | (t@)” 2 g =m0 O @ n=0 Tpe) - (5.2.46)
n=0

where [, is the integer satisfying p'a(a) = 0. For example, the root note has

lo = 1. We also define mg = 0.
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Now let us evaluate the residue at the pole . First we consider NV < 4,
in which case, the pole is always simple. We have to sum the residues
for all possible p and (a, z4, kq). Combined with the flux summation, they give
rise to the expression for the index factorized into the perturbative part and
the vortex parts sketched earlier. In particular, the perturbative part can be

extracted out by evaluating the residue for m, = k, = 0, which is given by

N
3 (anz; qz) (U71u72q2; q2)
Z rt(z t q) (1 — 1'Ub) — a
. 1§al;l[§N ‘ (}_[1 (va 1; (12)’ (”aUQ; q2)
N

1 (vavb 24 (vavy 'v7le?; ¢%) (vavy, 'umtvg% ¢?)

X
iy (va tosum20%¢%) (va M opv; ¢2)' (va opuPo L 2)

(5.2.47)

where

- (H ) o (5.2.48)

11 11
u=1t2q2, v =zt2q2.

Note that v, reduces to v'a=1 if 2, = 2 for all b. (a; ¢*)" is defined around (5.2.16]).
Namely, it is defined as an ordinary gq-Pochhammer symbol up to the vanishing
factors discarded. Note that there are N such vanishing factors, which arise due

to the pole we have taken.

The expression is specified by a binary tree p. Note that a binary
tree of N < 4 nodes can be represented by a 2-dimensional box diagram; e.g.,
see figure for N = 3. The left child node is placed on top of the parent
node and the right child node is placed at the right side of the parent node.
Among the box diagrams in figure the second and the fourth diagrams
have vanishing residues due to the factor Hbe:l(”a”b_ Y42 ¢?) in (5.2.47). This

factor gives an extra zero whenever we have diagonally adjacent boxes along
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Figure 5.2: For our N' = 4 SYM example, the contributing poles are labeled
by Young diagrams. For N = 4 there are five diagrams, among which the
third diagram corresponds to a degenerate singularity where five hyperplanes
intersect rather than four.

the top-right direction. Thus, for NV = 3, only the first, third and fifth diagrams

contribute.

Such box diagrams can label the residues for higher N as well. One may
worry that the correspondence between the binary trees and the 2-dimensional
box diagrams is not one-to-one for N > 4. Indeed, there are two such cases.
First, there exist tree graphs that do not have box diagram counterparts. That
happens only if two nodes of the binary tree are overlapped when they are
represented in the 2-dimensional box diagram. However, such a tree with over-
lapping nodes has the vanishing residue due to the first factor [], £b (1 — v, 1vb)
of . Thus, one can always find the corresponding box diagram unless

the tree graph has the vanishing residue.

Second, there can be multiple tree graphs that are mapped to the same
box diagram. This is related to the possibility of higher order poles, which
will demand us to modify the formula . In that case, more than N
vanishing factors appear in the denominator of if we forget about the ’
symbol for a moment. Such a case, for instance, happens for the third diagram
in figure One can associate two different tree graphs to this box diagram
because the top-right box can be either the right child of the top-left node or
the left child node of the bottom-right node. This is exactly due to the fact
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that the five hyperplanes intersect at this pole rather than four. Although the
singularity is unique, there are two ways of picking up four linearly independent
hyperplanes defining this singularity. Therefore, is wrong if p does not
uniquely label the poles. Instead, we should seek for a formula in which the box

diagrams rather than p label the residues.

Now recall that if there are diagonally adjacent boxes along the top-right
direction, they yield an extra zero. For the third diagram in figure this extra
zero cancels out the extra pole from the degenerate hyperplanes such that the
singularity becomes a simple pole. Thus, a simple modification of will
give the right residue formula if we discard the extra vanishing factors in the
numerator and the denominator simultaneously. In our N/ = 4 SYM example,
for arbitrary box diagrams, an extra vanishing factor in the denominator is
always accompanied by an extra zero in the numerator. Furthermore, a pole
corresponding to a non-Young diagram has the vanishing residue as we have
demonstrated for N = 3. Thus, the contributing poles are all simple and labeled

by Young diagrams.

Collecting all, we write down a modification of (5.2.47) in terms of the

Young diagrams. For a Young diagram ), the perturbative part is written as

follows:
_ (vad®;¢%) (v3 'u?¢% ¢°)
ZS)]ert(Z’tv@ = H (1 — Uy 11)[,) H a—l, 2\/ a( 2. 2)
a#bey ac)y (Ua q ) vatl™s q
) H (vavb_lu2; qz)’(vavglv_1q2; q2)(vavb_1u_21)q2; )
by (vaopuT2g% %) (va topv; ¢?) (vs topuPu L g2
(5.2.49)
v, is now given by
vy = Zi(a)ﬂ'(a)(tq)%(i(a)ﬂ'(a)ﬁ) (5.2.50)
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where (i(a),j(a)) is the position of box a in the Young diagram ). Again’ denotes
that the vanishing factors are discarded. Note that the label a = 1,--- | N of
each node that we began with is now irrelevant. It will turn out that this is
also true for the vortex parts, so we have N! identical contributions, which are

canceled by the symmetry factor 1/N.

Now we move on to the vortex parts. After evaluating the integral by taking
the non-vanishing residues, we are left with the summation over Young diagrams
as well as the two summations over m, and k.. The latter sums over m,, k, can
be reorganized into the sums over the vorticity and the anti-vorticity, which are
completely factorized for given Young diagram ). The detailed computation of
the vortex parts is similar to what is done in [183]. It turns out that the result is
simply given by making the following replacements in Zyoriex in , which

we obtained from the Dy x S' index in the previous section:

N
[T=T1. o' = v = @O 1g)3(@H@-2 gk, Q= Qeig s .

a=1 ac)y
(5.2.51)

k, is a non-negative integer assigned to each a€) such that those integers are
non-decreasing in each row and column of ). This resembles the standard Young
tableau, in which the associated integers are strictly increasing rather than
non-decreasing. Taking into account those modifications, we have the following

expression of Z for the Young diagram }:

vortex

Zex(@2tiq) = D (Qtag 2) Tk (H (5 510+, ) (5.2.52)

2oy (W03 % ?) -y,

I (V03 03 ¢%) gty (U205 0605 G2) — eyt

X
1, . 5 2y 02 02
azbey (Va 063 %) ok, (W00 060%5 4%) —ky ok,

If we take Y = (1Y), (5.2.52)) reduces to Zyor in the previous section.

In the end, combining the perturbative part and the vortex parts, (5.2.41))
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is written in the following factorized form

A~

ZSQXSI(szvt q Z pert z,t q vortex(QvZ t C_I) vortex(Q _lvt_l’q_l) :
V=N
(5.2.53)

The expression (|5.2.53|) is also checked numerically up to N = 3 as a series

expansion in ¢ up to ¢>, and also at N =4 up to ¢>.
5.3 Cardy limit of the index on S? x S': set-up

In this section, we set up a direct framework of making the Cardy limit ap-
proximation of the index on S? x R. The result will be connected to the vortex
partition function that we studied in the previous section. Although we focus on
the A/ = 4 Yang-Mills theory for M2-branes introduced in the previous section,
the framework applies to other 3d QFTs. We shall provide similar analysis for
the ABJM theory in section 4.3.

The index of our N = 4 gauge theories on S? x S is given by (e*é = Q) [163]

13 i _1 3
1 Imgsl (e glmerlz 7172 g2 ¢%) (e g 2t 2 g2 ¢7)

qt

N _1 3 ; _1 3
i dO[a _52 lmaH( t_l)\mu\( 1Oéaq|ma|t 2q2;q2)(elaaq|ma|t 2q27q2)
{m}) ! i0agimalth g3 ; g2) (e—teagimalth g3 g2
ol e (etraglmalts g2 ¢g2) (e~ iaglmaltzg2; ¢2)
N .

i ~ cinangmaly TT 78 (erertq!Imerl; g?) (5.3.1)
# abel (elaabt71q1+|mab‘; q2)

N

a,b=1

(glaabq|mab|zt2 q% qz)(eiaabq|mab|z_1t%q%; q2)
Here, the factor 1 — el@abglmay coming from the Haar measure and the
aFb

N = 2 vector multiplet may be written as

. Qb |mab|- 2
H(l _ ezaabq|mab\) — H (e q 7q ) , (5'3‘2)

azb oy (g HImal; g?)

which was relevant in section 2 when we discussed the factorization of this index

into vortex partition functions.

1 3
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We would first like to rewrite the index in the following way. Fach chiral

multiplet contributes the following factor to the contour integrand:

(e_ip(a)ql_Ry_l) lp(m)| (e—ip(a)QQ—RHP(m)\y—l; )

For the chiral multiplets in our N = 4 theory, R = % and y is given by a suitable

(eir(@) gRHIp(m)ly; 42) (5.3.3)

combination of ¢t and z. For the adjoint chiral multiplet in the A = 4 vector
multiplet, this formula applies with R = 1 and y = t~!. Even for the N' = 2
vector multiplet, inverse of this expression applies at R = 0 and y = 1 if one
uses the decomposition (5.3.2). One can show that [185]

((Zfip(a)qlfRy—l) Ll (el g2 il tmly 1 g2) = (eip(a)quyl)_p(;n) (e Pl g2 Roplm)y =1, g2)
(eip(a)qR""P(m”y; q2) (eiﬂ(a)qR_p(m)y; q2) ’
(5.3.4)

This identity states that one can replace all |p(m)|’s by —p(m). (Of course one

can have a similar identity replacing |p(m)| — +p(m).) One also finds

(eip(a)qlngfl) IP(;n)\ (eip(oz)q2—R+|p(m)|g—1; q2) )_p(;n) (eip(a)QQ—R—p(m)g—l; q2)
2
q°)

_ <eip(a)qlng71
(e—ip(a) qR+|P(m)‘g; q2) (e_i/’(a) qR_P(m)g;
(5.3.5)
In our V' = 4 theory, one obtains a product of the two left hand sides of ([5.3.4])
and (5.3.5)) for each hypermultiplet. The above identities state that this factor

can be replaced by

(ql—Ry—l ~_l)*9(m) (ep(ﬁ)QZfRyfl; q2)(€p(u)q27Rgfl; q2)

(erWgly; ¢2) (er@gly; ¢2)
where ¢ = e ? and v = fm + ia. We shall apply this formula for all weights

(5.3.6)

p in a representation R, so that there is a product [] pER which comes with
holomorphic p(u), while []_ g comes with anti-holomorphic p(%). In other
words, one obtains the following factorization of the integrand into ‘holomophic’

and ‘anti-holomorphic’ parts:
ﬁ(t/ )Z%(e““t‘%q%;q?) S (eterat2g3; %) ﬂ(t/ )%(6““t‘%q§;q2) (et Eg2 P
q 11 T 1 : q 1 1 - 11 :
a=1 (eUet2q2;¢?) =1 (e"abzt2q2;q?) G5 (eat2q2;q?) =) (eMavz1t2g2;q?)
(5.3.7)
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Here, we inserted R = % for all hypermultiplet fields, y = ¢ = t3 for funda-
mental hyper, and y = t%z, y = t3271 for adjoint hyper. The ‘holomorphic’
part depending on u, is part of the integrand appearing in the Dy x S! index
1} after setting e¥e = s,, except the factor (t/q)%g that will be accounted
for shortly. The ‘anti-holomorphic part’ will also have a similar interpretation

on Dy x S'. As for the integrand coming from the A = 4 vector multiplet,

N .
. _Imgpl . . [m gl (e_zaabtql'i'lmabl- q2)
1Qab _ pt%ab |mab‘ 1Qap )
le(e q)” 2 (1—¢€'q ) |b | 1(6 ) (eiabt—1gl+Imas]; ¢2)
a a.b=

N

' ; —icap gl .2
_ H _mab Imab| (e ZOéabq|mab‘ q H - | ab‘ (e~ieavtq +|mab|’q)

(5.3.8)

atb (6 laabq2+|mab| q ab=1 (eiaabt71q1+‘mab|'
the first factor comes from the N' = 2 vector multiplet, and the second factor

from the N' = 2 adjoint chiral multiplet within the A" = 4 vector multiplet.

Applying (/5.3.4]), one obtains

1 q%)

)

U ab- 42 Ug .42
H(e*m“bq)m;b et g%) H (e~ ang)~ map (e%avtq; ¢°) _ [Tazp(e"e:q?) _Ha,b(eqibtq’q ) .
euCqu q i (euabt—lq; q2) Ha’b(euabt_lq; q2) Ha;ﬁb(euabQQ; q2)
(5.3.9)

The holomorphic part is again part of the integrand appearing in the Dy x S*
index ([5.2.11]).

Finally, the fugacity factor e=¢2a™ma for the topological U (1) can be writ-
ten as

. é é _
e~6Xama — o725 Latap T35 2ala (5.3.10)

which again factorizes to holomorphic and anti-holomorphic part. Combined

with the factor (¢/q)%=a 18 from hypermultiplets, one obtains
q

28 La e 58 o Te (5.3.11)

e T2

where

N|=

et =e4(t/q) (5.3.12)
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is the FI parameter that appeared in the Do x S* index. (Recall that 27r¢ = %)
So one obtains a ‘formal factorization’ of the integrand of the index on S? x S*.
This is not a true factorization yet, because u,, 4, have to be partly integrated

(imaginary part) while partly summed over discretely (real part).

Before proceeding, with the formula for the index with all absolute values of
p(m) removed as above, we identify the periods of the chemical potentials and
present a natural basis. This will be useful later for understanding the precise
structures of the saddle point free energy. From the integrand including the flux-

dependent zero point energy factor, one identifies the following periodicities:

£ ~ &42mi (5.3.13)
(T,8) ~ (T =+2mi,[+ 2mi)
[~ f+2m

[, Biaq) ~ (E£mi, f+mi,+2mi;a, + ) (5.3.14)

)
(T.€, fiaa) ~ (T +2mi,&£mi, f+mia,+7)

T 2 =ef. The + signs appearing on the right hand sides are inde-

where t = e
pendent. Note that the shift oy, — a4 + 7 of the integral variables is sometimes

required to see that the integrand is invariant. Now let us define the variables,

. T B . T B T B8 T B
A= —E4+—1+2 Ag=é+r—1 2 Ag=f-—12 Ay=-—fF-—12.
1 §+2+2, 2 £+2+2, 3=f 5 T3 A f 5+5

(5.3.15)

Note that these four variables can be regarded as four independent chemical
potentials of the index. They are related to 5 as A1+ Ao+ A3+ Ay —28 =0,
so that the sum over them is approximately zero in the Cardy limit 8 — 0. In
terms of these variables, the 12 periodicities identified above can be rephrased
as

(A],AJ)N (A[—I-Qﬂ"i,AJ:l:Qﬂ‘i) (5.3.16)
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shifts for 6 possible pairs Ay, Ay among A 23 4. These are the basic periodici-
ties expected for the SO(8) chemical potentials, coupling to vector, spinors or

their product representations. In terms of Aj’s, the index can be written as
Zgoo1(Ag) = Tr [(—1)Fe* o1 A1(Qr) (5.3.17)

where Q;’s are the U(1)* € SO(8) Cartans, and J is the angular momentum
on S2. A; should satisfy

4
Re(Af) >0 , Y A; =23, (5.3.18)
=1

as they are conjugate the charges Q7 + J which are non-negative in the BPS

sector and furthermore can grow to +oo.

Let us now take the 8 — 0 Cardy limit of the index, keeping small complex
S with Re(8) > 0. The idea [186] is to now regard u, = fmg, + i, as a
continuum complex variable, and replace the sum over m, by integration. The N
dimensional integral over o, and sum over m, are replaced by a 2/N dimensional

integral over u,, U,. One obtains

N N _1 3 N _1 3 ab- 42
2 [TLan 2 [ b gy et babiat) Tt i,
a=1 a=1 (euatiqi;qQ) a,b=1 (euabzt§q§;q2) Havb(euabt_ a4 )
x/ﬁd_ 5 T ﬁ ("t 2q75%) T (e"tz't2q2;0%) Tlap(e™ta; )
Uq € a= — .
e} @ (eﬁat%q%;(ﬂ) ab=1 (eﬁabzflt%q%;(‘ﬁ) Ha¢b(eu“bq2;q2)

a=1
Here, we have formally separated the integrands into u dependent parts and
u dependent parts. Note that, with complex § (which will play crucial roles
later in this chapter), u, and @, are not complex conjugate to each other. As
we took 8 — 0 limit to make the continuum approximation for the summation
of mg, the g-Pochhammer symbols appearing in the integrand should also be

approximated to dilogarithm functions as follows:

(2% ¢%) 7 exp [— Li;éx)] : (5.3.20)

3 1] &=L —
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We shall seek for the saddle points of u,, 4, which will approximate the integral
in the g — 0 limit. While seeking for the saddle points, one can separately con-
sider the saddle points for u,, 4, independently, since the integrand factorizes.
During this course, whenever any of the x variables appearing in Lis functions
are larger than 1, i.e. [z| > 1, analytic continuations are made for those Liz(z)
functions. Whenever |z| is greater than 1, one would have to worry about the
branch cut issues of Lis(z) after making the analytic continuations. This is-
sue will be treated later when we discuss concrete problems. (However, ‘branch
cuts’ here should always be understood as singularities of the Cardy free energy

rather than signaling multi-valued functions.)

Here, note that the first line of (5.3.19) is the § — 0 limit of the vortex par-
tition function on Dy x S', considered in section 2, corresponding to the vertical

Young diagram (1VV). The holomorphic integrand is given by the exponential of
1 1 1
=S + (L12 eUat3) — Lig(eYat™3 ) 5.3.21
5 | €S+ 3 (et - e 5:321)

+> (LiQ(e“abzt%) — Lig(e%bzt™2) + Li2(e"abt—1)) — ) " Liy(e)
a,b a#b
On the other hand, the 8 — 0 limit of the integrand on the second line of

can be obtained from by flipping (5,&) — (=8, —&) and (t,2z) —
(t71,271). This is the same as the Cardy limit of the anti-vortex partition
function of section 2. Therefore, at least in the Cardy limit, the two factors in
(5.3.19) can be interpreted as the vortex-anti-vortex factorization which refers
to a particular point in the Higgs branch (corresponding to the vertical Young
diagram). In particular, we have shown that the particular vortex partition
function chosen in section 2.1 will provide the Cardy saddle point of the index

on S? x 81, which is not clear at all in the factorization formula of section 2.2.

Note that, after the factorization, the periodicities ([5.3.16)) of the four chem-

1 -1 =
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ical potentials A; are not manifest in each integrand. Therefore, when we study
the Cardy (and large N) limits in the next section, we shall first make a suitable
period shifts of Aj’s to bring them into a canonical chamber, and then factorize

using the setup of this section.
5.4 Cardy limit: results

In this section, we study the Cardy limit of our index on S? x S'. We shall
discuss in sections 4.1 and 4.3 the large N and Cardy limits for our NV = 4
Yang-Mills theory and the ABJM theory, respectively. In section 4.2, we study
the finite V Cardy limit. The Cardy limit is defined as § — 0 with other

chemical potentials (e.g. Ar’s) imaginary and finite [75].
5.4.1 Large N Cardy free energy and black holes

In this subsection, we study the large N free energy of the index on S? x S!
in the Cardy limit. In section 3, we have seen its connection to the partition
function Zp,.g1 on Dy x St ~ R? x S! at a particular point on the Higgs

branch.

The holomorphic factorization of section 3 obscures the periodicities of
chemical potentials if one pays attention to the holomorphic factor only. So be-
fore performing the factorization of section 3, we should first specify the ranges
of the imaginary parts of &, T, f. (Recall that t = e”, 2z = ef, 271 = %) Note
that these three variables are in the natural convention of the vortex partition
function of section 2. Especially, £ is related to the fugacity of the topological
charge (on S% x S1) by Q= e=€ = ¢ 2t712Q = e~ ¢-1/2-5/2 Without losing

A5
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generality, we take

2mpr < Im(€) < 2m(p1 + 1), 2mpe <Im(T) < 27w(p2 + 1) (5.4.1)

T T
2mps < Im <f—2> <2m(ps+1), 2mps <Im <_f_2) < 2m(ps+1)

for certain integers p1, - - - , p4. (It will be convenient later to set ranges as above.)
Although we gave ranges to the imaginary parts of chemical potentials, they
are (approximately) pure imaginary in the Cardy limit. This is because, as we
take § — 0 with Re(8) > 0, demands Re(A;) — 0T for all I’s. Adding
the last three inequalities of , one obtains

21(p1+p2+p3) <0< 2m(pa+p3+ps+3) = pa+ps+ps=-—1,-2. (54.2)

We also recall the periodicities of these variables that we explained in section
3. Since we are now taking the Cardy limit 8 — 0, we collect the periodic shifts

which leave small 8 invariant:

(€.T,f) ~ (€ +2mi, T, f) ~ (&, T, f +2mi) ~ (€, T + 2, f £ i) . (5.4.3)

In terms of the variables &, T, f — %, —f— %, the four shifts above are rewritten

as
(67s-F-r-3) ~ (e+omiTr-G-r =) ~ (6T +omis = 5 - omi—f - )
~ (5,T+27Ti,f—§,—f—§—2m’) ~ <§,T,f—€+27ri,—f—§—2m'> . (5.4.4)

Using these four period shifts, one can set pi,p2,p3,ps to be one of the two

cases:

regionl : py=-1, ppo=-1, p3=0, ps=0

region Il : p; =0, po=0, ps=—-1, p3=-—1. (5.4.5)
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Notice that, each of the last three shifts in picks a pair in ps, p3, ps, and
shifts this pair by (+1,—1). So the case I is for ps + ps + p4 = —1 in ,
while the case II is for ps + p3s + p4 = —2. £ has its own shift symmetry in
, which we have suitably set as for later convenience. Collecting
all, it suffices to consider the two cases of only.

Here, recall that the index on S? x S! is related to that on Doy x S! as

follows:

lim Zs2c51 (8,6 £, 7) ~ 1 Zp, 50 (.6, £, 1) Zp, s (=8, =€ =f, =) -
(5.4.6)
From (5.4.6), we (formally) find the following expression

ZSQXS1 (ﬁ’ é? fa T) ~ ZS2><S1 (_B’ _ga _fa _T) ) (547)

for the free energy in the Cardy limit. Thus, from the Cardy index in the region
I of (5.4.5), one can easily generate that in the region II, since the two regions

T T
I:—27 <Im(§) <0, —27r<Im(T)<O,O<Im<f—2><27T,O<Im<_f_2><277

II:0<Im(§) <2m, 0<Im(T) < 27, —27T<Im<f—€> <0, —2W<Im<—f—€> <0
(5.4.8)
are related to each other by the sign flips of (3, &, f,T). So from now on, we focus
on the calculations in region I. Then, from , in order to obtain the Cardy
index on S? x S! in region I, one should compute two Cardy indices on Dgy x S?.
However, we need not compute them independently. To see this, first note that

the Cardy limit of the latter index takes the form of log Zp, g1 ~ —f(giérf)

Now consider the complex conjugation of this free energy. By definition of this

index, which traces over the Hilbert space with integer coefficients and real

charges, the complex conjugated free energy can be obtained by simply complex
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conjugating the chemical potentials. So one obtains

M ~log Zp,xs1 (B, & —f,-T). (5.4.9)

IOgZD2x51<137€7f7T) ~ =

At the last step, we used the fact that &, f,T are all imaginary in our Cardy
limit. Therefore, the nontrivial part F(—§, —f, =T) of Zp,«s1(—5, =&, —f, =T)
in (5.4.6) can be obtained once we compute F(&, f,T) in region I.

We compute the large N and Cardy limit of log Zp, . g1(5,&, f,T) in region
I. The Cardy limit 8 — 07 of Zp,, 51 can be evaluated by the saddle point

method as

1
Zszsl ~ exp <—2BW*> y (5410)

with W given by

N
W=N (Liz(Zt—1/2q1/2) ~ Lig(2tY2¢71/2) = Liz(t_1)> +) (g log 54 + Lia(set~Y/2¢1/2) — LiQ(Satl/Qq_l/Q))
a=1

+ Z (Lig(sasb_lq_l) — Lig(sasb_lt_l) + Lig(sasb_lzt_l/2q1/2) — LiQ(sasb_lztl/2q_l/2)> )
1<a#b<N
(5.4.11)

Here, we used the asymptotic formula of the g-Pochhammer symbol in appendix
A. W* denotes the saddle point value of W. Saddle point equations are given
by (no summation for a):
$a0s, W = € + Lij (54t~ /2¢"?) — Liy (sat"/ ¢ /?) + Z [Lil(sasb_lq_l) — Liy(spsq tgh)
bta
— Liy(sqsp 1) 4 Lit(spsq 1t 7Y) + Lip (sasp L2t~ 1/2¢1/?)
— Lil(sbsaflztflﬂqlﬂ) — Lil(sasbflztl/qul/Q) + Lil(sbsaflzt1/2q71/2) =0.
(5.4.12)
Note that s, = 0 is a fake solution since the original equations 0;, WV = 0 have
1/s4 factors. By redefining parameters and exponentiating both sides, one can

see that the above saddle point equations (5.4.12]) take the form of the Bethe
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ansatz equations [171) P Finally, combining (5.4.6)), (5.4.9), (5.4.10), one obtains

. WHE, T = WHE, F, Tz 7 g
log Zstrs1 (8,6, £.T) ~o — &) @2; e r)=e—r-1)

C20m VG D) g =, ,-T)
283 ’

(5.4.13)

where &, f,T are taken to be pure imaginary while taking complex conjugations.

We now analytically find the relevant solution of ([5.4.12). We will basically

follow the procedures used in [66]. Based on the discussions made so far, we

consider the region I of ([5.4.5),

(5.4.14)
where &, T, f are imaginary. Our ansatz for the eigenvalue distribution is given
by

sa = speN " F@ti(T@) (x1 < T(q) < x3) , (5.4.15)

where so > 0 is a positive real constant. Here z(,) and y(z) are real, which
we take to be at O(N”). We introduced a factor N® with 0 < a < 1. The
constant « will be determined later. Also, we assumed that the eigenvalues are
distributed in [z7,z9] for some 27 < z2. Then, we introduce the continuum
variable z(,) — x assuming that we ordered the eigenvalues to make z to
be an increasing function of a. This particular ordering cancels out the Weyl
factor IV!. In addition, we introduce the density function of the eigenvalues as
1 da

p(z) = 5 Here, we further assume a connected distribution of eigenvalues

where p is always positive in (z1,x2).

3In (5.4.11) and (5.4.12)), we have no essential need to keep ¢ — 17 in our Cardy limit. In
fact we shall insert ¢ = 1 in these formulae shortly, except that we temporarily need ¢~ ! factors
for the terms Liz (sasb_qul) and Li (sasb_qul), as natural regulators to keep the saddle point
slightly away from the branch cuts.

2> 1 ;
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In this setting, we first take the continuum limit of WW. We will only consider

the leading contribution at small 5, plugging in ¢ = 1 in (5.4.11)) and (5.4.12). W

can be divided into two parts, W = Wt + Wint. Weat denotes the contribution

from the external potential:

Wear = N [ dapla) (108 ) + Lia(s(w)™72) — Lin(s(@)e*/2)
1 (5.4.16)

Wint comes from the interactions of eigenvalue pairs:

Wine =N / " dop(a) / " i p(a) (Lia(s(a)s(a') ™) + Lin(s(a")s(x) ")
— Lis(s(2)s(z’) " "¢71) = Lia(s(2)s(z) ¢~ 1) + Lis(s(z)s(z’) 2t~ /?)

+ Lig(s(a')s() ™ 2t71/2) = Lia(s(a)s(a’) "' 2t"/2) — Lig(s(a)s(a) ~'2t'/2)) .

(5.4.17)

The main strategy to extract the leading order contribution at in large N is to

use the following integral formula [160]:

x>0 o x o0 en(fN"‘aH»iy(a:))
J R R A
0 0

ns
n=1

> 1 anO‘:t
Zi zny(z)
— ns niNe

N~=p(0)Liss1(e¥?) +0(N*2°‘) :

(5.4.18)
where we used the power series definition of the polylogarithm function on the
first line. One can see that the integral on the second line is suppressed by a
factor of 1/N“ compared to the boundary term, by performing integration by
parts repeatedly. Note that we assumed dp/dz, |dy/dz| < N¢.

2> 1 ;
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Applying

Lin(a) + (—1)"Liy(a~t) = (22? B, (lgij - p> (2mp < Im(loga) < 27(p + 1), a ¢ (0,1))
1 9 1 3 3 5 1
Bi(z)=2—=, Ba(z)=a"—2x+—-, B3(z)=2"— 2"+ -2, -, (5.4.19)
2 6 2 2
Wzt is approximated at large N as
xr2
Weat = N1 [5/ dxp(z)x
x1
_ max(z2,0)
(e (| I 200 Y ] o
4m am max(0,21)
To max(x2,0)
= Nlte 5/ dap(z)z + (T — 2mipy) / dep(x)x| +O(NY) .
z1 max(0,z1)
(5.4.20)

Here, |a] means the unique integer n satisfying n < a < n + 1. The last step

is the definition of the integer p}, whose values will be specified in a moment.

One can see that the specific form of y(z) does not affect to the leading order.

Only the range of y(z) contributes because it appears in the |..

.| symbols. (Its

specific form may affect the sub-leading order in 1/N, which is not of our interest

here.) As part of our extremization problem, one should extremize ¥V with

respect to y(x). However, it seems hard to make a fully general extremization

of the functional containing a discrete function |[...]. To further manipulate,

we assume that y(x) does not pass across the branch cuts which cause the

discrete jumps. One can regard it as part of our ansatz. There are two branch

cuts from two |...]’s. Hence, we should demand y(x) to be within a specific

region bounded by the two branch cuts. There are two possible regions, with

the following values of pl:

0 0y < O (mea am) ¢ ph= 1
(i) —ImQ(T)< (x)<27r+1m§) (mod 27) : ph=0.(5.4.21)
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Later, we will determine which case yields nontrivial large IV solutions.

We then consider the large N approximation of Wj,;. Again to simplify the

manipulations after using (5.4.19)), (5.4.18)), we assume that y(z') —y(x) at 2’ >

x does not pass across the branch cuts. In particular, during this manipulation,
one apparently encounters terms at order O(N?T%) whose coefficient is nonzero
unless

-1 (2 >2). (5.4.22)

{y(ﬂv’) - y(;r) + Im(B)J _

(Here, we restored the subleading O(f) correction by not strictly plugging in
qg=11in , which is a convenient and natural regularization.) As we just
started from a QFT with N2 degrees of freedom, There will not be physical
saddle points whose free energies scale like N2t®. So we impose the condition
above on y(x). There are other conditions for y(z) so that no branch cuts
are crossed at all. Collecting them all, one obtains the following conditions for

x> x:

=21 < y(2') —y(x) + Im(B) < 0 (5.4.23)
0<y(2) —ylz) —Im(T) < 27
0 <y(@)—ylx)+Im(f —T/2) <2r

—2m <y(a') —y(z) +Im(f +T/2) <0 .

Here we quote a result that it we shall eventually pay attention to small 3
satisfying Im(8) < 0. This is because, once we compute the free energy and
go back to the microcanonical ensemble by the Legendre transformation, the
dominant saddle point of our interest will always satisfy Im(3) < 0. This is
basically the result of [74], which we shall briefly review later in this subsection.
With this assumed in foresight, the right inequality of the first line of

says that y(z) is a non-increasing function, i.e. y(z') — y(z) < 0 at 2/ > =.

150 A 2-tf) 8 3

'||



Here, the equality in < is allowed because of the regularization with Im(3) < 0.
With this non-increasing property assumed, all the right inequalities of the
second, third, fourth lines of are automatically satisfied. Also, the left
inequality on the first line of is a consequence of the left inequality on
the fourth line. Finally, the left inequalities of the second, third, fourth lines
take the form of y(z')—y(z) > A with negative real numbers A. With y(x) being
a non-increasing function in the interval (x1, x2), such a condition is equivalent
to y(z2) — y(x1) > A, since y(z2) — y(x1) is the minimum of y(z') — y(z). So
collecting all, can be rephrased as

y(z') —y(x) <0 (for 2’ >x), y(x2)—y(z1) —Im(T) >0, (5.4.24)

y(ze) —y(z1) + Im(f —T/2) >0, y(z2) —y(z1) +Im(f +T1/2) > -2 .
A particularly important possibility for y(x) would be
y(z) = constant . (5.4.25)

Indeed, in the next subsection, we will numerically see that the Cardy saddle
point solutions satisfy y(x) = 0 at arbitrary finite N. With the conditions
(5.4.24)), one obtains the following result for Wiy after some calculations:
N2 T\ N2>« T T\ [*2
Wint = ——— (T'+27i) |—f —= | — (TH+2mi) (f—= ) |-f— = / dap(z)? + O(N?72)
2 2 2 2 2) /.,
(5.4.26)
Here, we used f ;1 > p(x)dx = 1. Wipt in (5.4.26)) shows short-ranged interactions

only between nearby eigenvalues. One can see again that the specific form of
y(x) does not matter at the leading order. Since we are only interested in the

leading free energy in N, we will not care about y(x) below.

As a side remark before proceeding, we comment on the first term of ([5.4.26))

proportional to N2, which does not depend on the eigenvalue distribution p(z).
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The terms in Wext, Wint which depend on p(x) will be soon extremized below at
a= %, with the expected N 3 scaling for M2-branes. However, the first term of
proportional to N2 might apparently look contradictory to the expected
M2-brane behaviors. Here, we note that there is a very natural interpretation
of such a term in the context of of the partition function on Dy x S'. Namely,
if one considers a 3d QFT on Dy x R or Dy x S', boundary chiral anomalies
may be induced on S x R or T%2. We chose the boundary conditions so that the
U(N) gauge anomaly is canceled. But there are boundary 't Hooft anomalies for
the global symmetries which are probed by the chemical potentials T', f. Since
these boundary anomalies are proportional to N2, the spectrum on Dy x R
should contain such light degrees of freedom at the boundary. So even if the
bulk physics would only see N 3 degrees of freedom, log Zp, g1 will see certain
terms at N? order. This is our interpretation of the first term of . If one
combines two vortex partition functions to make an index on S? x S without
any boundary using , the two terms proportional to N? indeed cancel,

- ;(T + 2mi) (f - 1;) — (complex conjugate) =0 . (5.4.27)
This is consistent with our interpretation. Also, note that we have no terms
scaling like N2 in which depend on the dynamical gauge holonomy =z
(and accordingly not p(z)). This is because our QFT in section 2 has no bound-
ary gauge anomaly. On the other hand, as commented briefly in footnote 2, p.7,
we found it quite tricky (if not impossible) to provide simple boundary condi-
tions for the ABJM theory without gauge anomaly. This will make the large N
calculus very difficult. In section 4.3, we will introduce a rather ugly factoriza-

tion for the ABJM index which breaks the U(N) x U(N) gauge symmetry, to

circumvent this problem.
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Collecting ([5.4.20) and (|5.4.26]), one obtains

T2 max(z2,0)
W ~ Nite 5/ dep(z)z + (T — 2miph) / dxp(x)x
1

) max(0,z1) (5.4.28)
N @ T T *2
- (T+2mi)(f-=)(-f-% / drp(x)? +Wo
2 2 2) /.,
with Wy = —NTQ (T + 2mi) (—f — %), where p), is either —1 or 0, as shown in

. W)y can be ignored during our extremization problem. We extremize W
with p(x) in the set C = {p| [ p(a)de =15 p(z) >0 pointwise}. As N — oo,
in order to get nontrivial solutions, We,: and W;,: — W,y should be at the same
order in N. So we will now set a = % Introducing the Lagrange multiplier A,

we extremize the following functional, where W = W — Wj:

W min(0,z2) max(z2,0)
N = ¢ dzp(z)z + (£ + T — 2miph) / dxp(x)x (5.4.29)
2

min(z1,0) max(0,z1)

—% (T + 2mi) (f - g) (—f - Z) /: dzp(x)? + A (/:2 dzp(z) — 1> :

When 1 < 29 < 0 or 0 < x1 < x9, one can see that there are no solutions

for x1,xo extremizing W. Thus, a nontrivial saddle point only exists when

x1 <0 < x9. In the last case, the extremal p(zx) is given by

AM+4¢x
p(z) = { THr)CI-T)(=2/-T) ° nsesl (5.4.30)
AN+4(E+T —2miph )z 0<x<a

(T+2m)(2f-T)(—2f-T) °
From the normalization condition fff p(x)dx = 1, the Lagrange multiplier A is
given by

(T4 21) (2f ) (-2] —T) — 2(¢ + T — 2righ)a} + 2647
4(xg — 1) '

With pure imaginary &, f, T, p(x) is automatically a real function. Inserting the

A= (5.4.31)

above p(z) and A back to W, one obtains

W NS —129% + 129(T'2% — €22) + 22 + T2 — dwy20(6222 + T"%22) + 66T 2323
24’}/(1‘2 — .%'1)

9

(5.4.32)
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where T' = £+T —2miphy, v = (T+2mi) (f — %) (—f - %) Then, differentiating

the above W with 1, T2, the extremal x1, x5 satisfies

(T + 2mi) (2f — T) (—2f — T)

r1xry = 2(T — 27Tip/2) <0 (5.4.33)
2 (T +2mi) (2f = T) (—2f = T) (§ + T — 2miph) 50
= 26(T — 2miph) ’
2 (T+2m')(2f—T)(—2f—T)§>0
2T 264+ T — 2miph) (T — 2miph) ‘

The first condition is compatible with the product of last two, and we have been
careful so far not to make any square roots. Here, negativity of x;zs demands
ph = —1, so that one should choose the case (i) of . Also, the positivity
of 22, 23 demands —27 < Im(¢ + T) < 0. (Its range was originally —4r <
Im(§ +T) < 0.) Otherwise, we do not find any large N Cardy saddle point for
Sq’s in the region I of . In this set up, non-negativity of p(z) is guaranteed
in the whole region (x1,z2). In particular, one finds p(x;) = p(z2) = 0 at this

saddle point.

Inserting the above saddle point solution, the extremal value of W is given

by
o 3 LT+ 2m0) (2 — T) (<2 ~T)
3 T2 — T

+Wo . (5.4.34)

We took no square-roots so far to avoid branch ambiguities. We now explain
this final step. One should simply remember that, while taking the square roots
of the expressions for 2, 23 in , one takes the negative root for x; and
positive root for xo. The final result can be phrased in a simple manner by

recalling the allowed ranges of chemical potentials,

0 < Im(=¢), Im(§ + T + 27i), Im <f - Z) , Im <f - Z) <2m. (5.4.35)

Especially, all expressions appearing in Im above are ¢ times positive numbers.
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After plugging in the values of x1, zs in ([5.4.34)), one obtains

et 2 e o (5= 1) (<1 3) -8 o (- 7).
(5.4.36)

Here, the expression appearing in the square-root is the product of the four num-
bers appearing in ([5.4.35)), where each of them is i times a positive real number
in the Cardy limit. So the product of them is real and positive. Our convention
for the formulae involving square-roots, starting from , is to take square
roots of positive numbers only, and to take the positive root. This applies to
all our formulae below for the free energies in the Cardy limit. Sometimes our
formulae are used in the non-Cardy regime, e.g. in |74] to discuss dual AdSy
black holes. In this case, one takes the unique root which reduces to the positive

*

root in the Cardy limit Consequentially, the free energy log Zp,, g1 ~ _ZLB

is given by
3 2
log Zp,xs1 ~ —i \/22[ \/(—f)(f—FT—FQm) <f—§> <—f—€) +{4\;(T+2m') (_f_j;)
INELE (—5+T> <£+ T+2m‘> (f—T> (—f—T> +log Z (5.4.37)
- 38 2 2 2 2 s40, %

Wo

Whereézﬁ—i-%—i-g, Zop=e 25,

Based on the studies made on Zp,, g1, we now compute the large N and
Cardy limit of the index on S x S, using . Recall that in this formula,
we consider the imaginary part of W* in at pure imaginary &, f,T.
Using , the first term in is pure imaginary, while the second
term is purely real. So multiplying two Zp2,41’s in , O(N%) term is

doubled, while O(N?) term is canceled. In fact at this stage, we can present

4Equivalently but more concretely, the rule for taking the square root \/z of a complex
number z in the free energy of |74] is to take z in the principal branch —7 < Arg(z) < 7.
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both results in the two regions I and II as defined in (5.4.5). The large N Cardy

free energies of Zg2, g1 in the two cases are given by

log Zgzx51 (B,€, f, T) ~ F2i \/ggh \/<—é+ g) <é+ g + 2m'> <f - g) <—f - ;F) :
(5.4.38)

where the upper/lower signs are for the region I/I1, respectively. The existence
of two regions will play a rather important physical role below. We summarize

again that in the two regions, the chemical potentials satisfy

. T . T T T
region I : 0<Im<—§+2>,lm<§—|—2+27m'>,hn<f—2>,Im<—f—2><27r,

T ~ T T T
region 11 : —2W<Im<—§r6n+2>,1m<€+2—27Ti>,1m<f—2>,Im<—f—2><0.

To see the symmetry most transparently, we use the proper SO(8) basis given
by (5.3.15)),
s T B T s

Ay = —é+§+§ i £+g+§i2m’, As=f-gty . M=—f-o+5,

(5.4.39)
in the case I and II, respectively. This is an expression valid at finite 5. Com-
pared to (5.3.15]), we have only made a +27i shift for Ay in the case I/II re-
spectivelyﬂ These chemical potentials satisfy 0 < £Im(A;) < 27 in the Cardy

limit, and further satisfy

4
> Ap—28=d42mi, (5.4.40)
I=1

where upper/lower signs are again for the case I/II, respectively. In the two

cases, the free energy is given by

4V2N2 /AN ASA,

log ZSQXSI ~ F1 3 25 (5441)

®Note that the index Tr [(—I)Fe_A2Q2 -++] can be rewritten as Tr [6_(A2i2"i)Q2 ] by

absorbing (—1)¥ by 42mi shift of As. So the shifted variables are chemical potentials in the
latter convention for the index.
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This finishes the derivation of our large N Cardy free energy on S? x S'. The
free energy in other chambers of ImA; can be obtained by the period shifts of
Ar’s.

One can make a similar Cardy approximation with the ABJM model for
N M2-branes. We reported some difficulties in section 2 to study the vortex
partition function for the ABJM theory on Dy x S!, due to the diverse pos-
sibilities of anomaly-free boundary conditions. This will be closely related the
asymptotic factorization in the Cardy limit in the set-up of section 3. Namely,
we will have to factorize the integrand in a way that the ‘holomorphic’ and
‘anti-holomorphic’ factors separately do not respect the U(N) x U(N) Weyl
symmetry. We will not cover this part in this chapter and simply write down

the result:

1 3
2W2kINS
log Zg2 g1 ~ ;‘g;zm/AlAgAgm, (5.4.42)

where k is the Chern-Simons level of the ABJM theory. The derivation of the
above formula can be found in section 4.3 in [79].

describes the deconfined phase of our gauge theory as it scales
like N3/2 at large N. Together with (5.4.40)), (5.4.41)) precisely matches the

entropy function of electrically charged rotating supersymmetric black holes in
AdSy x S7 [74], which we discussed in chapter [2| Namely, [74] performed the

Legendre transformation, which is extremizing

4

S(Qr. J; A B) =log Zgaysi + > QrAr +28J (5.4.43)
I=1

with Ay, 8, subject to (5.4.40). Then it was shown that the resulting micro-
canonical entropy agrees with the Bekenstein-Hawking entropy of the BPS black
holes in AdSy x ST [82], upon inserting a charge relation satisfied by known an-

alytic black hole solutions. Therefore, we have statistically accounted for the
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microstates of the supersymmetric AdS4 black holes by deriving this free energy.

One important fact which is perhaps not emphasized in [74] is the following.

As one extremizes , the dominant saddle point has complex Ay, 8 as well

as complex value S, for the extremized ‘entropy.’ Its interpretation is given as

follows (See also [78]). The exponential of the saddle point ‘entropy’ Si given
by

S=(Qrd) — iImS.(Qr,J) JReS.(Qr,J) (5.4.44)

should somehow represent the large charge and large N degeneracies of BPS
states. Here we present an interpretation of the charge-dependent phase factor
€S+ as mimicking rapid oscillations between +1 as the macroscopic angular
momentum charges @)y, J are shifted by their minimal quantized units. If the
macroscopic bosonic and fermionic states are not completely cancelled at a
given charge order, the resulting integer after the partial cancelation can be
either positive or negative, depending on the precise values of charges. Semi-
classical Legendre transformation is not capable of deciding these signs, which
should depend on the precise quantized values of macroscopic charges. Our
interpretation is that, the macroscopic Legendre transformation can at least
imitate the rapid £1 oscillation by having an imaginary part of the saddle
point entropy S, [78]. However, to make this story more precise, one should
recall that the unitarity of the QFT demands the existence of complex conjugate
pairs of saddle points if they are not real. Indeed, the two cases I/II of
guarantee that such a pair exists for the physical saddle point. Then, adding

the contributions from the pair, one obtains
~ eRS cos (ImS, +---) | (5.4.45)

where now one obtains a real entropy ReS, and the cos factor is interpreted as

imitating the rapid oscillation between +1.
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Let us illustrate that the physical value of complex 3 that is relevant for the
Legendre transformation satisfies Im(5) < 0, which was assumed during the
computations. The general studies are made in [74], so we illustrate this fact in
the case when all U(1)* € SO(8) charges are equal: Q1 = Q2 = Q3 = Q4 = Q.
We therefore set Ay ~ % forall I =1,---,4 in case I. Then 1) becomes

C

2N3
‘%GN[N = —iB : (5.4.46)

c is a positive number. For any positive number ¢, the Legendre transformation

will yield Imf < 0. This can be seen by considering the extremization of (5.4.43)),

log Zg2 g1 ~ —1

which is now
S(Q,J; B) ~ —i% +4QA + 28T ~ —i% + 208 + 2miQ . (5.4.47)
After extremization, one obtains
S, =2/ =2icJ +2miQ , Bi= \/? . (5.4.48)
The square roots are taken so that ReS, > 0 and Ref, > 0. In particular, one

By = ,/% e T (5.4.49)

which indeed satisfies ImS, < 0. So Imf < 0 is the region of the chemical po-

obtains

tential which is relevant for our microstate counting, justifying this assumption
made earlier in this section. The set-up Img < 0 will also be assumed in the rest
of this section even at finite N, which will be justified whenever the effective

value of ¢ in the free energy is positive.

Before concluding this subsection, let us comment on the physics of (de)confinement
and the expectation value of the Wilson-Polyakov loops. These discussions will

shed more lights on the dynamics of this system.
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The reduction of the apparent N? degrees of freedom down to N 3 was
triggered by the condensation of magnetic monopole operators at the saddle
point. Let us discuss the relation in more detail. The condensation is measured
by the eigenvalues u, = Smg + ia, deviating from the unit circle, |s,| = |e%| #
1. The large N condensation is macroscopic, max |Smg| ~ N 3. More precisely,

one finds

Moy = | Bmgpt+icg| = |[Re(Bma)| = \/N|x(a)—a:(b)| , a(z) = N/x p(z")dx

" (5.4.50)
with # and p(x) being O(N?). The approximation = is possible because u, are
close to the real axis in our saddle point ansatz. xz(a) and z(b) are given by
the inverse function of a(x). Therefore, My, becomes much larger than 1 when
|z(a) —z(b)| > N~2. From the fact that z and p(z) do not scale with large N,
one concludes that My, > 1 if |a — b| > V/N.

M,y is the effective mass of the off-diagonal mode at a’th row and b’th
column of the adjoint fields in our QFT, provided by the magnetic monopole
operator. This mass becomes much larger than 1 if the mode is ‘deeply off-
diagonal’ |a —b| > v/N. Therefore, the light modes which can contribute to the
free energy in this monopole background should satisfy |a — b| < v/N. These
‘near-diagonal’ modes are a small fraction of the N? matrix elements. Since
the width of the near-diagonal region is v/N, the number of the near-diagonal
modes scales like N- N2 = N %, accounting for the desired scaling. Technically,
the two-body interaction potential Wiy for the adjoint fields is approximated
to a short-ranged interaction after making the large N approximation.
This is because only the near-diagonal modes remain light in the monopole
background. Therefore, we realize that the N 3 scaling of the free energy is due

to a partial confinement triggered by the magnetic monopole condensation. This
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partial confinement happens even in the high temperature limit of the CFT.

It is also interesting to consider the saddle point value of the Polyakov loop
in the fundamental representation, given by
P = 1 3 Uuq VNzy
=+ D et e (5.4.51)

a=1
with 2o > 0 at O(N?). —log P measures the free energy of an external quark
running along the temporal circle, in the grand canonical ensemble [57]. The
fact that —logP ~ —v/Nzy is negative implies that the presence of such a
quark loop is thermodynamically preferred by the system. Here, note that our
N = 4 Yang-Mills theory has dynamical fundamental fields. So at the saddle
point with a large expectation value for the Polyakov loop, the loop amplitude
for the dynamical fundamental fields will be amplified. In fact, this amplification
did happen in our calculus. Namely, while approximating Weyx to , we
encountered some Liz(s, ---) with |s,| > 1. These terms are the reason why

Wext is amplified as N — N1+ in (5.4.20)).

To summarize, the loop amplification factor N® for the fundamental fields
in Wext is balanced with the partial confinement factor N~¢ for the adjoint
fields in Wiy, to yield the N 3 scaling at o = % Both phenomena are triggered

by the monopole condensation.
5.4.2 Finite N Cardy free energy

In this subsection, we study log Zg2, g1 in the finite N Cardy regime. We have
already discussed in section 2 the Cardy limit at NV = 1, on single M2-brane.
Here we focus on the non-Abelian cases with N > 2. The main goal of this

subsection is to explore a finite IV version of the NV 3 degrees of freedom. Namely,
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we have obtained

2V2N2
lOg Z(O) ~ —17

as our large N free energy (in what we called region I). We are interested in the

VAL A AZA (5.4.52)

log Z
log Z(O)

ratio of our finite IV free energy log Z and the fiducial one log Z(q), to
see whether the partial confinement due to monopole condensation is stronger
or weaker at finite N. At N = 2, we shall present an analytic solution for the
Cardy semi-classical approximation. At higher N’s, we shall rely on numerical
methods to find the Cardy saddle points. Apparently, this might look similar to
the numerical studies made on the ‘saddle points’ of the S3 partition functions
or the topological index at finite N [66]/160]. However, in the previous studies

in the literautre, there are no small parameters to admit semi-classical saddle

point approximations at finite N. On the other hand, we do have small |f],

log Z

log Z(O) > 1

which makes our finite N results physical. We will always find

For simplicity, we first consider the case with A1 = Ay = Az = Ay = %l
(after shifting Ag by 27 as ((5.4.39))), which corresponds to the case with equal
U(1)* ¢ SO(8) R-charges, Q1 = Q2 = Q3 = Q4. In terms of the variables of

the Yang-Mills theory, this amounts to setting £ = —%i, = 0,7 = —mi. Then,

the saddle point equations (5.4.12)) become
i | R | . 1 ) 1 . _
0 = -5+ Lij(isqq?) — Liy(—isqq™2) + Z [Lll(sasb Y¢™!) — Lir(sps, 'q™ ") — Lit(—sq5; 1)
b(#a)
+Liy (—sps, ') + Lil(isasb_lq%) - Lil(isbsglq%) - Lil(—isasb_lq_%) + Lil(—isbsglq_%)} (5.4.53)

Here, we again temporarily included g(~ 17) to regularize some variables sitting

on top of the branch cuts, similar to the previous subsection. Exponentiating
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both sides, one obtains

14iq~/2s, ﬁ 1— g spsyt 1+ sasy 1 —igM2spst 1+ g™

1 —iql/2s,

1/2 1

SaSy

b=1 1 - q_lsasb_1 1+ Sbsz;1 1- Z'(]1/2&1351 1+ iq_l/QSbScTI

b2a

(5.4.54)
which are rational equations of s,’s. Some solutions of do not satisfy
the original equations . We are interested in the solution of ﬁ So
after solving , one should check whether the solutions satisfy or

not. Then, one should take 8 — 0 (or ¢ — 1) limit on the solutions to remove

the branch cut regulator.

Before proceeding, let us comment on a ‘trivial solution’ of , ,

which is .
S1=8y=--+ =8Ny =50 , i_fso:i. (5.4.55)

1 —1ig2sg

8o is the Cardy saddle point solution to the Abelian M2-brane index, ,
which in is given by sg — 1. At N = 1, we have shown in section 2
that this is the one and only saddle point which yields the correct free energy
for single M2-brane. At higher N > 2, there are good reasons to trust that they

are forbidden saddle points, which we sketch now.

We first recall that a similar phenomenon was observed for the 3d vector-
Chern-Simons models [166}/167], in which one found an incompressible nature of
the eigenvalue distribution for s, in the high temperature limit. To understand
this, one should first note that partition functions of 4d gauge theories on S3 x S*
are also given in terms of the holonomy integrals, over a, (or s,). At high

temperature, the general expectation is that these eigenvalues asymptotically

5We think that extra solutions to may also be valid saddle points, which apparently
look illegal in the current setting because we have replaced discrete magnetic flux sums into
continuum integrals. More carefully doing the flux sum along the line of |167], we expect to
reveal the relevance of these extra solutions. However, it happens that a natural finite N
version of the saddle points encountered in section 4.1 solves (5.4.53]).

163 < A k'_. Tj ¢



approach the same value, s; = - -- = sy, so that the underlying gauge symmetry
is asymptotically unbroken. This is the ‘maximally deconfining’ saddle point,
at which quarks and gluons are maximally liberated to a deconfined plasma.
However, in 3d gauge theories, partition functions are given by both integrals
over o, and sums over the GNO charges m,. In particular, [167] discussed
the thermal partition functions of 3d vector-Chern-Simons theories on S? x S*
at high temperature. They showed that the discrete sums over m, yield the

following factor in the integrand for a:

N
116 (kaa) (5.4.56)
a=1

where k is the Chern-Simons level for the U(N) gauge symmetry, and d(x) is
the periodic delta function satisfying d(z) = §(x + 27). It has k sharply peaked
solutions for N variables, o, = 2”%, where n, = 0,1,--- ,k — 1. Therefore,
if N is larger than k, more than one eigenvalues should assume exactly the
same value. Then [167] argues that the Haar measure [],_, (2sin %)2 pro-
vides exact 0, forbidding such a saddle point. To summarize, the GNO charge

sums and the Haar measure of 3d gauge theories may impose extra exclusion

principles on «y, forbidding them to assume same values.

Since our naive saddle point also has coinciding eigenvalues, one can
suspect that similar exclusions may happen. Indeed, by following the procedure
of [167] in our index, we find such exclusions at N > 2. To explain this, one
should go one order beyond our Cardy approximation, which only keeps the
leading 37! order in the exponent. One starts from , with absolute values
of the fluxes removed. Here, rather than making a continuum approximation of
the flux sum, one keeps the discrete sums (which is a resolution needed to see

the exclusion principle of coincident eigenvalues). Then in the Cardy limit, one
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approximates

Liz(x) n 1—y

—59. _2ﬁ ~ JE— -
(xe ™Y e ") &~ exp 25 5

log(1—x)+---| , (5.4.57)

keeping the subleading O(3°) term. In , x will contain ¢, x will also
contain the macroscopic condensation of m, at the saddle point. y contains
the fluctuation [, of the monopole flux m, = m}, + [, around the saddle point
value m}. Following [167], we would like to sum over the discrete l,, rather than

making a continuum approximation. Summing over [,’s, one obtains

N . .l ) o ) .

1 — efmiticay—5)(1 _ ePmi—iaap—3 A
“ 2mo —110g< ‘ , ?)( ‘ — ?) = 5 (5.4.58)
a=1 2 (1 — eﬁmz"‘w‘atﬁ)(l . eﬁmﬁ—mati) 9

in the integrand of «, integrals. Here we used 27é(z) = S0 €'® for the

periodic delta function d(z) = d(x + 27). The argument of ((5.4.58]) is real. The

delta function is peaked when «, solves

=1. (5.4.59)

1
4% [(1 — eImitiet2)(1 eﬁmzmat—%] 2
(&

(1— eﬁm;ﬂ'aat%)(l _ 65m;—iaat%)
We are interested in the fate of the saddle point (5.4.55)), or more generally
(5.2.36). In particular, plugging in the saddle point value of fm}, there is a
unique solution a, = 0 (mod 27) for (5.4.59)). Therefore, following the argu-
ments of [167], only one eigenvalue can sit at this unique peak: otherwise, the

Haar measure will provide 0. This leads to the conclusion that the naive saddle

point ([5.4.55)) will be relevant only at N = 1E|

With these understood, let us first consider the case with N = 2. Among
4 solutions of (5.4.54)), there are two solutions satisfying (5.4.53)). One is given

"However, as commented in [167], this argument relies on the fact that the delta functions
like , do not spread as one includes further subleading corrections in 8. To
the best of our knowledge, this issue is not completely clarified so far. We hope to completely
resolve this issue within the indices in the near future.
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by (5.4.55)), which is dismissed as explained. Another solution is given by

1 1
s1=3 (1 — 342 + \/§) ~ 0435421, sp(=s1") = 5 (1 +3Y42 + \/3) ~ 2.29663 ,

(5.4.60)
in 8 — 0 limit with Im() < 0, up to permutation. It is important to keep the
regulator 3, with the correct sign for Im(f) < 0 as explained in section 4.1, to
get this solution. This is because of the presence of Lij (545, *) = — log(1—s45; ")
and Lil(sbsgl) in the saddle point equations at ¢ = 1, since the solution ({5.4.60))
sits precisely at a branch cut. This solution satisfies only when Im(3) <
0, which is our physical region for complex 5. Finally, the Cardy free energy of

log Zg2, 51 at this saddle point is given from (5.4.13]) by

. . . .
log Zgzsn |~ % [—SG —92Im {2Lig(im) + 2Ly (;) + 2Lis(iz?) + 2Lis (;) + Li <x> H
174771
STt
(5.4.61)
where x = 51 = 551 = % (1 —31/4/2 + \/3) ~ 0.435421, and
— (=" Lip(i) — Lia(—1)
= = ~ 0.91 .4.62
G n;) RS 5 0.915966 (5.4.62)

is Catalan’s constant.

When N > 3, we cannot solve (5.4.54]) analytically since they are sextic

equations even at N = 3. Thus, we numerically solve the saddle point equations

at 5 =0. At 8 =0, (5.4.54)) is simplified as

1+ZS N 1+1851 ?
al[ aSy .
5-4-63
1—i8ab1< 1) v ( )

T\ L —isgsy

b#a
which is so-called the Bethe ansatz equations. We first find numerical solutions
of (5.4.63) at N = 3. Having set § = 0, there could possibly be some solutions

at finite 8 that we miss. We assume that the physical solution remains to
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solve (5.4.63) and proceed. (This is obviously true at large N, as we confirm
numerically below.) Note also that, since we solve the exponentiated equation
(5.4.63)), nonzero S as a branch-cut regulator is unnecessary. In this set-up, we

found 13 numerical solutions of ([5.4.63]). Among them, there is only one solution
(except (5.4.55))) satisfying (5.4.53)), given by

51~ 0.230396, 59 ~ 1, s3 ~ 4.34035 (5.4.64)

up to permutations of s,’s. As before, this solution exactly lies on the branch
cut of the vector multiplet part when 5 = 0. The correct sign of Im(/3), which
makes the above solution satisfy , is Im(8) < 0. The Cardy free energy
from is given by

—29. )
~ 2050090 (5.4.65)

N=3 273

IOg Zs2><51

assuming Im(5) < 0.

For N > 4, we will directly solve ((5.4.53) numerically, rather than ([5.4.54)).

Since we have been obtaining solutions with real positive sasgl till N < 3, we
should carefully treat the branch cuts on the real axis of the sasgl planes in the
£ — 0 limit. The functions in to be careful about are Lij(q 15,5, ') —
Lij (g 'sps; 1), as we take ¢ — 1~ with Re(83) > 0, Im(3) < 0. In the numerics,
we plugged in very small Im(8) < 0 to get the solutions, resolving the branch
cut ambiguity. (On the other hand, we find no solutions after plugging in very

small Im(5) > 0.)

Now we show the numerical results. We used Newton’s method to find the
roots of 5.4.53@ For N < 100, we found that all eigenvalues s, are posi-

tive real in our solutions. These eigenvalues can be sorted in ascending order:

8The Newton method may in principle miss some solutions, as it depends on the choice
of initial values. However, even after trying many initial values, we found no more solutions
than those presented below.
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Figure 5.3: (a) Eigenvalue distributions at N = 25,50, 75,100, (b) Densities of
eigenvalues at N = 25 (blue) and N = 100 (yellow)

Yo =0, 0< 81 <s83<...<sy. We also mention that our finite N numeri-

cal solutions also satisfy all the assumptions (5.4.21)), (5.4.24)) made in section

4.1 for large N analysis, coming from the eigenvalue distributions not crossing
branch cuts. The N eigenvalues spread out from sg (— 1 in the Cardy limit)
with the width roughly proportional to N'/2. The detailed eigenvalue distri-
butions at various N are given by Fig. [5.3] The density of the eigenvalues is

defined as p(z) = %Z—Z.

log Zg2, 51 at various N are given by Fig. One finds that the large N
analytic approximation of section 4.1 is well-fitted with the numerical result at
large enough N. The difference between the numerical result and the fiducial
one in Fig. (a) increases as N grows, which seems to scale like O(N %) In
addition, we find that the finite N Cardy free energy (F' = —Re(logZ2)) is
always smaller than the fiducial one. Although we do not display the relevant
plot here, we found that the numerical result for Re(W*) is also well-fitted to
the analytically computed Wy at large enough N.

Our numerical solutions for s, are very simple, staying at the positive real

2> 1 ;
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Figure 5.4: (a) Imaginary parts of 28log Z (dots) and 2831log Z(g) (solid line).
(b) Ratio of the finite IV free energy log Z and the fiducial free energy log Z o)
(dots). Solid line is drawn just as a reference line.

axis. One may wonder that such simple distributions are due to the simplified
setting A1 = Ay = Az = Ay. However, we found that the eigenvalues are
positive real even at unequal Aj’s. As the qualitative behaviors are very similar,

we shall not plot the results for unequal A;’s here.

As long as we are aware of, our results are first quantitatively explored finite
N versions of N on M2-branes. Especially, it will be interesting to see if there
are any further implications of the analytic coefficient of , which should
be replacing N3 at N = 2.

5.5 Conclusion and remarks

In this chapter, we explored the Cardy limit of the index for the M2-brane
SCFTs on S? x R. Our studies are made by analyzing the vortex partition
functions, and also suitably approximating the GNO charge sum for the mag-
netic monopole operators. At large NV, we have quantitatively shown that the
deconfined free energy scales like N 3. This free energy statistically accounts for

the Bekenstein-Hawking entropies of large BPS black holes in AdS;xS7. We dis-
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covered the important roles played by the condensation of magnetic monopole
operators, which provides a mechanism for partial confinement of N? degrees
of freedom. We have also found finite N versions of N degrees of freedom by

studying the Cardy limit of the index.

We believe that these discoveries will shed very concrete lights on the

strongly interacting dynamics of 3d (S)CFTs, including the M2-brane CFTs.

One important issue that has been treated rather briefly in this chapter is
the exclusion behavior of eigenvalues in our index. This phenomenon has been
first explored in the 3d vector-Chern-Simons theories, either using semi-classical
arguments [166] or based on path integral approach [167]. We employed the
strategy of [167] and studied the index of our M2-brane QFT. The key result
is that the GNO charge sum forbids eigenvalues to assume same values, not
even asymptotically in the high temperature limit. In the vector-Chern-Simons
model, this phenomenon played important roles to make certain dualities to
hold. In our M2-brane QF T, similar exclusion principle forbids the naive saddle
point whose free energy is proportional to N2. Both in the study of [167] and
this chapter, there are further issues to clarify concerning the small spreading

of the delta functions of a,’s, as explained in the conclusion of [167].

As a technical remark, we mainly used the N' = 4 Yang-Mills-matter theory
engineered on the D2-D6-brane system, rather than the ABJM theory. When
we first started our project, this was because we were aiming to use the vor-
tex partition function in the Higgs branch and the factorization of Zg2, 1. In
Chern-Simons-matter theories, studies of vortex partition functions are more
difficult. Apparently, this seems to be due to the difficulty in finding natural
anomaly-free boundary condition on Dy x S'. More physically, with Chern-

Simons terms, there may be so-called non-topological vortices in the symmetric
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phase, apart from the topological vortices in the Higgs phase. This is because
once we have electrically charged configurations in the symmetric phase, mag-
netic flux is induced due to the Gauss’ law of Chern-Simons-matter theory. It is
natural that these non-topological vortices may play roles in the factorization
formulae of the ABJM theory, if there is one at all. However, our alternative
asymptotic factorization of section 3 (in the Cardy limit) can be applied to the

ABJM theory, as we explained in section 4.3 of [79].
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Chapter 6

Universal 3d Cardy block and
various AdS, black holes

In this chapter, we discuss the Cardy limit of 3d supersymmetric partition func-
tions which allow the factorization into the hemisphere indices: the generalized
superconformal index, the refined topologically twisted index and the squashed
sphere partition function. In the Cardy limit, the hemisphere index can be eval-
uated by the saddle point approximation where there exists a dominant saddle
point contribution, which we call the Cardy block. The Cardy block turns out
to be a simple but powerful object as it is a building block of other partition
functions in the Cardy limit. The factorization to the Cardy block allows us
to find universal relations among the partition functions, which we formulate
as index theorems. Furthermore, if we consider a holographic 3d SCFT and its
large N limit, those partition functions relate to various entropic quantities of
the dual gravity theory in AdS4. As a result, our result provides the micro-

scopic derivation of the universal relations among those entropic quantities of
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the gravity theory. We also discuss explicit examples, which confirm our general

index theorems.
6.1 Introduction and summary

Last few years, the localization has played an important role in understanding
supersymmetric theories on compact manifolds. Thanks to this technique, one
can compute various exact BPS observables such as partition functions and Wil-
son loops, which turn out very useful to test the non-perturbative phenomena

in strongly coupled systems.

One of those observables is the holomorphic block, which can be defined as a
partition function on D? x 1 in 3d [176] and as that on D? x S? in 4d [187]. The
holomorphic block is of particular interest because it is a basic building block of
various other supersymmetric partition functions. A partition function defined
on a circle fibered, either trivially or nontrivially, over a sphere is written in

terms of holomorphic blocks as follows:

Zu = S 1IB%I, (6.1.1)

where the fusion rule || - - - ||* depends on the manifold M. « specifies the bound-
ary condition defining the holomorphic block, and one can obtain a new super-
symmetric partition function Zx by summing the square of the holomorphic
block over those boundary conditions. The holomorphic block also relates to
the open topological string amplitude and the vortex partition function on -
deformed R? x S! [175/178]. The holomorphic block appears in various contexts

such as the AGT-like correspondence [188] and supersymmetric dualities. See,

e.g., [189[190] and [1741[176l[177,[182,[183/[191].
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While the holomorphic block turns out to be a useful quantity in various
contexts, its matrix integral expression needs some care as one should specify
the integration contour depending on the boundary condition «. See [176] for
explicit examples. On the other hand, if one is interested in the Cardy limit,
which is usually called the semi-classical limit, of the blocks and especially the
dominant contribution, one may perform a saddle point approximation of the
integral and pay particular attention only to the leading saddle point. In this
way, one can circumvent the explicit determination of the integration contour
and can extract the dominant contribution in the Cardy limit. In this chapter,
we give a particular name for such dominant contribution, Cardy block, as it

plays an important role in our discussion.

Such Cardy block has been somehow overlooked due to its simplicity. How-
ever, recently it was found that the 3d Cardy block is indeed extremely useful,
especially for the microstate counting of AdSy black holes. As we discussed in
chapter [5 the large N computation of the 3d superconformal index is chal-
lenging due to the existence of supersymmetric monopole operators. The lo-
calization saddles of the 3d superconformal index include infinite monopole
configurations, whose individual contribution has to be summed to obtain the
exact superconformal index. This problem can be rephrased in a slightly differ-
ent way using the holomorphic block. According to , the superconformal
index is also written in terms of the holomorphic blocks where the Cardy block
gives the dominant contribution. Furthermore, the Cardy block itself can be
independently computed using the localization, which provides another way to
compute the superconformal index in the Cardy limit. In that case, the infi-
nite monopole summation is already encoded in the Cardy block. Indeed, it
was shown in [79], which was discussed in chapter |5, that the large N limit of

the Cardy block, more precisely its square, successfully reproduces the known
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entropy function of the rotating BPS black hole in AdS, x S7 [74], considered
in chapter [2] using the ABJM theory and the mirror dual of the maximal SYM
theory [441/162]. The Legendre transformation of such entropy function yields
the Bekenstein-Hawking entropy of the dual black hole with the large angular

momentum.

In this chapter, we extend this analysis to more general theories and parti-
tion functions. We will consider the Cardy limit of the hemisphere index and
various other partition functions allowing the factorization into the holomorphic
blocks: the generalized superconformal index, the refined topologically twisted
indexE| and the squashed sphere partition function. Especially in the Cardy
limit, the free energies of those partition functions, defined by Fay = —log Z 4,
are written in terms of the Cardy block C in a much simpler manner than

6.1.1):

Fpa(t; 8) = —log C(t; ) ,
Fs2(t,n; B) ~ Nlog f —log C(t; B) — log C(t; =) ,

Fggisted(t’ n; B) = Nlog 3 —log C(t; B) — log C(Fl; —B),

N
Fgs(A; ) ~ - log f — logC(e™: ),

(6.1.2)

which only refer to the dominant saddle. We may call those formulae Cardy
factorizations. We should mention that the Cardy factorization of the topolog-
ically twisted index happens only in special circumstances such as the large N
limit. See section for more detailed discussions including the notation. Also

note that our analysis will be applied on generic 3d A/ = 2 supersymmetric

While the topologically twisted index can be defined on a generic Riemann surface ¥
of arbitrary genus g, the refined version is only available for S2, which has U(1) isometry
[181,[192,/193]. In this chapter, we focus on the refined topologically twisted index on S2
because such refinement is essential for the factorization and the Cardy limit, which play
crucial roles in our discussion.
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theories having UV Lagrangian description.

Surprisingly, the Cardy factorization allows us to find various universal re-
lations among those partition functions in the Cardy limit, some of which, in
particular, are phrased as index theorems in section [6.3| For example, we for-
mulate an index theorem relating the generalized superconformal index and the

squashed sphere partition function:
Fg2(e®,n; 8) = Fg3(A + Bn; 8) + F s (A + Bn; =) + O(5) (6.1.3)

where A denotes flavor chemical potentials while n denotes flavor magnetic flux
collectively. For the superconformal index, 8 is the chemical potential for the
angular momentum on S?, with a shift by the R-charge due to the supersym-
metry condition, while, for the squashed sphere partition function, it is related
to the squashing parameter b of the sphere by # = mib?. In our Cardy limit, 8

is taken to zero: B — 0.

In addition to the Cardy limit, the large N limit of 3d superconformal field
theories is of particular interest because a large class of 3d SCFTs are known
to have holographic dual gravity theories in AdSy in the large IV limit. Accord-
ingly, if we further assume large N, we find another index theorem relating the
superconformal index and the topologically twisted index to the round sphere
partition function:

o (mi+ B)? A+ Bn (mi+ B)2—= A — fBn
FSQ(A’”’B)_WFS?’(_TriJrﬁ)JF i F53<_m'+ﬂ>’

wisted . o (7r1+ﬁ)2 A+/Bn (ﬂ-i_ﬁ)z A_/Bn
F‘gz t (A,TL,B)—WFSB <— 7TZ—|—B>_ 47[_15 F53 <— 71'2—5) s

(6.1.4)

which relies on the large N relation between the squashed and round sphere
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partition functions found in [194]:
2y _ @

where @ = b+ 1/b and 0 parametrizes trial R-charges. While our derivation
of is valid up to O(p), there is strong evidence that it is indeed exact
even for finite 8 in the large N limit, at least for the known large N saddle
point capturing the dual black hole microstates. Especially, those indices in the
large N limit statistically account for the microstates of rotating dyonic BPS
black holes in AdS4. While the superconformal index should have the vanish-
ing magnetic flux for the R-symmetry, the topologically twisted index has the
non-zero R-symmetry flux, which leads to a particular asymptotically locally
AdS, spacetime, dubbed mAdS, [195], on the dual gravity side. We expect that
those indices give entropy functions of dual black holes for arbitrary £, which is
confirmed for some examples in section and In addition, the squashed
sphere partition function relates to the supersymmetric Rényi entropy [196],
which accounts for the Bekenstein-Hawking entropy of a charged topological
black hole in AdSs [197,/198]. Also note that the right hand side is written in
terms of the round sphere partition function, which, with the superconformal
R-charge, is identified with the entanglement entropy for a spherical entangling
surface [199,200]. By the AdS/CFT dictionary, it corresponds to the Euclidean
on-shell action in AdSy [36]. In that regard, our index theorem shows that var-
ious entropic quantities in dual AdS are not independent and indeed mutually
related. While we provide a field theoretic derivation of such relations, interest-
ingly, similar relations are discussed in the gravity context recently [201], using
the gravitational blocks, which are supposed to be dual to our Cardy blocks in

the large N limit.

Moreover, if we turn off all the magnetic flux for the flavor symmetry for
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the generalized superconformal index, it reduces to the ordinary superconformal

index, which satisfies

. 2 A
Fex(An = 0; 8) = (W;:ig)Re [Fsa <— —= 5)] (6.1.6)

where Rel...] should be understood with the conjugation defined by (6.2.36)).

If we further turn off the flavor chemical potentials while restore the supercon-

formal R-charge, the right hand side is simply written as

2
Fe(B) = ;Z%Re [Fgs (6:)] (6.1.7)

where Ar = mi+f is the chemical potential for the superconformal R-symmetry
and Fgs (d,) is the round sphere free energy at the superconformal R-charge,
which is determined by the F-maximization [202]. This is reminiscent of the
Cardy formula for 2d CFTs [12] or 4d N' = 1 SCFTs [138] in the large N
limit, where the real part of the round sphere free energy, Re [Fgs (d5)], plays
the role of central charges in 2d and in 4d. Recently the same formula has been
obtained both on the gravity side and on the field theory side for a particular
class of theories called class R, which is obtained from M5-branes wrapped on
hyperbolic 3-manifolds, using the 3d-3d correspondence [203,204]. Our result
validates this formula for generic 3d N' = 2 SCFTs with UV Lagrangian.

Lastly, one can also find interesting relations from the leading term of the
right hand side of (6.1.4]). If we expand the right hand side with respect to

and take the leading term, we find

Fsz(tefﬁ‘s,n; B) ~ —%Re [Fg:a <—2>] ,

. 6.1.8)
. AN 9 A N
Frwisted i¢ 0. ~ m E R __F — F —— .
52 (tn; 8) 2 - ™ ON; 53 i + s e
Especially, the strict Cardy limit of the topologically twisted index is essentially
the unrefined limit of the index, which accounts for the static dyonic BPS black
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holes in AdS,. Indeed, the second relation is a rederivation of the index theo-
rem for the unrefined topologically twisted indices, and therefore the entropy
functions of static black holes, discovered by Hosseini and Zaffaroni [205]. For
such unrefined indices with 8 = 0, the index theorem was later generalized for

those on generic Riemann surfaces with arbitrary genera [206,207].

Note that the interpretation of our results as black hole entropy functions
should be understood only when they give rise to positive macroscopic entropy,
which is not guaranteed for an arbitrary choice of the background, such as the
existence of the topological twist or the magnetic fluxes for flavor symmetries.
For instance, recently [204] have made use of the 3d-3d correspondence to show
that the refined topologically twisted index is exponentially suppressed in the
large N limit, and also exactly vanishes for some finite N, for a particular class
of theories with the universal twist, the twist along the exact superconformal
R-symmetry. Such universal twist corresponds to the so-called universal black
holes [206], and the vanishing of the index is consistent with the fact that there

is no universal black hole solution with near-horizon geometry AdS; x S2.

This shows that macroscopic entropy and dual black hole solutions are not
always guaranteed for an arbitrary choice of background. Nonetheless, as long
as we have macroscopic entropy from the index, we expect this entropy captures
the microstates of some black hole, regardless of whether or not such a black
hole solution has been found already. This suggests that our index computation
can be a probe for a new black hole solution. Indeed, recently the Macdonald
index of 4d N’ = 4 SYM theory has been used to predict a new black hole in
AdSs [75]. It will be also interesting if such predictions can be made for black

holes in AdS4 using our results for 3d field theories.
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The rest of this chapter is organized as follows. In section [6.2] we first review
the localization results of 3d A/ = 2 supersymmetric partition functions and
examine their Cardy limits, especially focusing on their factorization proper-
ties. In section [6.3] we derive universal relations among the partition functions
by combining the results of section [6.2} In particular, we formulate two index
theorems: one relating the generalized superconformal index and the squashed
sphere partition function in the Cardy limit and the other relating the gen-
eralized superconformal index, the refined topologically twisted index and the
round sphere partition function in the large N limit. In section [6.4] we address
the N =4 U(N) SYM with one fundamental and one adjoint matters as an ex-
plicit example. We demonstrate how to obtain four different partition functions
in the large N limit using the factorization. Lastly, in section [6.5] we provide
more examples of 3d N > 2 SCFTs. We discuss the large N Cardy limit of the
generalized superconformal indices for those examples. We also examine the
finite N Cardy formulae for some examples, which provide nontrivial tests for

known supersymmetric dualities.

6.2 3d Cardy block and factorization

In this section, we first review the localization results of 3d N/ = 2 supersym-
metric partition functions and examine their Cardy limits, especially focusing
on their factorization properties. Since the partition functions are 1-loop ex-
act in the context of the supersymmetric localization, the results are given by
finite dimensional matrix integrals whose integrands consist of the classical ac-
tion contributions as well as the 1-loop determinants. Also the factorization of

3d partition functions have been extensively discussed in the literature; e.g.,

180 A= 1-]I



see [175-180},182,/183,|187,191|. Here we revisit them in our notation, which is
chosen to be convenient for our Cardy limit analysis. In particular, we start
with the hemisphere index on D? x S! defined in [171], which is closely related
to the holomorphic block discussed in [176]. This is a building block of the other
supersymmetric partition functions we will discuss. We then move on to those
partition functions on a circle fibered over a sphere, which are known to be

factorized, and examine their Cardy limits.

6.2.1 Hemisphere index

The first example we discuss is the hemisphere index on D? x S! [171], which

is defined by

Ips = tryyp2ia [(71)F6_ﬁ1(D_R_JB)S_BQ(D—H?’)G_FlMl} (6.2.1)

where D is the translation generator along S'; R is the N' = 2 U(1) R-charge;
Js is the angular momentum; and Fj’s are the Cartan charges of the flavor
symmetry. The trace is taken over the Hilbert space on D? with the boundary
condition «. As usual, this index counts the BPS states saturating D—R—J3 > 0
and is thus independent of 1 unless there is a flat direction appearing while 31
changes. While the hemisphere index itself does not have a factorized structure
mentioned in the introduction, it plays a role of a building block of the other

partition functions we will consider.

F, a fermion number, is typically chosen to be F' = 2J3. On the other
hand, to define an index, one can also use other choices of F'; one useful al-
ternative, especially for the factorization, is F' = R. Recall that, for 3d N/ = 2
supersymmetric theories, the IR superconformal R-charge is determined by the

F-maximization [202]. However, to define an index, one can use a trial, or UV,
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value of the R-charge, from which the IR superconformal value can be achieved
as a mixture of the UV R-charge and various U(1) flavor charges. For con-
venience, we take the integer quantized UV R-charge and use it to define the

Fis merely a sign while it would

index. For the integer quantized R-charge, (—1)
be a nontrivial phase otherwise. In fact, the integer R-charge will be eventu-
ally required for the comparison with the topologically twisted index, which
demands the integer R-charge due to twisting. This choice of F' will make the

comparison between the hemisphere index and other partition functions, espe-

cially the squashed sphere partition function, more clear as noted in [176].

From the definition of the index, one can see that those two choices are
related by the shift of 81, Bo:

o (6.2.2)

B2 = B2 + mi,
which yields extra sign (—1)R*2J. Note that if R is even integer quantized, the
two choices are identical. Using this shift, one can easily obtain the formula for
F = R from the localization result for F' = 2J3 in [171]. Setting 2 = 8 + i,
the hemisphere index with F' = R is given by

rk(G)

1
I = 7 11

1

dzq N/D
2d 2d
Iriz chassical Zvector Zchiral Z vector z chiral /Fermi
a

(6.2.3)
where W (@) is the Weyl group of the gauge group G. The nontrivial classical
action contribution Zj,ssical consists of various Chern-Simons terms:

2

o5t (6.2.4)

152 ak=ak



for a canonical Chern-Simons term with level k£ and
e35tr(vauE) (6.2.5)

for a mixed Chern-Simons term between U(1)4 x U(1)p, each of which is either
gauge or global U(1). Each u is defined by u = log z where z is the holonomy

for the corresponding (either gauge or global) symmetry.

The 1-loop determinants of the 3d bulk fields are as follows:

Zyeetor = | [ e "R (OWETD® (o 42) (6.2.6)
e
zZN = H 6,%((7"0*1)2*%)*"‘%{1(P(U)Jro(v)*m‘(rail))Jrﬁ(p(U)JrU(v)*7”'(7’0ﬂFl))2
pRoTeERN
X (zpt"x“e*m“’;xz)_l ) (6.2.7)
zb = H e—%((?‘a—l)2—%)+”’T—1(p(u)JrU(v)—M'(?’ajFl))—$(/)(M)thf(v)—ﬂ(Ta?l))2
pRoeRD
X (zfptfgxzfrae”"";ﬁ) (6.2.8)
with
2P =P 7 = o) r=e¢"P (6.2.9)

where A is the set of non-zero roots of the gauge group; |N/P are the rep-
resentations of the chiral multiplets with the Neumann/Dirichlet boundary
conditions respectively, with gauge weight p and global weight o, which in-
cludes U(1)g charge r,. Here we use the shorthand expression (a;x?) for q-

Pochhammer symbol (a; 2?)s0:

(a;2%) 00 = ﬁ (1 - aw2k> : (6.2.10)

k=0

Due to our choice F' = R, there are extra e =™ in contrast to the result of [171].
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Note that the exponential factor in each determinant spoils the invariance of
the determinant under the large gauge transformation. Such exponential factors
are remnant of the gauge non-invariant regularization, which should disappear
if one regularizes the determinant in a gauge invariant way with the appropriate
definitions of the UV Chern-Simons levels understood. However, we here stick
to the above definition of the determinants for easy comparisons with the earlier
literature. Indeed, the exponential factors should be completely canceled out
once the boundary matter contributions are taken into account. Thus, the entire
integrand is again invariant under the large gauge transformation. Nevertheless,
since each determinant is not invariant under the large gauge transformation,
we have to fix the ambiguity; namely, we take the above definition for the
arguments in chambers —27 < £Im(a(u)), £Im(p(u) + o(v) — wiry) < 0. If we

don’t specify the chamber explicitly, we take the upper plus sign of +.

The exponential factor in each determinant makes an effective shift of
Chern-Simons levels. The effective Chern-Simons terms, dictated by such expo-
nential factors as well as the classical action contribution, yield anomalies at the
boundary, which should be canceled by extra boundary degrees of freedom, at
least up to a u-independent constant. The 1-loop determinants of the boundary

matters are

22 = [ e #WED g (207, (6.2.11)
acA2d
Z = [ A @@ T o o) i)
chira,
p®06%g§iral
x 0 (zpt”x”’e_mr”; $2)_1 ) (6.2.12)
Zl%d = H e_g((”‘0—1)2—%)-l-%(p(u)—i—a(v)—7rz'(7"g:Fl))—ﬁ(p(u)-l—(f(v)—m(rg:Fl))2
ermi
p®aem%‘lérmi
x 0 (P12 e~ 1?) (6.2.13)
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where 6 (a; :U2) is defined by
0 (a; xz) = (a;xQ)oo (ailxz;a?)oo . (6.2.14)

The 3d determinants and 2d determinants satisfy

Zé\}ilral 2d 1
ch ol = 57— (6.2.15)
Zchlral e ZFerml

once we assign the same representation and the R-charge. Note that those 2d
degrees of freedom are engineered so that the net exponential factor of the in-

tegrand is completely canceled.

In the Cardy limit, i.e., 3 — 0" while the other variables kept finite, the 3d

determinants are given by
lim 108 Zuector(2 ) = — 121<<>i>+L'<a*1>
BE’I%) g Lvector (%3 = 25 ™ 12\2°T s

lim IOgZ hlral(z t; /3>

“5 X

{ o(v) = Ti(re F1) — B(re —1))* + Lig(zpt"a:rffle“"”)] )
PO

lim IOgZ hlral(z t; ﬁ)
B8—0

= L Z [1(p(u) +o(v) —mi(re 1) — Blrey — 1)) + LiQ(Z_pt_le_T"em;ro)]

203 eyt 4
(6.2.16)
up to O(B). On the other hand, the 2d determinants become
2d m?
éli)n log Zvector( ) /B) = @
2
é%logz hlral(z t; /8) @ (6217)
2
hm log ZFerml(Za t; /8) = @
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for each pair of (o, —a) and for each p ® o. While those do not vanish in the
Cardy limit, we will see that their role is rather minimal when we construct
other 3d partition functions upon the hemisphere index. Since Z% hira] a0d Z

chlral

are related by Z also their distinction will not be very significant in

chlral/Ferml ’
such situations. Thus, we mostly call them Z;,1 unless their distinction is

necessary.

Note that, in each determinant, 8 always appears in a combination with v:
o(v) — miry — B(ry — 1) except 371 in front. From now on, for convenience, let
us distinguish £ in a combination with v and 8 in front by denoting the former

by 3. And we also introduce t = (t, —&e~™), on which o act as follows:
t7 = t7q e mre (6.2.18)

where # = e—?. In this way, the explicit S-dependence of the above determinants
is only 87! in front. At the end, we should restore 8 to 8. Also note that
although we have set 7, to be the UV integer value, one can obtain the index
with the non-integer R-charge, such as the IR superconformal one, by shifting
the flavor chemical potentials v by v — v — (8 4 7i)d. Then the deformed value
of the R-charge is 7, + 0 (0).

In the small 8 limit, one can evaluate the integral using the saddle

point approximation as follows:

N N
2 _1 1
Ip2 = ——W* ) (det(=*W)*) "2 —+0
p=(2) e () tas-otwy) <aleé+ <5>>,
(6.2.19)
where N is the gauge group rank. Our effective potential is defined by
W Z hm log Z, (6.2.20)

28
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where the summation is taken over the collection of the above determinants.
The B-dependence of W is hidden in t as B, which will be taken back to be 3
at the end. * denotes the value at each saddle point, which is a solution to the

equation
oW =0. (6.2.21)

As long as there is a saddle satisfying Re(W*/8) < 0, the index exponentially

grows in the Cardy limit. In such cases, there is a dominant saddle such that
Ip:2(t; 8) = C(t; B) (6.2.22)

where C is the contribution at the dominant saddle, which we call the Cardy

block. Thus, the free energy, Fpp2 = —log Ip2, is written as
5\ _ Loy N ()
Fpa(t58) = —1ogC(t; 8) + O (¢ ) = 5600 = S logf+ G + 0F)

(6.2.23)

where GO = %W* is the dominant saddle value of the effective potential while
the other saddle point contributions are suppressed exponentially. G() is the
collection of the remaining contributions at the dominant saddle, e,g,. that of

the Hessian. One should remember that t includes B = [ in such way that

10 = tajrg—le—wiro— .

6.2.2 Generalized superconformal index

Our next example is the generalized superconformal index [70}/164,1208|, which

is defined by

Ig> = trag,o(s2m) (—1)Fe*5(R+2J3>e*FlMl} (6.2.24)

'y 3 1] 3
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where the BPS condition D — R — J3 = 0 is understood. n denotes the external
magnetic flux for the flavor symmetry collectively. Again, while a typical choice
of F'is F' = 2J3, our choice here is F' = R. Those two are related by shift of 5:
8 — B — mi. Also R will be taken to be integer quantized. The superconformal

R can be restored by shifting M;.

One can evaluate such superconformal index using the supersymmetric lo-
calization. The localization result for F' = J3 was obtained in [165}/184]. Simi-

larly, the superconformal index with F' = R is written as

rk(G) d5

52 ’WG| ;\/ f 27_(_23& chassical Zvector Zchiral . (6225)

m runs over the GNO charges including the Weyl equivalent ones. Thus, the
symmetry factor is just the order of the Weyl group of the gauge group G. The

1-loop determinants of the vector multiplet and the chiral multiplet are

. e(m)]
Zyvector = H (weim) 2 (1 — 3ax|a(m)|> , (6.2.26)
a€EA
lp(m)+o(n)]| —p1—0,.2—714 o TiTs .
g H (zpt0$r0—1e—ﬂi(ra—1))7 plm)+ (3 Py—0 2= To+|p(m)+o(n)| mir 711,2)
chiral P (3Pt0x7°d+|,0(m)+0(n)\e—m?”o—;332)
pPROo
(6.2.27)
with
=P T =) g —h (6.2.28)

A is the set of non-zero roots. fR is the representation of the chiral multiplets
under the gauge and global symmetry groups, including the R-symmetry, with
weights p and o respectively. Note that there are extra e ™" compared to the
usual localization result due to the choice F' = R. The nontrivial contribution of

the classical action again comes from various Chern-Simons terms. A canonical

1 3
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Chern-Simons term with level k gives rise to

etk tr(am) (6.2.29)
while a mixed Chern-Simons term between U(1)4 x U(1)p gives

AT (6.2.30)

where U(1)4 p are either gauge or global U(1). Each pair of 3 = €@ and m
denote the holonomy and the magnetic flux for the corresponding symmetry,

either gauge or global.

One can massage the 1-loop determinants to be written in terms of formal
holomorphic and anti-holomorphic variables. Using the identity [185)

—1,.2—m. .2
|m|+m (z x m?’l’ ) |m|+m
2

—zz ! =1, 6.2.31
( ) (zz=m; 22) o ( )
we have
a. .2
T & (atw—a@?) _(2%52%)
ZLyector = ];[6 Sﬁ( )(20‘1‘2;.%'2)’ (6232)
Zrival = H e*%(p(U)+J(v)+p(ﬂ)+a(5))+$((p(U)+J(v)*ﬂi(ro*1))2*(p(ﬁ)w(@)ﬂi(rrl))z)

PO
(Ept_owQ—rg e™iro : 5112)

(Pt a7, 12) (6.2.33)
where we have defined that
2P = eP(U) = 3pp—P(m) 7 = () = o gp—o(m)
(6.2.34)
P — oP(8) — 5—px—p(m) , 70 — o) _ (o ,—o(m) :
ie.,
u=logz =1ia+ fm, v=1logt=1ib+ fBn,
(6.2.35)
i =logz = —ia+ Bm, v =logt = —ib+ fn.

2 1] 3
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When a, b and § are real, the barred variables are the complex conjugates of
the unbarred variables. On the other hand, if we relax such reality conditions,
the barred variables should be understood as the formal conjugates defined by

the following map:

a— —a,
m — —m, (6.2.36)
B — b

and similarly for b and n. This formal conjugate will be understood throughout

this chapter.

Note that each 1-loop determinant is completely factorized into a holomor-

phic piece and an anti-holomorphic piece:

Zvector = vector(z; /6) X ?vector(g; _ﬂ) ’

Zchiral = Zchiral(za t; 6) X zchiral(zv f; _/8)

(6.2.37)

where Zyector and Zepiral are defined by

Zvector(z§ B) — He—ﬁ(a(u)—l—m’)? (Za; x?) ’

[0}

Zaira(1:8) = [ 8 (07D =)= bl (0)—rmitro =) plu) (o) —mi(r—)

PO
% (Zptaxrge—mra; 1’2)_1 .
Here Z is defined such that any imaginary coefficient flips its sign. Also the

following definition of (a;x?) for || # 1 is understood:

o lz| <1,
, (6.2.38)
(az=%27%) 7, Jz| > 1.

)45 (ro—1)2

B
While we have introduced the exponential factor 65((T0_1)2_3 in

Zehiral(2, t; 8) to be matched with the hemisphere determinant, it is irrelevant
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because it is canceled by the same factor of Zuira1(Z,t; —3). Their Cardy limits

are given by

hm log Zyector(2; B) = Z [ +m) +L12(zaq;*1) ’
hm IOchhlral 2, t; ﬁ 25 Z |: ) — (,8 + 7Ti)(1"a — 1))2 + LiQ(Zthgj"'a—le_ﬂ'i'f’a)
PO
(6.2.39)
up to O(B).
We should comment that there is another way of factorizing the 1-loop
determinant of the chiral multiplet:
Zchiral = Zchiral(z t; B) X zchiral(g E _6) s (6240)
Zenival(2, £ B) = H o~ 5 (re=12 =5 )+ 722 (p(w)+o (v)—miro) ,— 55 (P(w)+o (V) —mirs)?
PR
X (z_pt_”:vz_rf’em”) , (6.2.41)
which can be obtained by replacing m by —m in the identity (6.2.31f). The
Cardy limit is given by
lim log Zchiral(za t; ﬁ)
B—0
1 1 :
=== |7(p(u) + o(v) = (B+mi)(ry —1))* + Liz(z~ Pt 7z' Toe™"7)
20 4
pR0
(6.2.42)
One should note that the holomorphic part of the first factorization ([6.2.38|)
is identified with the determinant on D? x S' with the Neumann boundary
condition (/6.2.7)) while the holomorphic part of the second factorization ((6.2.41])
is identified with the determinant on D? x S' with the Dirichlet boundary
condition (6.2.8)). As we have seen in the previous subsection, they differ by
the determinant of a boundary chiral multiplet, or equivalently a boundary
o I | -
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Fermi multiplet. Recall that the 2d determinants in the Cardy limit are given

by (6.2.17)):

lim log 224 ., = — lim log 232 . = — (6.2.43)
B—0 B—0

125"
They simply vanish when we glue two copies of them following the fusion rule
(6.2.37). Thus, we need not to worry about the boundary matters when we
factorize the superconformal index into two copies of the hemisphere indices in
the Cardy limit; and also the distinction between the two boundary conditions,

i.e., how we factorize the determinants, is not significant.

Lastly, let us examine the Chern-Simons terms. In terms of the holomorphic

variables, they are written as follows:

eiktr(am) — e%tr(%uz—%fﬁ)’ (6.2.44)
oA _ g rusun i (6.2.45)

where the definition of u is given in (6.2.35)). Thus, the classical action contri-

bution is also factorized in the same way:
Zassical = Zelassical (2, 1 8) X Zclassical (2, —B) (6.2.46)
where Zassical (2, t; 3) consists of two types of contributions:
25 t(30%) (6.2.47)
for a level k£ Chern-Simons term and
25 tr(waup) (6.2.48)

for a mixed Chern-Simons term between U (1) 4 x U (1) g, which are exactly what

appears in the hemisphere index.

i R
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Combining those Cardy limits of the 1-loop determinants and the classical
action contributions, the entire superconformal index is completely factorized
into the holomorphic integral and the anti-holomorphic integral. In particular,
the superconformal index has the holonomy integration as well as the magnetic
flux sum where the latter is replaced by another integration in the Cardy limit
[79,186]. Combined with the original holonomy integration, it gives rise to

2T 46 /dzdz
— = —_— 6.2.49
S TE o [d e

m=—0oQ

up to O(pB). If we consider a U(N) theory for simplicity, the Cardy limit of the

superconformal index is given by

1 N dzgdZ, L (W(zt)-W(z)
Hm Tes — ] [ alzq T W(z,t)=W(z,t 92
512}) 527 N /(CN <a:1 47’(6‘211’2) ‘ (6.2.50)

where

_7W( ) = lim [log chassical(za t; /8) + log Zvector(z§ 6) + 10g ZChiI‘al(Z) t; B)]
203 B—0

(6.2.51)
with each component described above. As seen in the previous subsection, there
is no explicit 3-dependence in W as long as we use t = (t, —2e~ "), on which

the global weight ¢ acts such that t© = t2"*~le~™"o According to the rule

(16.2.36)), t is defined by

t=(f, -2 te™). (6.2.52)

In the Cardy limit, the superconformal index can be also evaluated by the
saddle point approximation. One should note that the holomorphic part of

(6.2.50)) is nothing but the hemisphere index in the Cardy limit:

N

1 dZa —LW(z,
N'/ (H 2miz > e e (6.2.53)
’ a=1 a

'y 3 1] 3
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while the anti-holomorphic part is given by its conjugate defined by .
Naively the holomorphic variable and anti-holomorphic variable may solve the
saddle point equations independently as they are formal conjugate variables
rather than complex conjugate. However, regarding B as an independent vari-
able, if B is pure imaginary, such conjugate variables are truly complex conju-
gate because they are related by B > —B. In that case, the two saddle point
equations are essentially the same; and there is no reason to solve the equations
independently because it is basically the saddle point approximation of a real
function on the real axis. If 3 is slightly away from the imaginary axis, however,
B — —B is not compatible with the complex conjugate anymore, in which case,
the two saddle point equations should be solved independently. Nevertheless, if
we assume a smooth transition when B moves away from the imaginary axis,
the saddle point should be determined such that z and z at a saddle should
become complex conjugate to each other as B approaches the imaginary axis;
i.e., there is a natural one-to-one map between the holomorphic saddles and
the anti-holomorphic saddles, and only the pairs of saddles related by this map
contributes to the index. Thus, the saddle points are determined by the same
equation for the hemisphere index, and each saddle point contribution is that

for the hemisphere index times its conjugate.

While we have assumed a smooth transition when B moves aways from the
imaginary axis, it would be worth studying the behavior of those saddles more
rigorously. Nevertheless, in spite of such a subtlety in dealing with the two
complex saddle point equations, it is not very significant at the end as long as
the index exponentially grows in the Cardy limit. Recall that the free energy for
the hemisphere index is determined by the contribution of the dominant saddle
because the contributions of the other saddles are exponentially suppressed. As

the same thing happens for the superconformal index, we find a simple relation
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between their free energies:

Fga(t,n; 8) = Nlog B+ Fpe(t; B) + Fpa(t; —8) — log [N17"V] + O(B)
(6.2.54)

or in terms of the Cardy block in (6.2.23)),

Fg:(t,n; 8) = Nlog 8 — log C(t; ) — log C(F; — ) — log [N!«"] + O(8) ,
(6.2.55)

with
t=tel, f=t"1ef, (6.2.56)

where only the dominant saddle plays the role. While the formula is written for

a U(N) theory for simplicity, the generalization is straightforward.

6.2.3 Refined topologically twisted index

One can also define an index for a topologically twisted theory on a circle fibered
over a Riemann surface of genus g [181,192,/193}209,210]. If g = 0, i.e., if the
Riemann surface is a sphere, one can refine the index by turning on the angular

momentum fugacity. In that case, the index is defined by
Ised — gy ) [(—1)F =28z = FiM, (6.2.57)

where the trace is taken over the Hilbert space on S? in the presence of the
R-symmetry flux ng = —1. Again n denotes the external magnetic flux for the
flavor symmetry. Using the supersymmetric localization, we have

G

tw1sted d5 a twisted rrtwisted rtwisted
I ‘WG‘ Z % 2’/’1’25 chassical Zvector Z chiral - (6258)
mely a

'y 3 1] 3
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where the integration contour is determined by the rule of the Jeffrey-Kirwan
residue [181]. The 1-loop determinants of the vector multiplet and the chiral

multiplet are given by

. la(m)|
zyit = T (w7 (1= o), (6259
acA
il —1) Ao (n)—rg+1
Zt}\’lVIStled: H (3°t%e i(ro 1)) 2 (6.2.60)
chira e (zpt%;%—ﬁ(m)—a(n)e—””“a;x2)p(m)+a(n)4~a+1

The twist by the (non-superconformal) R-symmetry demands that the R-charge
of a matter should be an integer. Again please note extra e ™" due to our

choice F' = R. The classical action contributions are given by

etk tr(am) (6.2.61)
for a canonical Chern-Simons term with level k£ and

2y B2t (6.2.62)

for a mixed Chern-Simons term between U(1)4 x U(1)p, each of which is either
gauge or global U(1). Again each pair of 3 = ¢® and m denote the holonomy

and the magnetic flux for the corresponding symmetry.

One can manipulate the determinants in a similar way to the superconformal

index:
d a(u)?—a(a)? ) (Z .T2)
Zbwiste He 55 ( (6.2.63)

(z—oxZ;22)’

twisted _ H 6—"%41(p(u)+0( v)=p(@) =0 (0)—2i(ro — 1))+ 55 ((p(w)+0 (v)—Ti(re—1))2 = (p(@) +0 (2)+mi(ro—1))?)

chiral
PO

(g—pt_—0$2—r(, e—wirg : $2)

(zﬂtUa:"ae—W”o; xg) (6.2.64)

Y
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2P P — gpgp(m) e po0) _ o p—o(m)

)

(6.2.65)
P — oP(8) — {prp(m) , 7 = o0 = og—o(m)
which lead to the following factorization
Z\t/‘évcltsgid = Zyector(2; 8) X Zyector(Z _1; -B), (6.2.66)
Z(ttﬁiirsgled = Zchiral(za t; 5) X Zchiral(z_la E_l; _B) (6267)

where Zyector and Zeniral are defined exactly in the same way as the hemisphere

determinants:

Zvector Z5 B He 85 (a(w+m)* (2' -%'2) (6.2.68)

[0}

Zara(2 15 8) = [ ¢8O0 )= ol o 0)—milr—D)+ 5 (p(u00)ri(ro—1)?

x (P72’ e x2)_1 . (6.2.69)

The Cardy limits of those are given in (6.2.16). In the Cardy limit, the boundary
matters are irrelevant for the factorization of the topologically twisted index,

due to the same reason as the superconformal index.

Next, the classical action contribution is factorized into
Zsen = Zelassical (2,6 8) X Zelassical (2,15 —B) (6.2.70)
where Zassical (2, t; 8) consists of two types of contributions:
25 t1(zv%) (6.2.71)
for a level & Chern-Simons term and

¢25 tr(aus) (6.2.72)

2 1] 3
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for a mixed Chern-Simons term between U(1)4 x U(1)p.

Like the superconformal index, the entire topologically twisted index is com-
pletely factorized into the holomorphic integral and the anti-holomorphic inte-
gral given that the magnetic flux sum is replaced by an integration in the Cardy
limit:

i [isted _ 1 / (ﬁ dzqdz, ) o (WEH-WELED) (6.2.73)
=0 5 NI Jen \ 2 4mBlzq|? -
where

1
_7W(Z) t) = lim [lOg chassical(zu t; /6) + log Zvector (Z; /B) + log Zchiral(z’ t; ﬁ)] .
243 B—0

(6.2.74)
t = (t,—2e"™) is defined such that t7 = t747*~le~™"s as before, and t =
(t, —2€e™). While this form of the topologically twisted index and that of the
superconformal index are very much alike, there is a crucial difference that the
topologically twisted index does not grow in the small 8 limit because 31
terms should be canceled out at the end. This is anticipated because the strict
Cardy limit is basically the unrefined limit of the topologically twisted index,
which is O(1). Thus, if one does the saddle point approximation, every saddle
democratically contributes to the index, which ends up with the BAE formula
for the unrefined index [181]. Nevertheless, if there happens to be only one
saddle or if there is a dominant saddle due to other large parameters such as

large N, one can write down the free energy in a simple manner as before:

FgE™d(t,n; 8) = Nlog f + Fpa(t; 8) + Fpa2 (I~ =) —log [N!«"] + O(8),
= Nlog 8 —logC(t; B) — log C(t*; —B) — log [N17"] + O(B)
(6.2.75)
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where t = te®", t = t71 €, and C is the Cardy block in . Furthermore,
although the strict Cardy limit is the unrefined limit of the topologically twisted
index, will suggest a conjecture for finite § in the large N limit. We
will discuss it with explicit examples in section and

6.2.4 Squashed sphere partition function

Lastly, we consider the supersymmetric partition function on the squashed

sphere Sg’ . Again using the supersymmetric localization, it is given by [211-213]

1 K(G) ~ 53 53 53
ZSS - “/VG|/dr ( )uzclgssical Zvebctor chfiral‘ (6‘2’76)

The 1-loop determinants of the vector multiplet and the chiral multiplet are

vector — bit (i) ) (6.2.77)
acA 2
Zf}iral = H 5b (ig(l — 7o) — p(i) — a(@)) (6.2.78)
pROER

with @ = b + 3. s,(@) is the double-sine function defined by

_mi((1Q )24 Q2 1) (p—2mb it2mib=2. 2mib—2
Sb <ZQ —ﬂ) =e ° <( 1) 6) (e - ) (6.2.79)

(e=2mbit; o—2mib?)
for Im(b?) # 0, which leads to the following factorization of the determinants:

Sy Sy —omba. Sy —omb~la, g1
Zvectorzzvector € ’WZbQ szector € ,7T’Lb Q ’

Sy Sy “omba _—2mbb. EH ombla —2mb e, .1
Zchiral - Zchiral (6 ) € ’ﬂ-le X Zchiral € y € ,’7le Q

(6.2.80)
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where

3 _ B _mi_ 1
szgctor(z; B)y=1]e 2 = 55 (w)” (zo‘;J:Q) , (6.2.81)
e
Si .3 — S((re=1)2=3) =2 (p(w)+0 (v)+ 5o+ 55 (p(w) +0(v))? 1
Z ozt B) = pl(;[aes( 5)="% 21183 G
(6.2.82)
u=1logz, v=logt, B=—logz. (6.2.83)

For the sphere partition function the limit of our interest is the highly
squashed limit of the sphere. More precisely, we take the limit b — 07 with
fixed u = —27wbu and v = —27wbv. We will compare this limit with the Cardy
limits of the other partition functions we have discussed. An interesting thing
is that in this limit, unlike the other partition functions, the holomorphic part
and the anti-holomorphic part do not contribute democratically. Indeed, even
though the squashed sphere partition function has the factorized structure as
in , what corresponds to the hemisphere index in the Cardy limit is the

entire squashed partition function rather than its holomorphic part. To see this,
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let us first take the highly squashed limit of each component in ((6.2.80)):

—27bi . 2 1 .
lim log Zve”ctor (e 2m “;me) 27r 72 Zng < emib ) ~ 3 Za:(a(u) +mi)?,

b—0

(6.2.84)

11m log Z vector (e*%b_lﬁ; m’bilQ)
w2 Lo 1

—2wbt _—27b0. -
hn[l)log chlral (e ,e ,me)

. — 1
= 27ril)2 Z Lis (zthefmrgfmb (r071)> + % Z [p(u) I 0_( ) B 7”( _ 1)]
pRo Yy
(6.2.86)
hm log Z Chlral (6—27r1rla7 e—%b*l@;m.qu)
1
27mb2 Z [ (u) + o (v) = mi(rs — 1)) ]  8mi [(p(w) + o (v))* + *(re — 1)%]
pRoC
(6.2.87)

provided that the argument sits in a chamber: —27 < Im(p(u)+0o(v)—mir,) < 0.
As mentioned above, the holomorphic part and the anti-holomorphic part do
not contribute democratically. Indeed, the holomorphic and anti-holomorphic

parts combined give rise to

i 5 _ : a,mib?\ | _ TLZ
ll)lir[l)log Zobior = 2mb2 Z [12 ) 4 mi)? 4 Lis (z e )] 1 A,

(6.2.88)
%I_I}[l) lOg chflral

1 ™ 1 . 2 2 : o —Tire—mib?(re—1)
=" E [ + = (p(u) + o(v) = mi(1 4+ b%)(ro —1))" 4 Liy (2°t7¢ ™" v
27ib ey 12 4 ( )

(6.2.89)
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up to O(b?), which are the same as the hemisphere determinants up to con-
stant terms. Indeed, such constant terms are just a phase or remnants of the 2d
boundary matter contributions, which however do not affect the factorization
of the superconformal index and of the topologically twisted index. Thus, one

can ignore such constant terms.

3
Next, the classical action contribution Z S

classical includes two types of contri-

butions:

e~ ik tx(@%) (6.2.90)
for a canonical Chern-Simons term with level k£ and

e T iats (6.2.91)

for a mixed Chern-Simons term between U(1) 4 x U (1) g, which can be factorized
in the same way as the determinants. Moreover, in the highly squashed limit,

they become

ez r(3v7) (6.2.92)
¢ mir UALE (6.2.93)
since we are keeping u = —27bt and v = —27bv finite.

Therefore, the sphere partition function in the highly squashed limit is given

in the following form:

1 1 N dz 1 (2,t)
limZgs = ———— “ “ a2 VI .2.94
bso < 5% (ib)N N / ((1131 2m'za> ¢ (6:2:94)

where

(6.2.95)
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As before, we have used the variable t = (¢, —e‘”‘”bz), which is defined such
that t© = toe¢ Tiro—mib?(ro=1) Ip terms of the hemisphere index, the highly
squashed sphere partition function is given by

Fag(8:8) = 5 log f + Fia(e; 8) — 2 log[~mi] + 0(8),
(6.2.96)

= 3 log f — logCle’; §) — o log[-mi] + O(5).

with A = —27b0, 8 = 7ib? and the Cardy block C in (6.2.23)).

6.3 Universal formula

In this section, we discuss the universal relations in the Cardy limit among the
partition functions we have discussed in the previous section. So far we have
seen that those quantities can be solely written in terms of the Cardy block.
We examine this relation more carefully and propose general index theorems
for those quantities in the Cardy limit. In particular, such index theorems will
prove very useful when we consider the large N limit of those quantities, which

relates to the entropic quantities of the dual gravity.

In the previous section, we have already found how the hemisphere index,

or the Cardy block, relates to the other three partition functions. See (6.2.55)),

(6.2.75)) and (6.2.96]). Since the topologically twisted index needs more care, let

us first focus on the generalized superconformal index and the squashed sphere

partition function:

Fga(t,n; 8) = Nlog 8 —logC(t; B) — log C(t; =) + O(B) ,

N (6.3.1)
Fga(A; B) = 7 log  —logC(e%; 8) + O(B)
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™ are understood

up to irrelevant numerical constants. t = tef” and ¢ = t~ ! ¢?
for the superconformal index while A = —27b0 and 8 = wib® are understood
for the squashed sphere partition function. Combining those, we find our first

index theorem:
Fo2 (2,15 8) = Fga(A + Bn; 8) + Fgs (A + fn; =B) + O(B) . (6.3.2)

One may recall that we have taken integer r,. This is necessary condition for
the topologically twisted index while it is not for the other partition functions.
Even for the other partition functions, however, the R-charges are not com-
pletely arbitrary and are restricted by the superpotential of the theory. Indeed,
such restricted R-charges can be parametrized by the flavor chemical poten-
tials. Namely, one can obtain any allowed R-charges, which are generically non-
integer values, by shifting the flavor chemical potentials by A; — A; —(8+mi)d;.
Then, the R-charge is deformed from r, to 7, 4+ o(9). From now on, this de-

formed R-charge is understood except the topologically twisted index.

One can also expand the right hand side with respect to 5. Recall that
—logC(t; B) =~ Fpz(t; 8) has the form
Laog - Y )
—logC(t; B) = EG (t) — > log 8+ G\ (t) + O(B) (6.3.3)
where t = (t, —#e~™) is defined such that

t7 = 74TeLemire (6.3.4)

t has a different definition for each partition function, but most generally it is

defined by

t — teﬂ(nié)iﬂ’ia, t_: t*leﬁ(n+5)+ﬂ'l(5 (635)
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where the R-charge deformation is taken into account. For later convenience,
we include e~ ™ in the definition of t from now on. The small S expansion of

—log C(t; B) is thus given by

1 dt 0
—logC(t; 8 :[G(O) ——1 B+ —  —GO1) + Wt +0(8).
gC(t;8) 5 (t) 88+ 55 5 (t) ()/%O (8)
(6.3.6)

Here, the third term can be expanded as

dt 0 0 0

kiR dpal() :E _ el (OF = 2 ~(0)

a3 8tG (t) (n; — ;) 8th (t) — $&%G (t) (6.3.7)

i
where we have used % = 1. Using this expansion, we have the following ex-

pressions for —logC and — logC:

—logC(t; ) =
1 0 9 0 9 0 (1)
BG (t) log6+§i:(m 6l)tza{iG (t) 520 (t) B%0+G (t)+0(8),
(6.3.8)
—logC(t;—B) =
1—0),, 1 -1 0 0,1 —(0) = (1) -
-0 (1) = S log(=5) - zZ:(nZ+6)t 10 (= 560 B_>0+G (t
+O(p) (6.3.9)

where t = (£, —2~1e™). In addition, we have used a shorthand expression

GOD (1) = GO (y) =GOV (t, —e™™) (6.3.10)
B—0

where o acts on —e™ as e ™. n is nontrivial for the superconformal index

while it is set to be zero for the hemisphere index and the squashed sphere

205 ’L-! = t‘]i 1T
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partition function. Combining all those expansions, in the end, we find that

Fo(te™,n; 8) = ;i Im [G(D) (t)} +23 nilm {g ic;(O) (t)}

0 0
_ 4 9 A0 | - (0)
2§i:6ZRe [tzatiG (t)} 2 Re [(%G (t)”

 +2Re[GO()] + 0(8)
B—0

(6.3.11)
)
o7

Fgs (A — (B +mi)5; 8) = ;G(O) O 5iti;iG(°)(t) .
P £5—0

(6.3.12)

up to numerical constants one can ignore. For the squashed sphere partition
function, t = e2 70 = = 2mbo—Tid 5 — e=B = =™ ig understood. Here the
real part and the imaginary part should be understood with the conjugate

(6.2.36]).

On the other hand, for the topologically twisted index, we have seen that the
Cardy limit is not completely determined by a dominant saddle. Nevertheless,
it is worth mentioning the case that there is only one saddle or there is a domi-
nant saddle due to other large parameters. In such situations, the topologically

twisted index is written in terms of the Cardy block as
Figsted (¢ n; 8) = Nlog B —logC(t; B) —logC(T ™ —B) + O(B).  (6.3.13)

The expansion of the second term is given by ((6.3.8)) with 6 = 0 while the third

term is expanded as follows:

GO (t)‘ + GO +0(3)

—logC(t™';—B) =
1 N 0 0 -
= 560 - 5 log(=5) + Z nitig- GO — 525G E st G (1) +0(3)

(6.3.14)
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where t = (£, —2¢™). Combining the two contributions, therefore, we find

. 0 0
ng\gflsted(,£7 n; B) =92 Z nthEG(O) (t) -9 5% G(O) (t) B + 2G(1) (t) + O(,B)v
; —0

(6.3.15)

which is only valid if there is only one saddle or if there is a dominant saddle
due to other large parameters such as large N, which we discuss shortly. Also

note that
Fg‘gi“ed(eA,n;ﬁ) — FSE(A + ﬂn,ﬁ) + FSS(A — Bn; —ﬁ) + O(/B) (6316)

in such cases.

Large N limit

So far we have seen that the Cardy limits discussed in the previous section

are determined by two functions G (t). See (6.3.8), (6.3.11), (6.3.12) and
(6.3.15)). On the other hand, we will see that, in the large N limit, only GO

plays the crucial role.

Before jumping into the large N limit, let us recall that a large class of 3d
supersymmetric gauge theories are known to have their gravity dual on AdSy.
In the large N limit, for example, the superconformal and topologically twisted
indices are supposed to count the microstates of the corresponding dual black
holes. This has been confirmed for a wide class of theories for the topologically
twisted index [160,/161, 205,206, 214-216] and is also recently tested for the
superconformal index using the ABJM theory and its mirror dual theory [79].
Also the squashed sphere partition function relates to the supersymmetric Rényi
entropy |196], which accounts for the Bekenstein-Hawking entropy of a charged
topological black hole in AdS, [197/198|. Furthermore, although we have not
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discussed it so far, the round sphere partition function, which is a basic quantity
counting the degrees of freedom in odd dimensions, relates to the Euclidean on-
shell action in AdS, [36] as well as the holographic entanglement entropy of
Ryu-Takayanagi [199.200,[217].

As such, many observables of a field theory directly capture the entropic
quantities of its gravity dual. More surprisingly, in the large N limit, some of
those different looking quantities are proven to be related to each other. For
example, there is an index theorem between the topologically twisted index and
the round sphere partition function [205]:

wiste ux’ Az 0 A A
R = 55 (m- ) g (-5) 1B (3

-

(6.3.17)
which is written in our notation. This index theorem relates two different en-
tropic quantities of the dual gravity theory: the black hole entropy and the
holographic entanglement entropy for a spherical entangling surface. Here we
extend this index theorem to include the superconformal index, which is sup-
posed to capture the entropy of the rotating black hole, and also rederive the

above index theorem in our factorization context.

First, we note an interesting relation between the squashed sphere partition

function and the round sphere partition function in the large N limit [194]:

2
Fgs (—mibQs; mib?) = %Fsa 9), (6.3.18)
or equivalently
i + 3)? A
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The explicit field theoretic derivation of this relation is discussed in [194], where
the relation is derived for non-chiral Chern-Simons quiver gauge theories dual to
M-theory on AdS4 x SE7. On the other hand, we will see that this relation holds
more generally, in particular for theories dual to massive ITA string theory as
well. Note that flavor chemical potentials are turned off while the deformations

of the R-charges are parametrized by §. Putting this back into the index theorem
(6.3.2), and (6.3.16]), we find our second index theorem in the large N limit:

(mi + B)? A+ fBn (mi+ )% — A — fn
4mif3 Fs <_ i+ ) * 4mif3 Ese <_ i+ 3

Fga(A,n; B) =

raeta ) = O R (L5 ) - T (s

4mif w4 B 4mif wi— 3

(6.3.20)
which relates two types of black hole entropies with the holographic entangle-
ment entropy for a spherical entangling surface. Note that, for parity invariant
theories, Fgs is a real function. Furthermore although we have derived
in the Cardy limit, many examples suggest that they are exact for arbitrary [
in the large N limit, at least for the known large N saddle point capturing the

black hole microstates. In particular, recall that the Cardy block is given by

—logC(t; B) = ;G(O) (t) — g log B+ G () +0O(3). (6.3.21)

In the next section, we will show that G() is subdominant in N compared
to GO at the large N saddle point for the M2-brane example. In the same
manner, we expect that the O(8) corrections are also all subdominant at the
large N saddle, which implies that our formula is indeed exact for
arbitrary 8. We will come back to this point in section [6.4] and Also note
that recently similar relations are found in terms of gravitational blocks on the

dual gravity side [201], which are also inspired by the holomorphic blocks. It
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will be interesting to obtain those relations using the equivariant localization
in supergravity [218}219].
In particular, one can consider the ordinary superconformal index by turning

off all the magnetic flux for the flavor symmetry, n = 0. In that case, we have

. 2 A
F52 (A, n = 07 B) = (W;;’@Re |:F53 <_7Ti T B>:| (6322)

where Rel...] should be understood with the conjugation defined by (6.2.36])).
Indeed, one can further unrefine the index by turning off the flavor chemi-

cal potentials as well. Restoring the superconformal R-charge by setting A =

—(mi + B)dx = —ARd,, we obtain a simple formula
A%
Fs:(B) = 5 5he [Fgs (0:)] (6.3.23)

where Ar = wi+f is the chemical potential for the superconformal R-symmetry
and J, is the shift of R-charges restoring the superconformal values, which are
determined by the F-maximization. This relates the unrefined superconformal
index and the round sphere partition function at the superconformal point in
a very simple manner, where the latter accounts for the degrees of freedom of
3d SCFTs [202]. This is reminiscent of the Cardy formula for 2d CFTs [12|E| or
4d N =1 SCFTs [13§] in the large N limit, where the real part of the round
sphere free energy, Re [Fgs (d.)], plays the role of central charges in 2d and in
4d. Recently the same relation has been observed for 3d SCFTs arising from
M5-branes wrapped on hyperbolic three-manifolds [203,204], which show N3
degrees of freedom in the large N limit. Our result shows that this relation
holds much more generally. Also we would like to mention that similar univer-

sal relations among quantities in different dimensions are discussed in [207,222].

2Recently, it is shown that the 2d Cardy formula can be derived in a rigorous way using
Tauberian theorems [220}221].
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Again one can expand the right hand side with respect to 3. First, comparing
(6.3.18) with our formula (6.3.12)), we obtain the following expression for the
round sphere:

2 0

4 ) ) ‘
Fea(8) = =GO ™) = 23 " 5,0 (e™0) —2 —GOt) +2GMW (e
i i 09; 0z tse—id B0
(6.3.24)

which implies that

2 1 o o

2 a0 = = st L a2 a0 (1)

~GO( M,Z(Al Ti0;)t; 8tiG () = 5=G (t)'B_)0+G (t) (6.3.25)

(2

where t = e2~7™_ Putting this back into the general formula above, we obtain

1 N 1 ) 2
e 8) = @O (g — 2 _ 2 . 9 (0 al()
Fpa(te™7°; B) BG (t) 5 log 3 — EZ A’t’a’qG (t) + m’G (t) + O(B),

(6.3.26)

Fsz(tefﬁ‘;,n;ﬂ) =

2 0 JAVING] 4

Zitm [60)] +2 St [“%G(O)“)] YR [MQ%G(O)(Q} + I [GO (1)
+ O(/B) , (6.3.27)

. A, 0 4
Fosed(tn; f) =2 <n - m) tis GO+ —GOM +0(B)  (63.28)

for the three indices and

Fgs (—2mbd — mibQs; wib®) = #G(O)(e_%bﬁ_”‘s) - % Z @i;@G@)(e—%bﬁ—m )
n %G(m(gzwb@wé) +O(8), (6.3.29)
Fgs(8) = %G(O) (e7™) (6.3.30)
for the sphere partition functions. t is defined by t = e2~™9; n; vanishes for the

hemisphere index; J; vanishes for the topologically twisted index; and finite bo

is understood for the squashed sphere partition function.
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Especially, if we only look at the leading term in each partition function,

1
Fpe(te ™ 8) = BG(O)(’L), (6.3.31)
Fga(te™P n; B) = ;ilm [G@) (t)} : (6.3.32)
Pt n; 8) =2) (n - Ai) QEG(O) ) + 6o ) (6.3.33)
T - ) ot T ’
N ; i h2) 1 (0) ( ,—2mwbo—7id
Fgs (—27bo — wibQ4; wib*) = WG (e ), (6.3.34)
4 .
Fgs(8) = %G@(e—mﬁ), (6.3.35)

from which one can read off various relations among those partition functions
in the strict Cardy limit. For example, one can write down the superconformal
index and the topologically twisted index in terms of the round sphere partition

function as follows:

Fsz(te_55,n; B) ~ —%Re [F53 <_7?2>} ,

(6.3.36)
: ; A O A A
FtWISth ¢ . ~ ﬂ R F = F =
52 ( Y n’ /B) 2 zz: nZ 7TZ aAz S3 7_[_7/ + S3 7T’L
where the former provides a new universal formula for the large N supercon-
formal indices of 3d N/ = 2 supersymmetric non-chiral Chern-Simons quiver
theories dual to M-theory on AdS, x SE7 while the latter reproduces the known

index theorem for the unrefined topologically twisted index [205].

Indeed, the relations in ((6.3.36)), and (|6.3.20)), hold more generally, in par-

ticular, for theories dual to massive IIA string theory. Recall that the second
relation in [205] is derived not only for theories dual to M-theory but also for
those dual to massive ITA string theory. Thus, by reversing the logic, combining
the index theorem of [205] and our formula (6.3.16]), which relates the topolog-

ically twisted index and the squashed sphere partition function, one can find

'y 3 1] 3
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that the relation should hold for massive ITA duals as well as M-theory
duals. Therefore, the resulting relations in and also hold for
massive ITA duals. We will encounter such a massive type IIA example in sec-
tion Furthermore, the Cardy limit formula without the large N limit

is even more general as it does not have any such restrictions.

6.4 Example: N =4 U(N) SYM with one fundamental
and one adjoint hypermultiplets

In this section, we examine the N’ =4 U(N) SYM theory with one fundamental
and one adjoint hypermultiplets as an explicit example. It lives on N D2-branes
and 1 D6-brane, and flows in IR to A/ = 8 SCFT on M2-branes. Its holographic
dual is the 11d SUGRA, or M-theory, on AdS; x S7. The partition functions
of this theory are already discussed in the literature. For example, the Cardy
limits of the superconformal and hemisphere indices are discussed in 79|, which
we review in chapter |5, and the (unrefined) topologically twisted index in the
large N limit is discussed in [214]. Here, we reexamine those partition functions

in the perspective of the Cardy factorization, which sheds more light on their

relations and the universal structure such as (6.3.20)) or (6.3.36]). For simplicity,

we will only consider the large N limit. The finite V superconformal index in

the Cardy limit can be found in [79], which we discussed in chapter

'y 3 1] 3
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6.4.1 Hemisphere index

We first examine the hemisphere index. Following [171], the hemisphere index

of the theory is given by

Ip2(Q,2,7; ) = tr3(D20) [(—1)R$R+2J3tl_rz2mQT}
N27N 1 1 . N
_ 1 O(zt;2%) 2 2 O(2t2;22)0(tze ™ x; 22)
N! \ 0(za2; 22) 0(ze ™ix; x?)
dsq ﬁ G(SaQt%; ) H
n (545, 13 2?)
27TZSa e 9(8a6_m:p;x2)9(Qt%; 22) e b

N 1 N
<H Set™ 2z 1‘2)> H (Sas, 12t~ 322 ) (6.41)

= sat2 x?) ab=1 (sas, 't 122, 22) (808, zt2;w2)

where z = e . s,’s denote the gauge holonomies on S', which were originally
denoted by z,’s in section [6.2] Our theory has N' = 4 SUSY in UV, which is
associated with SO(4) = SU(2); x SU(2), R-symmetry. Also, the adjoint hy-
permultiplet can be decomposed into two half-hypermultiplets being a doublet
of SU(2),, flavor symmetry. Finally, there is a topological U(1)r symmetry
coming from the conserved current of the U(N) gauge symmetry j# = tr(xF)".
l,7,m denote the Cartan charges of SU(2); x SU(2), x SU(2)pm, and T is the
U(1)r charge. From the N' = 2 viewpoint, [+ corresponds to the SO(2) =2 U(1)
superconformal R-charge while [ — 7 is a flavor charge. As explained in section
we will take the integer quantized R-charge to define the index with (—1)R,
R = 2r in this case, instead of the superconformal one. Those two merely differ
by a shift of the chemical potentials. Then, the adjoint chiral multiplet in the
N = 4 vector multiplet has R-charge 2, while the other chiral multiplets have
vanishing R-charges. This can be achieved by successive replacing t — tz !
and * — e ™z for the index in [79], which made use of the superconformal

R-charge and F = 2J3, where J3 is the angular momentum on D?. Further note

A5
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that Q = e‘é, z=c¢f, t3 = e% are the fugacities conjugate to the integer quan-
tized flavor charges. Lastly we have introduced 2d degrees of freedom to cancel
the boundary mixed/flavor anomalies such that there is no UV mixed/flavor
Chern-Simons term except the one between the diagonal gauge U(1) and the
topological U(1). In particular, the 6 functions in front of the integral are due
to the flavor anomalies while the 6 functions inside the integral are due to the

mixed anomalies between the gauge and the flavor symmetries.

For this particular model, one may avoid 2d degrees of freedom by turning
on appropriate mixed/flavor Chern-Simons terms, as done in [79]. On the other
hand, here we keep 2d degrees of freedom and assume no extra mixed/flavor
Chern-Simons terms. In particular, if Q = e¢ = Qt%e”x_l has discrete value
22" with an integer n, the # functions inside the integral are simplified to
ﬁ Q(SaQt% )

0l1 O(sqe ™ mQ)B(Qt% ;2)

N

1
L (e~ miz; 22)2
Qtj emigp—l—p2n a=

_£
sa?, (6.4.2)
1

which can be regarded as the classical contribution of the Fayet-Iliopoulos ac-
tion, whose coupling constant should have a quantized real value on D2, up
to a gauge holonomy independent factor. In this regard, the above 6 functions
incorporate a generalized FI parameter é = log @, which can take any com-
plex value. This is because, in 3d, the Fayet-Iliopoulos action can be realized
as a mixed Chern-Simons action between the gauge U(1) and the topological
U(1). For computational convenience, we will temporarily use the parameter
E=¢— % — mi — 8 rather than €. At the final answer, we will convert it back
to f .

In the Cardy limit 8 — 0, all the other chemical potentials £, f,T may be

taken as pure imaginary and finite [75]. We will restrict the parameter region

A5
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as
—271 <Im(¢) <0, =271 <Im(T) <0,

(6.4.3)
O<Im<f—§><27r, 0<Im<—f—§><27r.

After gluing two hemisphere indices to make the superconformal index, or the
topologically twisted index, the resulting index at the other parameter regions
can be easily generated by periodic shifts of the chemical potentials and complex
conjugation of the index [79]. So, it suffices to consider the above case only to
cover the whole parameter region. Then, recall that the Cardy limit 5 — 0 of

the hemisphere index (6.4.1) can be evaluated by the saddle point method as

I = (f) H exp (-215w*> (det(—a2W)*) 2 (ﬁ si + 0(5)) (6.4.4)

a=1 @

with an effective twisted superpotential |79}|171]

W =

2 _
NQJ(T— 2mi(p1 — p2) + 28) <—f - g + mi(p1 +p2 + 1)>
+g<T+2m'+25) (—f— g)

# 8 (=372 202 (2 — )+ 91+ 2) = (s + 2)) = 2l — ) — 3502+ )

+N <—L12(t_1x) + Lig(zt_%x) - Lig(zt%x_l))
N 1 1

+ Z <(§ + 27i(p3 — pa)) log sq + Lia(sqt ™ 22) — Lig(satix*1)>
a=1

+ Z (LiQ(sasb_lx_l) — Lig(sqsp 't 12) + Lig(sasb_lzt_%a:) - Lig(sasb_lzt%x_1)>
1<a#b<N

+0(8% ,
(6.4.5)
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where

27py <Im (f+T) < 27(p1 + 1),
2mpe < Im (f) < 2m(p2 + 1),
27p3 < Im (log sq — & — i) < 2mw(ps + 1), (6.4.6)
27py < Im (log sq — i) < 27(ps + 1),
2mps < Im (=€ —mi) < 27(ps +1).

Here, we used the asymptotic formulae (A.0.2)), (A.0.10)). Also, we assumed that

the eigenvalue distribution s, does not pass across the branch cuts, and O(p)
corrections do not change the branches of the arguments. Due to the conditions

(6.4.3),

(p17p2) = (_27 _1) ) (_17 _1) ) (_17 0) ) (07 0) )

p3_p420717 p5:_170'

(6.4.7)

Focusing on the gauge holonomy dependent parts of , 2mi(ps — p4)
effectively shifts the range of Im(§) to (27(ps — pa — 1), 2m(ps — p4)). However,
according to |79], the known Cardy saddle point of the hemisphere index
only exists when —27 < Im(§) < 0. Therefore, we will set p3 — ps = 0. This
restricts the possible range of the argument of s;’s. The known Cardy saddle
point belongs to that range. When p3 — ps = 1, there is no known saddle point.
Also, as the hemisphere index is invariant under s, — €2™s,, due to the

large gauge invariance of our QFT, we can freely tune the value of ps. We shall

2> 1 ;
217 ’L-! =



set p3 = ps = ps = p, which can be either —1 or 0. Then, WV becomes

W =
2 _
]\[27N(T — 2mi(p1 — p2) + 28) (—f — g + mi(p1 +p2 + 1))
+ g(T—f—Qm—i—Qﬁ) (—f— :g)
LN (_‘”’ ’ S %5(% +8) — Lig(t ™) + Lig(2t2x) — Li2<zt%:n—1>)
N
+ Z (f log sq + LiQ(Sat_%.'E) — Lig(sat%x_l)>
a=1

Z (Lig(sasb_lx_l) — Lig(sqsp 't 1z) + Lig(sasb_lzt_%:n) — Lig(sasb_lzt%x_1)>
1<a#£b<N

+0(B?) .
(6.4.8)

The first and second lines become N72(T + 27+ 203) (—f - %) when (p1,p2) =
(—1,0), which is proportional to N2. This exactly cancels Wj in |79], which is
the term proportional to N2 of W* in the large N limit. Namely, by introducing
appropriate boundary degrees of freedom, we can get rid of the term propor-
tional to N? in the large N Cardy free energy, which does not come from the
degrees of freedom of N M2-branes. However, one may suspect what happens
in the other branches as it will not exactly cancels Wy in those cases. First note
that it does not depend on s,’s, so it does not affect the saddle point. Further-
more, as explained in [79], this term cancels out when we glue two hemisphere
indices to make the superconformal index or the topologically twisted index.
Therefore, this term does not affect the resulting indices at all so that we can

effectively ignore it in the hemisphere index even in the other branches.

To analytically compute W*, let us consider the large N limit. It was ba-

sically studied in [79]. Carefully following section 4.1 of 79|, it is not hard to

) -11 =1
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keep O(B) terms in W. We obtain

-5 :-¢€g2\/<—é+€+m+ﬁ> (é+§+m’+6> <f—:£> <—f—

+ O(];Z) +o(N2)B +0(8) (6.4.9)

where £ = ¢ + % + mi 4+ BJ°| This large N Cardy saddle point value exists only

when we further restrict the parameters as
. T _
0<Im<§+2+m+ﬁ> <2r, Im(B)<0. (6.4.10)

Note that we shifted T — T+ 5 and removed W) in [79] as explained before.
According to (6.4.4]), the following also contributes to the hemisphere index
at O(B):

(f) H (det(— % ﬁ 1a . (6.4.11)

a=1

Also, from [79], one can find that the Cardy saddle point satisfies Im(s,) =
0, Re(sq) > 0 for our parameter region. Then, we may sort the eigenvalues in

the ascending order as follows:
0<s1<s9< - <8N . (6.4.12)

Assuming Im(3) < 0 as before, which is the relevant region for our microstate

3Indeed, the subleading correction in N turns out to be not O(N) but (’)(N%)7 according
to the numerical analysis [79]. So, one may replace O(N%) — O(N%) in (6.4.9). Nevertheless,
we shall keep using o(N %) as we do not have its analytic proof yet.
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counting, the Hessian of W at 8 — 0 is given by

+Z‘9#< T+ _1 _13b>] ’ (a#0b),

1 —eHsgsy 1—eHs,

oW
asaﬁsb  SaSh

w _
- =
a
1 1
(N —1)— (N — - (1125 ) — Liy (=12 _
{ (N—=1)— (N —2a+1)mi — &+ Lig(t7/7s,) — Lig(t7/7s4) + T R Yy

N
1 1
+ Z {log(sasb_l) + Z Su (—Lil(eusasb_l) + Lil(e”sglsb) — — — — — ) } ,

1 —eHsysy 1 —eHsy s

(6.4.13)
where = =T, f — 5, f+ 5 and s_7 1, Sy +1, SpyT 1. At the
large N Cardy saddle point |79

* NV, o smb(E/2) (6.4.14)

%a = 506 0T Sinh(¢/2 +T/2)

the above Hessian becomes

62W 1 _N1/2 _ _nN1/2 2
_ ) inh |xa—xp| N
D505, oy [(Eﬂ Sy sin u)e —i—(’)((e ) ) , (a#b),

W _
0s2

. 1 1 _N1/2
- [§+9(xa)(T+2m) <§+ ey —t1/2sal> +0 (e )] ,
(6.4.15)
where 6(z > 0) =1, (z < 0) =0, and 0, o is the Kronecker delta. Then, the

a

Hessian determinant is given by
N
1 _n1/2
_ A2V L AN N 0
det(—92W) H1 el (1 +0 (e )5 + 0(5)) : (6.4.16)

where AN = T[, [€ 4+ 0(xa)(T + 2m0) — 6,0 (€ + e e M )]

i.e. Ais an O(1) constant. Finally, we obtain

N
2

(ﬁ) (det(—WL))~ ﬂ 31] = glog <7i> +0 (e‘N”2> B +0(8) ,

a=1 @

N

log

T 3 11 3
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which contributes as O(N) to the large N Cardy free energy. Therefore, together
with (6.4.9)), the large N Cardy free energy of the hemisphere index is given by

log Ipz(e€,ef e7; B)

=logCle %, el e2; )

— VB (e Dmien) (64 Dmien) (- 5) (- 3)

7)

+Zbg@i>+dg2+dN%w+OWL
(6.4.18)
when
0<hn<f+£xmﬁ+ﬁ>Jm(f+€+4m+ﬁ>Jm(f—?)Jm<—f—§)<2m
(6.4.19)
with
Im(3) <0 . (6.4.20)

Note that the log 8 term is correct even at finite N as explained in section [6.2}

One can also restore the superconformal R-charge by shifting 7' — T — wi — 3.

6.4.2 Generalized superconformal index

In this subsection, we construct the large N Cardy limit of the generalized
superconformal index from . This index should statistically account for
the microstates of the electrically charged [82] or dyonic [97] rotating BPS black
holes with vanishing magnetic charge for the R-symmetry and large angular
momentum J/N% = O(B72) in AdSy x S7 [79]. In order to preserve SUSY,
the black holes should have both electric charges and angular momentum while
it is free to turn off the magnetic charges for the (non-R) flavor symmetries

[74/82.07).

) 3 =11 =1 —
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Recall that, in the Cardy limit, the generalized superconformal index is

given in terms of the Cardy block (6.2.55) as follows:

Faa(t,n; 8) =N log B — log C(e™ €77, e 77 5 40mr; 3)
- log@(eéJrﬁ"ﬁ, e Ithns =g thnr, —B) —log [N!7N] + O(B)
(6.4.21)

Applying (6.4.18]) to the above factorization formula, we obtain

log Ig2 (Ag,np: B) = — Z,2\/2N2 V(AT +118) (A + n2§I)B(A3 + n3f) (Ag + naf)

_2V2N2 V(AL mB) (By —n2B) (A5 — nsB) (B —nap)
3 23

+0(8) ,
(6.4.22)

where
~ T . ~ T . T T
AIE_£+§+7”1+57AQE§+§+W7’+57A3Ef_§7A4E_f_§7
np=ng+nr,nN2=-Ng+nr,N3g=ny—Nr, Ng=-—Ny—Nr,
(6.4.23)

which satisfy

4 4
S Ar-28=2mi, Y ny=0, 0<Im(A;)<2r, Im(8)<0. (64.24)
=1 I=1

Here, Ay’s are the four Cartan chemical potentials for SO(8) R-symmetry of
the A/ = 8 SCFT in IR, and n;’s denote the magnetic fluxes for the Cartan
subgroup. Then, the first constraint of can be considered as the index-
like condition implied on a partition function defined without (—1)f [75,/79)].
Also, the second constraint reveals that we do not turn on magnetic flux on 52

for the R-symmetry; i.e., there is no topological twist.

The above large N Cardy free energy ((6.4.22)) statistically accounts for the

222 A 2-t)] &F
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microstates of dyonic rotating BPS black holes in AdS, x S7 [97,1201]. In par-

ticular, turning off all the magnetic fluxes for the flavor symmetries, we get

AVIN?E /AT A ASA,
—1
3 243

3
2

log Is2(Af; B) =

+o(N2)+0(8).  (6.4.25)

This large N Cardy free energy of the superconformal index accounts for the
microstates of electrically charged rotating BPS black holes in AdSy x S7 [74].
Namely, performing the Legendre transformation of the above free energies
with respect to A;’s and 28 under the constraints , one obtains the
Bekenstein-Hawking entropy of the corresponding BPS black holes in AdS, x S”.
Further note that although we derive these large N free energies in the Cardy
limit 8 — 0, they in fact perfectly capture the entropy of the BPS black holes

even at finite 3.

6.4.3 Refined topologically twisted index

In this subsection, we construct the large N Cardy limit of the refined topo-
logically twisted index from . This index should statistically account
for the microstates of the magnetically charged or dyonic, static [223-225] or
rotating [226] BPS black holes with the non-vanishing magnetic flux for the
gauged R-symmetry in mAdS, x S7 [160], which is a particular asymptotically
locally AdS spacetime [195]. For these black holes, one can freely turn off the
electric charges, angular momentum, and magnetic charges for the (non-R) fla-
vor symmetries. The magnetic charge for the R-symmetry should be properly

tuned to preserve SUSY by a topological twist.

Recall that, in the Cardy limit, the refined topologically twisted index is
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given in terms of the Cardy block (6.2.75) as follows:

FL™ed(t,n; ) =N log § — log C(e~*+7m, el +0ns 5 +0nr, g)
—log C(e~¢~Pne f=Ans 3 =nr,_g3) _log [N12V] + O(B).

(6.4.26)

Applying (6.4.18]) to the above factorization formula, we obtain

log 154 (A, ny: ) = — i%/ZNg V(A1 +n18) (Ag +128) (A3 + n3) (A + naf)

2p
2V2N: \/(By — 11B) (Bs — n2B) (Bz — n3B) (Ba — naf)
+1
3 2p
+o(N%)+0(8) ,
(6.4.27)
where
. T . . T . T T
A1£—§+§+M,AQE§+§+M, Ang—§ , A4E—f—§,
n=1l+ne+ny,ne=1-ng+ny,n3=ny—nr, ng=-ny—nr,
(6.4.28)

which satisfy
4 4
S Ar=2mi, Y ny=2, 0<Im(A;)<2r, Im(B)<0. (6.4.29)
=1 I=1

Here, A;’s are again the four Cartan chemical potentials for SO(8) R-symmetry
of the N =8 SCFT in IR, and n;’s denote the magnetic fluxes for each Cartan
subgroup. The first constraint of comes from the index-like condition
for the partition function without (—1)¥ while the second constraint implies
the topological twist by the magnetic flux for the R-symmetry on S2.

The above large N Cardy free energy statistically accounts for

the microstates of magnetically charged or dyonic rotating BPS black holes

in mAdS, x S” [201,/226]. As before, this large N free energy gives the correct
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entropy of the BPS black holes at arbitrary (5. Also, expanding the free energy
in 8, one can find that it is regular at 8 = 0. Then, setting 8 = 0, we get

.ﬂM
i
3

3

4
A1 A A3A ZA—I Nz),  (6.4.30)
I=1

log I§Y™**d(Af,ny) = —

whose Legendre transformation in Aj’s yields the entropy of the magnetically

charge or dyonic static BPS black holes in mAdS, x S” [160].

6.4.4 Squashed sphere partition function

In this subsection, we construct the large N Cardy limit of the squashed sphere
partition function from . This partition function should be related to
the round sphere partition function by [194]. Then, the free energy of
the round sphere partition function [66] is supposed to be identified with the
regularized Euclidean on-shell action on AdS, x S” [65,227].

Recall that, in the Cardy limit, the squashed sphere partition function is
given in terms of the Cardy block (6.2.96) as follows:

N . : A
Fsg(—m'chS; mib?) = 5 log [—bQ] — log C(e ™% =mibQos o=mibQOT. 1in2) 4 O(b?)

(6.4.31)

where @ = b+ 3 1. ; 0,’s are the R-charge deformations by U(1), flavor charges;
and we turned off all the mass parameters on Sg’ for simplicity. Applying ((6.4.18))

to the above formula, we obtain

1 4 N3
longg(AI;me) =-1 (b+ b) f; * VA 1A2A3A4 + o( N %) + 0%,

(6.4.32)

where

A = 1_55_5T, Ny = 1—|—5€—5T, Ag = —5f—|-5T, A4E§f+5T, (6.4.33)

'y 3 1] 3
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which satisfy

] =

Ar=2. (6.4.34)
I=1

Here, A;’s parametrize trial R-charges of the theory, which are constrained as
above due to the condition that the superpotential should have R-charge 2. As
before, this large N free energy (6.4.32) is indeed exact at arbitrary b.

Using the relation between the squashed and round sphere partition function
(16.3.18)), we get the following large IV limit of the round sphere partition function

with arbitrary R-charges:

_ 3
log Zgs(Ar) =4 (b + ll)) 2longg(AI;m'bQ) = —M;TNQ

(6.4.35)
which exactly agrees with the known field theory result [228] and the confirma-
tion on the gravity side [229]. In particular, setting o7 = % and d¢ = 67 = 0,
one can restore the superconformal R-charge. In that case, we find A; = Ay =
Ag = A4 = 5, which indeed maximize F' = —log Zgs(A;) [202]. Then, the large

N limit of the round sphere partition function at the superconformal R-charge

is given by
3
2N 2
fg N

o

log Zgs = — o(Nz), (6.4.36)

which precisely matches the regularized Euclidean on-shell action on AdS, x S”
[66]. In addition, one can easily check that our second index theorem ([6.3.20))

indeed holds for the results obtained in this section.

6.5 Other examples

In this section, we study the Cardy limit of the superconformal index of various

N > 2 SCFTs applying (6.3.1)) or (6.3.20). For the definiteness, we shall only

720 A 2-tf) 8 3
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consider the SCFTs which can be obtained from M-theory or string theory.

Before moving on to explicit examples, we first make a comment on the Hes-
sian determinant of the hemisphere index in the large N limit. While computing
the Hessian determinant in section the crucial point was that the eigenval-
ues spread as s, ~ eV %24 This eigenvalue spreading is a common feature of
3d SCFT's while the precise factor N% depends on a specific model. For SCFTs
with M-theory dual, a = %; for SCFTs with massive ITA dual, o = % As one
can see in section the precise factor is not important in the computation.
Thus, we expect that the log of the Hessian determinant is O(NN) in general.
Namely, for generic N' = 2 SCFTs, we expect that

G = O(N)+0(B) . (6.5.1)

It is well known that G(©) = (’)(N%) for the M-theory dual while G(©) = (’)(N%)
for massive ITA dual. Therefore, we expect that GV is negligible in the large
N limit.

There are lots of examples whose round sphere partition functions [65|/66,
228,,230] or topologically twisted indices on S? x S' [214}216,[231] are known
in the large N limit. Using , one can easily read off the large N Cardy
limit of the superconformal index from the round sphere partition function.
Also, in the literature, the topologically twisted index was computed via its
index theorem , which was expressed in terms of the Bethe potential V.
In our notation, the Bethe potential is translated as

%G(U) (e72) . (6.5.2)

Since G can be ignored in the large N limit, reading off ¥ from the topologi-
cally twisted index suffices to compute the superconformal index in the large NV

Cardy limit by (6.3.1). We will illustrate such examples whose large N Cardy

27 A 2-tf) 8 3
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limit of the superconformal indices can be obtained either from the round sphere

partition functions or the topologically twisted indices.

Furthermore, we will also provide finite N Cardy results of the supercon-
formal indices for a few examples, with rank less than 3 for simplicity, which

are severed as nontrivial tests of known dualities of those examples.

6.5.1 M2-Branes probing a CY 4-fold singularity

In this subsection, we consider quiver gauge theories, which describe the low
energy dynamics of M2-branes probing a conical Calabi-Yau 4-fold singularity.
For this class of theories, the sum of the CS levels for each gauge group vanishes,
ie > g k4 = 0. Also, those theories are parity invariant so that the round sphere
free energy Flgs is real. Then, from , the generalized superconformal

index can be expressed as

FS2(A,TL;6) — F52(A—|—n670,5)—;F52(A - nﬂaoaﬁ) ) (653)

Keeping the above formula in mind, we shall turn off all the magnetic fluxes
for the flavor symmetries. The generalization can be easily done by the above
formula. There are two relevant regimes for these theories: M-theory regime,

and type IIA string theory regime.
M-theory regime

One can take the large N limit with fixed CS levels k ~ O(1). Then, the field
theory is supposed to be dual to the M-theory or 11d SUGRA on AdSy x SE7
where SE7 is the Sasaki-Einstein 7-manifold serving as the base of a conical CY

4-fold. The characteristic large IV behavior of the free energy in this M-theory

A5
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regime is

F~kiNZ . (6.5.4)

First, the round sphere free energy at the superconformal R-charge is given

by [66]
276
27Vol(SE7) -

Applying (6.3.23)), the (unrefined) superconformal index in the large N Cardy

Fgs = N2 (6.5.5)

limit, for the generic N' > 2 SCFTs describing the low energy dynamics of
M2-branes, is given by

A2 276
Ni T (6.5.6)

Fgo = 1
%7 omip 27Vol(SE7)

which precisely matches the result from the dual supergravity analysis on uni-

versal spinning black holes in AdSy [203], even in the non-Cardy regime.

Example 1: ABJM theory

The most common example in this class is the ABJM;, theory, which describes
the low energy dynamics of N M2-branes probing C4/Zj, singularity [44]. Its
holographic dual is given by 11d SUGRA on AdS4 x S7/Zj. The round sphere

free energy with generic R-charge assignment is given by [228§]

1 3
4/ 2mk2 N2
Fgs = \[ﬂzf“\/AlAgAg,Az; . (6.5.7)

The large N Cardy free energy of the superconformal index is given by [79)

AV2kEN2 /A DDA,

Fqo = 5.
S2 1 3 25 (6 5 8)
Indeed, they satisfy our large N Cardy formula ((6.3.20)):
(mi + B)? A
FoAN\;)=~—F3s | —— ] . 6.5.9
(8B = =g e (3 (6.5.9)
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Note that the above large N Cardy free energy of the superconformal index, in
fact, precisely captures the entropy of dual BPS black holes in AdS, x S7/Zy
[74,82,97], even in the non-Cardy regime.

SL(2,Z) duality When k = 1, the ABJM theory is supposed to be dual
to N =4 U(N) SYM with one fundamental and one adjoint hypermultiplets
in section [6.4] by the SL(2,Z) duality [44]. Indeed, in the large N Cardy limit,
two free energies , coincide. One can also test this duality in the
finite N Cardy limit using . When N = 1, the Cardy free energy of the
ABJM; theory is given by

Py o 8IG T35

28~ 28

at A1 =Ag = A3 =A, = % G is Catalan’s constant, which is defined by

: (6.5.10)

_ Lia(i) = Lia(~)

¢ 21

~ 0.915966 . (6.5.11)

It turns out that (6.5.10)) is identical to the Cardy free energy of the dual theory

when N =1 [79]. One would test this duality at NV > 1 by numerical analysis.

Now we discuss a few more examples belonging to this class. The topologi-
cally twisted indices of those examples are examined in [214]. We examine their
superconformal indices in the Cardy limit, mainly with large N but also with

finite N for a few theories with rank less than 3.

Example 2: N =4 U(N) SYM with Ny fundamental and one adjoint
hypermultiplets
This theory is a natural generalization of the theory we have considered in

section This theory describes N M2-branes probing C2xC?/Z N, singularity.

'y 3 1] 3
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Referring to the topologically twisted index in [214], we obtain the following
large N Cardy free energy of the superconformal index from (6.3.1):

1 3
. Z,4\@\7;"]\75 VATAAA,

2 = .
o 3 28

(6.5.12)
Also, at Ny = 2, we give the Cardy free energy at finite V. When N =1,

Faa ~ 225 (46 + 81 {Lia((~1 + v2)i) } — wlog(~1 + V2)

. 9.686911 (6.5.13)
= 725 ,
and when N = 2,
22.63651
Foo g ———— .5.14
S2 25 Y (6 5 )

at A1 = Ag = Az = Ay = %Z Note that the above free energies comes from

the dominant one among several saddle points.

Example 3: N =4 U(N)? necklace quiver SYM with N; fundamental
hypermultiplets for the g-th gauge group

This theory contains g > 1 bifundamental hypermultiplets, each of which
connects adjacent gauge nodes, as well as Ny fundamental hypermultiplets
attached to the last gauge node. The theory lives on N M2-branes probing
C?/Zy x C? /ZnN, singularity. The large N Cardy free energy of the supercon-

formal index is given by

.4\@(91\7]‘)%]\7g VA1AA3AY

Fg2 = 5.1
g2 =1 3 25 (6.5.15)

Mirror symmetry This theory at g = 2, Ny = 1 is dual to the former
theory at Ny = 2 by the mirror symmetry [232]. Indeed, the Cardy free energies

of two theories, (6.5.12)) and (6.5.15)), agree at large N limit. Also, when g =

'y 3 1] 3
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2,Ny=1and N =1,

Fgs ~ 226 [4G +4Im {LiQ(e’%) + Lig(e%)H
~ 9.68691¢
26
at A = Ay = A3 = Ay = % Hence, two Cardy free energies, and
, also agree at N = 1.

(6.5.16)

Example 4: N =3 U(N)Y necklace quiver CS matter theory with CS
levels (+k,—k,0,0,...,0)
This theory lives on N M2-branes probing (C? x C?/Z,_1)/Zy, singularity. The

large N Cardy free energy is given by

3
2

1V2[(g — 1)k]2N2 /A AyAsA,

Fon — i
S2 7 3 26

(6.5.17)

This theory with g gauge nodes at k = 1 is dual to the third example with
g — 1 gauge nodes at Ny = 1 by the SL(2,7Z) duality [233]. Indeed, the large N

Cardy free energies of two theories, (6.5.15)) and (6.5.17)), are identical.

Example 5: N = 3 U(N)? necklace quiver CS matter theory with al-
ternating CS levels +k

This theory describes the low energy dynamics of N M2-branes probing (C?/ ZLgx
C?/Zg4)/Zy singularity. The large N Cardy free energy is

1.3
Fgo = ¢4\/§g§2N2 v AlAQZAS’A“ . (6.5.18)

Type IIA string theory regime

One can take the large N limit with large but fixed 't Hooft couplings A =
% > 1 ~ O(NY). Then, the field theory in this 't Hooft limit is dual to type

'y 3 1] 3
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ITA string theory. The characteristic large N, A behavior of the free energy in
this type ITA string theory regime is

F~ ]\\/f; . (6.5.19)
Our example is the ABJM;, theory. In the above 't Hooft limit, the ABJMy
theory is dual to type IIA SUGRA on AdS, x CP? [44]. This can be understood
as the 10d reduction of the M-theory on AdSy x S7/Zy where S7 is a U(1)
bundle over CP?. Using , the Cardy free energy of the superconformal
index in the large N, A limit can be read off from the topologically twisted
index in [231] as follows:

4y/2N? VA1 ASA3AY
Fs2 =1 .
3V 28

The above large N Cardy free energy perfectly captures the entropy of dual
BPS black holes in AdS, x CP? [74,231].

(6.5.20)

6.5.2 D2-Branes probing a CY 3-fold singularity in massive ITA
string theory

In this subsection, we consider Chern-Simons matter gauge theories describing

the low energy dynamics of D2-branes probing a conical CY 3-fold singularity

in the presence of a non-vanishing quantized Romans mass, i.e. in massive ITA

string theory [230,234]. For this class of theories, sum of the CS levels for each

gauge group does not vanish, i.e. Zg ky # 0. Hence, those theories are not

parity invariant so that the round sphere free energy Flgs is complex.

We shall consider the large N limit with fixed CS levels k ~ O(1). The
holographic dual is given by massive IIA SUGRA on AdS4 x Mg where Mg =

SY5 is the suspension of a Sasaki-Einstein 5-manifold Y5, which serves as the

¥ , 1
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base of a conical CY 3-fold. The characteristic large N behavior of the free
energy of this class is given by [234]

F ~n3Ns | (6.5.21)

where n = > g kg, sum of the CS levels for each gauge node. The round sphere
free energy at the superconformal R-charge is given by [230]

1/391/6.3 5/391/6
24935 %N :2 3 ﬂ(nN)

BVol(Ys)2/3 5

wlo
W=

Re[Fgs] = (a4d)3 | (6.5.22)

where a4 is the a-anomaly coeflicient of the parent 4d SCFT, which lives on
D3-branes probing the same CY 3-fold singularity. Applying , the (un-
refined) superconformal index in the large N Cardy limit, for the generic N/ > 2
SCFTs describing the low energy dynamics of D2-branes in massive ITA string

theory, is given by

A% 21/331/673 N A% 25/331/67
= 3 3 = B —
271 5Vol(Y3)2/3 owmif 5

W=

o (nN)3(asq)? ,  (6.5.23)

as expected from the dual gravity side in the non-Cardy regime [203].
For a generic N' =2 U(N)Y quiver theory with equal CS level k and bifun-
damental and adjoint matters, the large N Cardy free energy of the generalized

superconformal index can be read off from the round sphere partition func-

tion [230] using (6.3.20]) as follows:

wlot

Fg» =

91/333/2 i , 4 Py s

T80i8 <1 - \/§> Lemzat:ters(AI +niB)(Ar+niB+mi+ B)(Ar+nB+2mi+28)| n3N3
91/333/2 i ) . % 1

+ W <1 + \/§> LE%HS(AI —niB)(Ar —niB+mi+ B)(Ar —niB + 2w +26)| n3N

(6.5.24)
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One particular example is an N = 2 CS deformation of the maximal SYM.
This SCFT is dual to massive IIA SUGRA on AdS; x S6. The large N Cardy
free energy of the generalized superconformal index can be read off from the

topologically twisted index [215}216] using (6.3.1]) as

21/3313/6
Fo—=2_°" 5N
80:5

W=
wlot

[(1 - \}?§> (A1 +n18)(As + 12B)(Az + ngf)]5

i 2
(14 5 ) 80 = )8 — ) (B — o)
7
(6.5.25)
which is consistent with the above general formula. This large N Cardy free
energy is supposed to account for the microstates of the dyonic rotating BPS
black holes with vanishing magnetic charge for the R-symmetry in the massive

ITA SUGRA background AdSy x S°.

6.6 Concluding remarks

In this chapter, we have examined the Cardy limit of 3d supersymmetric parti-
tion functions using their factorization into the Cardy block, which is defined as
the dominant saddle point contribution to the hemisphere index in the Cardy
limit. The Cardy block plays the role of a building block of other 3d partition
functions such as the generalized superconformal index, the refined topologically
twisted index and the squashed sphere partition function. The factorization to
the Cardy block allows us to find universal relations among those partition
functions in the Cardy limit.

Furthermore, our analysis can be applied to holographic SCFTs in 3d, which
are dual to AdS,4 gravity in the large NV limit. In the large N limit, such uni-
versal relations extend to include the round sphere partition function, which is

known to count the degrees of freedom of a SCFT in odd dimensions and is

¥ , 1
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also dual to the holographic entanglement entropy in dual AdSy for a spher-
ical entangling surface. In addition, the two supersymmetric indices we have
examined correspond to the entropy functions of BPS black holes in AdSy; the
generalized superconformal index, in the presence of the magnetic flux for the
flavor symmetry, captures the microstates of rotating dyonic BPS black holes
in AdS, while the refined topologically twisted index captures the microstates
of rotating dyonic BPS black holes in mAdS,, an asymptotically locally AdSy
spacetime. Therefore, our analysis provides a field theoretic derivation of univer-
sal relations among the black hole entropies and the holographic entanglement
entropy in AdSs. We have also provided explicit examples, which confirm the

universal relations we have found.

We would like to remark a few interesting points and future directions.

e Black hole microstate counting in the non-Cardy regime

In section we have seen that our Cardy formulae for the M2-brane
theory, which are derived in the § — 0 limit, exactly account for the
microstates of various BPS black holes in AdS; x S” even at finite .
Those BPS black holes are supposed to be realized as the local large
N saddle points on the dual field theory side. Indeed, there are a lot
of examples showing that the Cardy formula is exact at finite §: from
the pioneering work of Strominger and Vafa counting the microstates of
the D1-D5-P black holes [11] to recent works counting the microstates
of the electrically charged rotating BPS black holes in AdSs [75,/13§],
AdS7 [75,(159], AdS¢ 78], AdS4 [79]. Remarkably, the resulting Cardy free
energy of the index at large N perfectly captures the Bekenstein-Hawking
entropy of the dual BPS black holes even in the non-Cardy regime.

1 3
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Accordingly, we expect that our Cardy formulae such as (6.3.20]) are exact
in the non-Cardy regime as long as we consider the large IV saddle point
corresponding to the dual BPS black holes in AdS4. For example, let us
consider the superconformal index without magnetic flux for the flavor
symmetry. The form of the entropy function of generic rotating electric
BPS black holes in AdSs can be found in [97], which is the same as
our Cardy free energy once we identify Im [G(O)] with the supergravity
prepotential F up to some multiplicative constant factors. We expect
that G and all O(B) corrections are subdominant in N at the large N
saddle point capturing the dual black hole microstates. Also the unrefined
superconformal index leads to the Cardy formula , which is proven
exact by the supergravity analysis for the universal spinning black holes
in AdS, [203]. It is worth studying such exactness of our Cardy formulae

further, both on the field theory side and on the gravity side.

Cardy limit for finite NV

In section [6.5] we have examined the superconformal indices in the Cardy
limit of some examples for finite N. In |79], which we discussed in chapter
[ the finite N Cardy limit of the superconformal index was examined
for N = 4 SYM with one fundamental and one adjoint matters both
analytically and numerically. In particular, for N = 2, we obtained the

exact coefficient of the free energy:

lOg Is2

~ 2’[3 [—8G —2Im {2Liz(ix) + 2Li, <;> + 2Lis(iz?) + 2Lis (;) + Liy (;) H

~
~

1747713

28 (6.6.1)
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with
i) — Linf—g
_ L) = La(=0) 015066
. 2z (6.6.2)
v=(1- 312 + V/3) ~ 0.435421,

G

which is the finite N version of the N2 scaling of the M2-brane degrees of
freedom. Our analysis provides similar results for more examples, and it
would be interesting to find the physical interpretation of those numbers.
Also our Cardy free energy is a simple but nontrivial observable of a
theory. For example, its matching can be regarded as a nontrivial test
of a duality for 3d SCFTs. We have illustrated such examples in section
where the Cardy free energy shows perfect matches under 3d mirror
symmetry or SL(2,7) duality. While our analysis is restricted for theories

of rank less than 3, it would be worth studying higher rank theories.

Twisted compactification of 5d, 6d SCFTs

While our analysis relies on the localization computation of supersymmet-
ric partition functions, and thus on the Lagrangian description of a theory,
recently similar results are obtained for class R theories, which are gener-
ically non-Lagrangian theories, realized as twisted compactification of 6d
(2,0) An—1 theory on hyperbolic 3-manifolds [185[,235,236]. The supercon-
formal indices of those theories can be computed as topological invariants
of SL(N,C) Chern-Simons theories by the 3d-3d correspondence and are
shown to capture N3 degrees of freedom of N M5-branes [203,204]. Re-

markably, they satisfy the same relation ((6.3.23)):

A2

Fe2(A = —Agdy,n =0;6) = —LZ Re[Fgs (6,)], (6.6.3)
273

which we derive for 3d SCFTs with Lagrangian descriptions. Also the

same relation is expected by the supergravity analysis [203] for 3d the-

1 3
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ories obtained as the twisted compactification of 5d SCFTs . From
those results, we may expect that our Cardy analysis for Lagrangian the-
ories would hold for a broader class of 3d SCFTs, which will be interesting
to clarify.
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Chapter 7

Background field analysis for large
AdS; 7 black holes

In this chapter, we use a background field method on S® and S° to analyze the
asymptotic free energy of the indices on S x S' and S® x S' in the Cardy limit.
This method can be useful for non-Lagrangian QFTs. In 4d case, we revisit the
N =4 SYM discussed in chapter[3] In 6d case, we analyze the N' = (2,0) SCFT.
We will show that the Chern-Simons terms of the background fields yield the
asymptotic free energy. The relevant Chern-Simons terms are determined by
the 't Hooft anomalies. The resulting Cardy free energies exactly agree with
the entropy functions of the BPS black holes in AdSs; x S° and AdS; x S4

respectively, thus statistically accounting for their microstates.
7.1 Large supersymmetric AdS; black holes

In this chapter, we consider an alternative approach to compute the asymptotic

free energy of the index in the Cardy limit. As an exercise, in this section, we
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revisit the index of 4d N = 4 SYM on S? x S!, discussed in chapter [3| The

chemical potentials 3, w; are reflected in the background metric of $% x S! as

ds® = r? +dr? (7.1.1)

where (n1,n2) = (cosf,sinf), 0 < 6 < The Euclidean time 7 has period

5
T ~ 743, and we restored the radius r of S3. A are encoded in the background
U(1)? € SO(6) gauge fields

A
Al = —%dT . (7.1.2)

The partition function is given by a path integral over the N' = 4 Yang-Mills
fields at coupling constant gyn, coupled to these background fields in a canon-

ical manner. Again having in mind imposing

3 2
DAL= wi=2mi (7.1.3)
I=1 i=1

to get the index, we take 3 — 07. Very naively, one might think that a Kaluza-
Klein reduction to S? would be possible, integrating out heavy KK fields, be-
cause the circle size § is small. If one can integrate out the heavy fields, they
will contribute to an effective action of the background fields, arranged in the
derivative expansion which is a series in small 5. This will turn out to be a much
subtler issue, because 37! appears in other background fields. Indeed, naively
doing the KK reduction, one would see shortly that the 3d metric, dilaton and
U(1)? fields all see inverse powers of 3. Still, when wy o < 1, we will show that
the KK fields can be integrated out, whose effect will be arranged in a deriva-
tive expansion. The expansion will be a series in small 3, w12, whose leading
terms will be given by Chern-Simons terms. The effect of 3d zero modes is also
expected to be subleading in our model. The analysis is similar to [73], except

that our setting is subtler with new aspects.
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Having these in mind, we arrange the 4d background fields as 3d background
fields. To this end, we rewrite (7.1.1)) in terms of 3d metric, gravi-photon a, and
the dilaton ® as

2(S° winZde;)?
= 2 (a4 Y n2dep ¢ QWO e g oy g g e
i pAL=r23 nlg[;l )

r? 3 wm?dcbz
B -2y, ety
The 4d U(1)? background fields A’ are arranged to 3d gauge field A’ and the
scalar Al as AT = Al(dr + a) + A, where

= 1—r

, a=—1i

Al = —Ala. (7.1.5)

We take 8 to be the smallest variable, eventually intending to take the limit

B — 0F. w; < 1 are also small, but still satisfying -~ ﬂ < 1. One might worry

that some background fields may behave badly due to the factor 1—r2 . “i%i in

) 52
denominators. We temporarily circumvent this issue by taking w; to be complex
and generic, evading the poles. Physically, this has to do with the fact that non-

BPS derivatives’ effect is present before imposing (7.1.3)).

We first consider the limiting behaviors of the 3d background fields for

b < i < 1:
(>, winZde;)?
dS% ~ 7"2 [ds (S d) #ﬁ_...
o >0 niwy
B a i(>2, win?de;)
B2 ~ 2y 224, S Y L (716
; L B 23, niw; ( )

The omitted terms - - - are suppressed by positive powers of - <1 Note that
in the 3d metric, one has a canonical round sphere metric, accompamed by
the second term which is an O(1) negative length element along one direction.

For instance, if w; = wy = w, this direction is the Hopf fiber of S3. Along

'y 3 1] 3
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(d7 + a)?
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this direction, leading O(1) length elements cancel and its [length]?> becomes
smaller, at a positive power in g This is one reason why a naive KK reduction
becomes subtle in our case. The dilaton field 3%e~2® for the [circumference]?
of temporal circle is suppressed to be small |w;| < 1, which is an intuitive
reason why we should also keep w; small to trust the derivative expansion. The
3d background fields are highly singular (e.g. w, 3 dependence), presumably
having short wavelength components on S2, so that one might wonder if the
whole spirit of using derivative expansion is relevant or not. In general, using
these fields will be highly problematic in the general effective field theory. For
instance, if one wishes to make variation of this effective action in background
fields to generate correlation functions, this probably might be tricky. However,
our strategy here is very practical, having in mind using this EFT just for our
particular background. In other words, we use it just as a way of expressing
the series expansion of a particular observable log Z in 3, w1, ws. So no matter
how singular the fields may look, we just care about whether the actual values

of terms after spatial integrals are sequentially suppressed as an infinite series.

We will show (more precisely, strongly illustrate) that this is indeed true.

In this background, we consider the path integral of 4d A/ = 4 Yang-Mills
theory. We formally decompose the 4d dynamical fields into 3d ‘zero modes’
and ‘KK fields,” depending on the momentum mode on S'. We schematically
call the zero modes @7, and KK modes ®y, where L/H stand for ‘light/heavy.’
@ couples to the background field a, while &7, does not. The path integral is

done by integrating over @ at fixed ®r, and then integrating over ®;.
We discuss the structure of the path integral over @, at fixed ®y. In our
scaling limit of small S! radius, the path integral over ®p gives an effective

action that depends only on the 3d background fields, but not on ®, which are

A5
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held fixed for the moment. To see this, consider the schematic structure of the

3d action for ®z. It takes the form of
L~ ®p(0% 4+ Mi) Py + g2V (Pr, @p) (7.1.7)

where V' denotes a potential quartic in @, ®;, with order 1 coefficients. Here
we consider the case in which @, @1 are bosonic, for simplicity. Both Mgk and
ggd have dimension of mass, proportional to the inverse-radius of the temporal
circle ~ % (where w ~ wi 2.) The solution to @ at given @7, is schematically

934

given by &g ~ 295—0, V. The propagator factor scales like

g%d
024+ MEZ S rw,

24 MZ, ~
which suppresses the @z tadpole and fluctuations depending on ® LE' @K; ’s path
integral is effectively Gaussian, depending on background fields only. So after
integrating out @y, Z consists of two factors: one given by the 3d background
fields, and another given by the path integral of ‘zero modes’ ®; canonically
coupled to 3d background fields, obtained by classical dimensional reduction of
4d N = 4 Yang-Mills theory. In the latter sector, the dilaton appears as the 3d

coupling constant (which may depend on spatial coordinate if wy # we), while

the gravi-photon 8~ 'a does not couple to the classical 3d Yang-Mills.

We first consider the factor coming from the path integral over ®;. It con-
sists of the fields of 3d maximal super-Yang-Mills, whose action is deformed
to be less supersymmetric by various parameters. Here, we simply discuss how
its contribution to log Z will depend on various parameters. The 3d effective
coupling is given by ggd ~ % The 3d metric consists of 2d base whose length

B

scale is r, and a fiber whose length scale is = < r. As we shall see below from

background effective actions (which is also obvious from BPS kinematics), the

"We expect a caveat when ®; has zero modes held at large value without a potential
cost, making Os, V large. There are two types of such modes, again depending on the IR
divergent behaviors of Zgs for ® [114]. In our 4d U(N) theory, or 6d (2,0) theory for N
M5-branes, we assume the absence of such dangerous modes. See the next two paragraphs for
more discussions.
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leading free energy will be of order ~ 6—2 at £ « w < 1. We can argue that the

w T
path integral of &, will yield much smaller terms than this. Suppose otherwise,
and the ®;’s path integral contributes a term at this order. Then, the diver-
gent w2 part would come either from positive power in the 3d gauge coupling

2
ggd ~ g;g/‘, or positive power in the Hopf fiber radius ~ (Bw™!)#. But acquiring

this factor from the Hopf fiber radius is accompanied by a positive power in j,
which is subleading. So 3%w~2 dependence would come from the divergent 3d
coupling, ggd ~w L

However, it is also hard to imagine (probably inconsistent) that a 3d QFT
partition function diverges as the coupling grows, as the 3d QFT seems to
be perfectly well defined. The only way in which we can imagine a divergent
dependence on large gs3q is when the observable suffers from infrared divergence,
since g3q — oo is a sort of IR limit in 3d. More concretely, the partition function
of 3d maximal SYM on S2 is well known to have an IR divergence [162]. As
studied in [73,/114], this is due to the N gauge holonomies of U(N) on S' being
non-compact in the small circle limit. At small but finite circle radius, ~ rw, the
holonomies have period given by ~ %, thus providing an IR cutoff. This would
yield a factor of ~ w™ to Z, contributing at a subleading order ~ N logw to
the free energy. Thus, we expect the divergent leading part o< 3%w™2 of the net

free energy to be unaffected by the 3d dynamical fields.

So it suffices to consider the effect of integrating out the ‘KK fields’ @y,
yielding an effective action of g,,,, a,, P, A{“ Ai. There are infinitely many terms
in this effective action, arranged in a derivative expansion, whose coefficients are
mostly unknown. At generic points of the background fields, before imposing the
BPS index constraint , all fermions of the 4d theory will go to @, due to
the anti-periodic boundary conditions. At , some fermion modes may be
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massless. Across this surface, as we shall see, these transiently massless fermions
at will simply change some Chern-Simons coefficients, without further
effects on the effective action. Below, we will show that: (1) the derivative
expansion is arranged in a series of 3, w1, ws; (2) the leading terms are at order

BO

wiwg’

completely coming from the Chern-Simons terms; (3) the Chern-Simons
coefficients can be determined either from the free 4d QFT, or by an anomaly

consideration. We shall discuss these issues in the order of (3) — (2) — (1).

We first discuss possible Chern-Simons terms of A’, a. (One might also think
of the gravitational Chern-Simons term ~ wA R. We think its coefficient is zero,
but anyway it will be subleading in our scaling limit, as illustrated below.) There

can be standard gauge-invariant Chern-Simons terms of the forms [73}23§]

ﬁ_g/a/\da, B_I/AI/\da, /Al/\d.A‘], (7.1.8)
whose coefficients are dimensionless and quantized. There can also be gauge
non-invariant Chern-Simons terms which are needed for anomaly matching |73
238]. Since their coefficients are all quantized, either from gauge invariance or
anomaly matching, one can determine them by integrating out KK fermions of
the 4d QFT at weak coupling.

We follow [73] to compute these coefficients for U(1)® € SO(6) times the

Q3, where o = i%,

gravi-photon U(1). There are four Weyl fermions W& %2
and with (Q1, Q2. @s) = (—,+, ), (=), (44, ), (= —, ). £'s for Qs
denote i%. The fermions with anti-periodic boundary conditions are labeled
by the Kaluza-Klein level n € Z + % The contributions to the Chern-Simons
terms from the n’th KK modes are given by [73]]

ﬁ Z sgn (n—fﬂAiCh) /53 <Q[QJAI ANdA7 + 2Q127T—n¢4[ A da +

2
8 (Q1,Q2,Q3) p p
(7.1.9)

2The overall sign is chosen to be consistent with our chirality /parity convention.
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There are infinitely many contributions from the tower of KK modes, which

should be regularized. Following 73], we sum over all n € Z + % using the zeta

function regularization To start with, when —% < p = %Qﬁli < % for a

fermion mode with given @7, one obtains 73]

ngnn W) ~ 24 ngnn ,unrv,u —i—— ngn n— n2~2,u3

’ 3

(7.1.10)

If Al’s are chosen so that %QIAi is in the range (—%, %) for all possible Q;’s,

one obtains

‘NQ
Scs = 247 > / [ QrQ QK ALA” A dA® +2 3 “Zor <QJQK(5) AAT + 2> Al A da
(Q1,Q2,Q3)
+3'ﬁ27rQIQJQKAﬁA4{Afa/\da} . (7.1.11)
Here, note that
1
>, QQQx=-3Cux. Y, Qi=0, (7.1.12)

(Q1,Q2,Q3) (Q1,Q2,Q3)
where Crji is symmetric in I, J, K, Cio3 = 1, and Crjx = 0 if any two of
I,J, K are same. (These are the anomaly coefficients of U(1)3.) Using these

facts, one obtains

1
Sog = ———. 2 | Crx <AiAJ ANdAE + ALA] AT A da + gAﬁAiAffa A da) :
(7.1.13)

3There are various proposals for regularizing Z[S® x S'] [73]/239/241], concerning the su-
persymmetric Casimir energy [1504[242}243]. Employing the regularization of 73], we obtain
a free energy unspoiled by the formal Casimir energy factor of [242|. Although we have no
clear reasoning for this, note that Casimir energy is very sensitive to regularization, while
the integral spectrum part should be more robust. Especially, our setup respects all the pe-
riodicities of holonomies, which is a property of the spectral part of log Z but not of the
Casimir energy [242]. So our regularization appears to disallow a room for vacuum energy
factor like [242].
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Note that the gauge invariant Chern-Simons terms (7.1.8)) are all zero in this
chamber, with —1 < %(ifl}l + A% + A3}) < 1 for all four possible sign choices
satisfying £ -+ -+ = —1.

In general chambers of Af, one takes

g

o —QAl <

+po , (7.1.14)

NN

—*‘HDQ

where ) runs over 4 possible cases, with integral pg’s. In this chamber, the

regularized sums are now given by

> sen(n—p) = > sgn(n’ —p') ~2(u — p)

771/

(n—pn = ngnn W)+ p) ~ (= )+ — + 2 — )

12

6

(7.1.15)

2 p
Y sen(n —p)n® = ngnn = i) () 4 2pn’ +p%) ~ S (i = p)* + 20(p = p)* + G+ 27— )
n

iN?
S = —
S 47

(e
(slen

where n’ =n —p, yu/ = p — p. In this chamber, one obtains

5 27p
25, (o) e
(Q1,Q2,Q3)
27p 1 (27)? 2 2mp
Ay WQ) +12,(57T2) +2pQ.g<Q.A4— ”ﬂQ»AMda
_ 2\ | 2mp 2mpg\* | (27pq)? 2mpQ \ |, PQ
> 3 (QA— 6>+ Iz (Q-A4— ﬁ>+12‘

We shall mostly work with the result (7.1.13)) in the canonical chamber.

One can also determine by just knowing 't Hooft anomalies and dis-
crete symmetries. Firstly, the gauge non-invariant terms are completely
fixed in [73238], by demanding that its gauge variation yields the expected 't
Hooft anomaly of the 4d U(1)3 C SO(6)r symmetry. (More precisely, (7.1.13))
matches the covariant anomalies.) To complete the argument, we discuss why

gauge invariant CS terms should vanish. Firstly, a A da is forbidden by

248 A L) ¢

(7.1.14
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the 3d parity after S* reduction, which is a symmetry of the mother 4d theory if
an object is blind to SO(6)g, such as aAda. Similarly, A’ AdA’ with a given I is
forbidden since the mother 4d A/ = 4 theory is invariant under parity with sign
flip of odd number of A’ fields. The latter flip is charge conjugation, flipping
4 <> 4. The remaining gauge invariant CS terms are forbidden simply from the
Weyl symmetry of SO(6). We consider the Weyl reflections which reflects two of
the three A!’s, leaving one invariant. This reflection also acts on Ai. But they
cannot affect the gauge invariant CS terms, so in the canonical chamber which
is left invariant under these reflections, the gauge invariant CS terms should
respect this symmetry. For A’ A da with any given I, a reflection which flips I
and another J(# I) flips sign of this term, forbidding its generation. Similarly,
for AT A dA’ at given pair I # J, reflection of I and K(# I,J) forbids its
generation. This completes a symmetry-based argument for . Such an
approach may be useful for some non-Lagrangian theories, if there are enough
discrete symmetries. In section 4, we shall make similar studies with 6d (2,0)
theory, although it appears that such intrinsic arguments are less predictive

there.

We now evaluate these CS terms for our backgrond fields, in the canonical

chamber. We first consider the background R-symmetry fields (7.1.5)) with real
I

al = —iA!, and later continue to complex A!. Also, we keep €; = —iw; real for
a moment, and later continue to complex w;. (7.1.13]) is given by

iN? I.J K
Scg = —WC’UKO[ o’ o /SS aAda . (7.1.17)
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Inserting a in , one finds
R N Ndo; 2 _
/a/\da _ ?”/ Pi N\ €; (223) ?; _ (2m)2r 6162/( ydx — xdy (7.1.18)

B2 rPn?e2)? B2 r2(Sa+e3y) ) 2
o 2m)?riae /1 dx B (27)%rteren
= 2 2 r2e? r2e2\ ’
g 0 (1+L22(6%+(6%—€%):U)> B(1+ 51+ )

where z = n?, y =n3 = 1 — . So one finds

i N2 4
Scs = — ! Tre €12 2 Crixalaa (7.1.19)
12841+ 1) (1 + - ﬁ 2)

in the canonical chamber. Inserting a! = —iA!, ¢; = —iw; and taking 5 — 01,
one obtains
N2Cr e ATATAK B N2A1 A2 A

Scs — — =
oS 12w1w2 2W1WQ

(7.1.20)

in the canonical chamber. If Sog is the dominant term in the effective action
(which we will show shortly), this yields the asymptotic free energy by the
relation Z ~ e~9¢s. So log Z ~ —Scg completely agrees with the free QFT
analysis in chapter [3] and the entropy function of the supersymmetric AdS;
black holes, thus accounting for their microstates. The extension of this result

to different chambers also agrees with the result from free QFT.

Now to complete the analysis of the free energy, we show that all the other
terms in the effective action are subleading in our scaling limit, suppressed by
small 3, w1 2. The background fields are the 3d metric g, dilaton ®, gravipho-
ton a,, gauge boson A{L, and scalar Afl. Greek indices run over the coordinates
{1, p2,0}, and small Latin indices used below will run over the locally flat coor-
dinates {1, 2, 3}. There are rich possibilities in constructing the effective action.
However, many possible terms are eliminated by taking into account the actual
background value and . First, the Riemann curvature R, ,, has
non-zero components only at {u, v} = {p,0} or {u, v} N{p,o} = {0}. Second,

2] O 1 &) -
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the background value ([7.1.4)) and (7.1.5)) depends only on the € coordinate, so
that the field strengths F), = %(8@@ — 0yay,) and ]-"iu = 2(9,AL — 8,,/1{)

of the graviphoton a, and gauge field AI{L have non-zero components only at
{p,v} D {0}. For the same reason, the derivative of any scalar function of the
background fields 9, f (wp“b, ®,a,, Af), Al) can have non-zero components only
at {u} = {0}. Third, the graviphoton a, and gauge field .A/{ have non-zero
components only at {u} 2 {6}. We will further assume that w; = we = w for

simplification, so that the dilaton ® becomes a constant.

Let us first examine the possible terms that involve the volume integral
i d3x.,/q of gauge-invariant Lagrangian densities, formed by contracting tensors
without e*”?. When we consider the scalar contraction between the curvature

Rywps and the field strength }'21, or FL

I
uvs only an even number of ]—"2,, or F,

can appear in the non-vanishing Lagrangian densities. It can be shown as fol-

lows: the scalar contraction of R, s, F, 0

s ]-"iu can be encoded in the circular

sequence of antisymmetric pairs of tensor indices [af][Yd]---[(a], where ad-
jacent indices in adjoining pairs are contracted to each other. We distinguish
the curvature tensor indices by using capital letters. Then the contraction to a

Lorentz scalar can be generally written as

[a11811] - [a1m B [[A1Bil[ao1 821] - - - [02,n0 B2,m0 | [A2Ba] - - - [AgjBaj]  with Z?il n; € 2Z + 1.

The set of the field strength indices {1, Bn, } 0 [k 18%1] - - - [hny Brony ) can

only be either

{¢1,0} or {p2,0} if n € 22+ 1
{ak1, bkn, b = (7.1.21)
{0} or {p1, P2} or {p1} or {pe} if ny € 2Z.

Collecting the sets of the curvature indices { Ay, B} for k =1, -+, 2j, there are
always an odd number of {¢1, 8} or {¢2,0} and an odd number of {¢1, p2}. Any

3 =11 =1
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complete pairings in this collection have at least one pair between {¢1, ¢2} and
{¢1,2,0}, so each term in the contraction refers to Ry, ¢,4,6 = 0. This exhausts
many possible terms in the effective action. Here we evaluate and list all non-

vanishing terms which involve up to 4 derivatives: (Below we assume I, J, K, L

_ pr _ B 8°
- 2(B2 —r2w?)2 2rwi +0 <r3w6>

run over 0,1,2,3, and A? = —i.)

(7.1.22)
b r(38% — 4pr%w?) o 4p B
VIR ap = (B2 — r2w2) __rw2+0<r3w4>
1 B ﬁAIAJ ,BAIAJ /33
2n Q/ﬁe VG FarFay = (B2 — r2w2)2 T2 +O<r3w4>

I )(VC.FJab)

263TUJ2A1AJ _ 2B3A1AJ N ﬁS
(,82 r w2) r3w?2

3 30 @ T ,33TM2AIAJ ,BgAIAJ 65
/5 VBT F ) = e = s ()

) e
4, .4 2,2, ,2 4
(2n)? /56 VIR® Ry 25(8r W(BQ i 22,2) +37) - 1(7):6 +0 (r3ﬁ:2>
“PVG Rabea R = 32&4614@_2 1_66222)2 9 % o (T?ciQ)
VIFI P FIRy g = 25AIA(;§ WQfaﬁ;)fr%Q) - _45ArlAJ © <r3ﬂjz>

1

B o AIAJ 62 _ 2 2 85A1AJ 63
e [ PR RIRBE I i = w0

1 5,—50 IabrJe FKd BATANT ANt BATATAK AL
(27’(’)2 /’B € \/gf ‘Fa ‘Fb "ch (ﬁ2 — r2w2)2 - r + )
1 5 50 tab o) piced oL 2BATATAKALR3 L 2BANIATAKAL
(2r)2 /B e NG F T F T F g = (% — r2u2)? = - +

These terms are all much smaller than (7.1.19)) in the scaling limit 5/r < w < 1.
Extrapolating a pattern from the above terms, an action made of n; curvature

tensors, my graviphoton field strengths, ns background U(1) C SO(6) field
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5106_10(1)

3! (2m)?

strengths, and n4 derivatives should behave as

Bl+n4 An3 ( ﬁ3+n4 >
+ 0

(7.1.23)

Tl+n4w472n1 —ng2—ns T3+n4w672n1 —ng—ns
which would be suppressed in the limit §/r < w < 1.

As a next step, we turn to the effective action that contains a totally an-
tisymmetric tensor e#*P. This consists of Chern-Simons terms and those terms
associated with a gauge invariant Lagrangian density. We can further distin-
guish the gauge non-invariant Chern-Simons terms from the gauge invariant
ones. The gauge non-invariant Chern-Simons terms are entirely dictated by the
chiral anomaly, so that no other terms than can arise [73,238]. And also,
the gauge invariant Chern-Simons terms displayed in are already shown
to be absent in the canonical chamber. The gravitational Chern-Simons term
tr (WAR+ %w/\w/\w), even if present, makes only a sub-dominant contribution

in the limit 8/r < w < 1:

1 1 b b2 ab b 432 Bt
3! (2m)2 /Elwp (wua Rup™ + gwua wy W™ | = 202 +0 i1 )

(7.1.24)

Other gauge invariant Lagrangian densities containing e**” are constrained by
the symmetry-based argument, which was used to argue the gauge invariant
CS terms are absent. Each allowed term should have odd numbers of
three different U(1) C SO(6) field strengths .7:;;,2’3. So even a minimal term of
this sort has 3 U(1)? ¢ SO(6) field strengths coupled to one another. Some

non-vanishing sample terms are evaluated and displayed below:

5667&} uvp 1 2 3a0 08 _ 1'527°2w4A1A2A3 . iIB2A1A2A3
siame ¢ Tmw Vel P TS = e = 32
2022 6 A3 32,2
vprl 1 TlaB 2\ a0 00 WBTTTWPATAAy  iBTw A1 A Ay
(7.1.25)
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Notice that these leading corrections exhibit the same scaling behavior as
. In any case, all these terms become sub-dominant in the limit §/r <
w < 1. One can probably make a systematic proof of this statement, but we
content ourselves here by illustrating the suppressions. This establishes our

claimed result ([7.1.20]), rederived from an effective action approach.

7.2 Large supersymmetric AdS; black holes

In this section, we apply the method of the former section to the 6d N' = (2,0)
SCFT living on N Mb5-branes. We shall again rely on a background field method
on S°, reducing the system on small temporal S! in a Cardy-like limit. We show
that gauge non-invariant Chern-Simons terms determined by 't Hooft anomalies
derive the free energy suggested in [91] in the Cardy limit, which completely
captures the large supersymmetric AdS7 black holes. And then we explain that
other higher derivative terms are suppressed in our BPS Cardy limit. Then, we
are left with finite number of gauge invariant Chern-Simons terms of background
fields. The absence or % suppression of some of them are partly addressed in

the literature [73}|150], as we shall explain below. For the complete arguments

for ignoring them, refer to [159].
The SCFT is put on S° x R. The 6d partition function is given by
Z =Ty [e PPem 8@ taQagm Rl | (7.2.1)
where Q1, Q2 are two charges for U(1)? C SO(5)s5, and J 2 3 are three U(1)3 C
SO(6) angular momenta on S°. The 6d theory has 16 Poincare supercharges
Q%,%JS where (Q1,Q2) = (i%, i%), and J; = i% with the product of three &
signs of J;’s being —1. We choose Q@ = Q1" and its conjugate S, and constrain

Ay, wi, B to make Z an index. One should constrain

A1+ Ay — w1 —wy —wsg =270 (mod 47i) (7.2.2)

A5
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and take 8 — 0. We will study log Z at |w;| < 1, again keeping finite imaginary
parts of A; to admit saddle points in which boson/fermion cancelations are

obstructed.

We consider the 6d QFT on S° x S' coupled to the following background
fields:

3

ds®> = T‘QZ

=1

. 2
dn? +n? (d@ — Z‘;dT) + dr? (7.2.3)

where n; label two of the coordinates of S°, constrained as n? + n3 +n3 = 1.
The other angles satisfy ¢; ~ @; + 2. 7 has period 3. The U(1)? € SO(5)r
gauge fields are given by

Al = —mﬁldT : (7.2.4)

In the absence of any 6d Lagrangian description, we find it awkward to con-
cretely discuss the KK modes and follow all the discussions presented in section
2.2. However, the structure of zero modes are well known, given by 5d maximal
SYM (deformed by various parameters) on S°. If the S! radius for KK reduction
is small, the 5d zero modes are weakly coupled. Also, we simply assume here
that nontrivial holonomy issues of [114] are absent, at least for the Ax_1 type
theory which is of our main concern[f] The contribution from 5d zero modes’
perturbative partition function on S° can surely be ignored. This can be seen
either by relying on arguments similar to the former section, or simply by a %

suppression since this part will be proportional to N2.

So we study the structure of the effective action of our background fields,

which encodes the effects of 6d KK modes along S*. We organize the background

4Tt will be interesting if one can address whether there are nontrivial issues with outer
automorphism twists [244], whose zero modes are 5d Yang-Mills theories with non-ADE gauge
groups. [245] studied such partition functions on R* x T2 from 5d instanton calculus, which
may provide microscopic clues to this question.
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fields to the following 5d fields after the KK reduction:

ds2 = ds? + e 22 (dr + a)?

ds? = r? [d@% + sin” 01d03 + n?de? + T (7.2.5)
L 2 2 i
ﬁ (1 -r 32 )
where the dilaton field ® and the gravi-photon field a are given by
_ n2w? o rlwin?do;
e 2% =1—y? %2’ . a= —z% (7.2.6)
Bl —r*=5t)

The 6d background fields Al are rewritten as 5d gauge fields A’ and scalars Aé
as Al = AL(dr + a) + A, where

Al = 5 Al = —Ala . (7.2.7)

In our scaling limit (8 < |w;| < 1), the leading terms will turn out to come
IBO

5 . So it is crucial to know all their
1wWaws3

from Chern-Simons terms, at order

coefficients to get the free energy in our Cardy limit. The gauge non-invariant
CS terms are again dictated by the 't Hooft anomalies of SO(5)g, which will
be presented below. The gauge invariant Chern-Simons terms of A’ and a take

the forms of 73]

B3andanda, B2A'Ndanda, BTTALAAAT Nda, AT AdAT A dAK .
(7.2.8)
Here, just like in the former section, we do not discuss Chern-Simons terms
involving gravitational fields since they will be absent or subleading in our
scaling limit. (See below in this section.) Now, unlike the 3d CS terms for 4d
N = 4 theory, we are not given enough discrete symmetries of 6d (2,0) theory

to forbid them all. In fact, some of them are believed to be nonzero.

Trying to see if one can use abstract symmetry-based arguments to forbid

CS terms, one can only partly achieve the goal. Firstly, Al A dA” A dAK at
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I,J,K=1,2, AL NdA? Ada at T # J and A’ Ada A da can be forbidden from
the Weyl symmetry of SO(5)g, just like we excluded A’ A da or AT A dA”7 at
I # J in the former section. In the former section, one used parity (suitably
blind to SO(6)r) to forbid other terms. However, in 6d (2,0) theory, the system

is intrinsically chiral, so that we have no simple argument to forbid

2
B 3aNdanda B_lel/\dAl/\da . (7.2.9)
=1

A proposal made in [73] had a consequence that the coefficient of a A da A da is
zero for the (2,0) theory. This is partly supported from a SUSY calculus of the
index on S° x S1 at high temperature [150], by not exhibiting a free energy at
order 33 (although the calculus was carried out after turning off many chemical
potentials). Also, the 57! term of the free energy studied in [150] was at order
N'. This may be related to an argument that the second term of is %
suppressed. Anyway, in the remaining part of this section, we shall assume the
vanishing or suppression of . For the complete arguments proving this

assumptions, refer to [159).

The gauge non-invariant Chern-Simons terms for A/, Aé can be determined
from the 't Hooft anomaly of SO(5)g. Note that the anomaly 8-form of 6d (2,0)

Apn_q theory is

3 _
Is= " D)+ jllg pa(N) = pa(T) + 4 (pr(T) i (V)] (7210)
with
pr(N) = —2(217r)2trF2, pa(N) = (271r)4( - %trF‘l + é(trF2)2> (7.2.11)

[158] discussed the gauge non-invariant Chern-Simons term for A} + A2 = 0,

Al 4+ A% = 0, to study certain asymptotic aspects of the free energy of (2,0)

'y 3 1] 3
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theory on R* x T2. Generalizing the calculus of [158] for U(1)?, one obtaing’

i(N® — )8
19273

+(4AAZAT N dA% A da + (A A2 N dA? N da + (A3 AT A dAY A da)

Scs = 2(ABAT N dA% N dA? + AZA2 N AT N dAT)
5'5

+ 2((A§)2Aé,41 Ada Ada+ (AL)?A2A? A da A da) + (AD)*(A3)2a A da A da}

iNB
153673

2
3 / [ALAT A dAT N dA + 6(AL? AT A dAT A da
=175°
+ 4(AD3AT A da A da + (AD*a A da A da} . (7.2.12)

Inserting ([7.2.6)), (7.2.7)) to ((7.2.12)), one obtains

iN3 A2AZ
19273 33

Scs = / aAdaAda+ O(N) . (7.2.13)
S5

Evaluating [ a A da A da with ((7.2.6]), one obtains

3(_5\3,.6
/ a/\daAda:—(27T)( Z)TWIQ}QQ}?’ 5 2 122 2 2\ -
55 BS (1_rw1)<1_rw2)<1_rw3>
B2 B2 B2
(7.2.14)
Taking the 8 — 0T limit, one obtains
N3 A2AZ
Scg = ——2. 7.2.15
oS 24 Wi1wWaws ( )
Therefore, the asymptotic free energy one obtains from Scg is
N3 A2AZ
logZ ~ —Scg = —— ——2 (7.2.16)
24 wiwows

supposing that other higher derivative terms are suppressed. If Scg is the dom-
inant term in the effective action (which we will show shortly), the asymptotic

free energy completely agrees with the entropy function of the supersymmetric

*We flipped the overall sign of Scs compared with [158], due to opposite 6d chirality
conventions. E.g., in [158], supercharges contain (anti-chiral)ga x (right chiral)p2, which is in
(0,2) spinors in our convention here.

258 A&t e i



AdS7 black holes discussed in chapter 2l Thus, we have statistically accounted

for the microstates of the large supersymmetric AdS; black holes.

Now to complete the analysis of the asymptotic free energy, we examine
other background terms in the S° effective action, assuming the absences or
large N suppressions of particular low-order terms , as discussed above.
All other terms arranged in an infinite tower of derivative expansion will turn
out to be suppressed in the scaling limit §/r < w < 1, as we shall illustrate
with sample terms below. We shall study the case without e**?°* first and
then the other case. The analysis on the S® background action will be parallel
to that on the S action done in the former section. So we shall keep our
discussion more concise, inspecting a few sample terms rather than attempting
an exhaustive list of corrections to certain order, as in . Below we assume
w1 = wy = w3 = w for simplification, so that the dilaton ® becomes a constant.

We first consider the background action built from the scalar contraction

of tensors without e#*?°*. Evaluating a few terms which involve 0, 2, and 4

derivatives, we find

1 B 5 3 ,3
s | 5V = e = 8rw6+0< 3 8> (7.217)

VIR = 55(;23 fﬁﬁf - i,4 ( G )
5 2AIANJT 1 J
o / R e e e )
Fap) (VEF®) = f;fiﬁ:ﬂ?g =L ?ﬁLfJ +0 <r5w6>
R < WIS 2o ()
O Jg FLFLR = —NAJEZQTEL;;?T%Q) SN Lo <T35:4

'y 3 1] 3
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where the indices I,.J, K, L run over 0,1,2,3 and A° = —i. These terms are
all much smaller than in the scaling limit §/r < w < 1. Moreover,
their leading behavior is consistent with the following speculation: An action
made of ny curvature tensors, ng graviphoton field strengths, n3 background

U(1)? € SO(5)p field strengths, n4 derivatives scales as

61+n4 A3 ( 53+n4 >
o0 :

(7.2.18)

r1+n4w6—2n1—n2—n3 r3+n4w8—2n1—n2—n3

Notice that it differs from (7.1.23)) due to the additional factor 72 - (Be=®)~2 ~
w2, All these terms would be suppressed by taking the scaling limit 3/r <

w < 1.

Now we turn to the background action associated to a pseudo-scalar La-
grangian density which has e**??* It can be either a Chern-Simons action or the
action coming from a gauge invariant Lagrangian density. Gauge non-invariant
CS terms have been determined to be from 6d 't Hooft anomaly. The
analogue of the gravitational CS term (2.60) that involves the spin connection
wzb cannot exist in 5 dimensions, but only in 3,7, 11 dimensions [246]. The Weyl

symmetry of SO(5)g restricts the other gauge invariant CS terms to be invari-

ant under the simultaneous sign flip of .A’=! and A’=2. Displaying all possible

CS terms,
B3 / P B irbw3 B 1 B2
51(2m)? € ap(da)yp(da)ox = 120 (32 — 122 | 12007 +0 2.5
(7.2.19)
/8_1 / Lo 5 ir6w5 i /82
STYZ IR vee Rup™ " Roras = — =—+0
sEnp ) ¢ et R = s e PO
(7.2.20)
-1 . iAIAJrﬁw?’ iAIAJ 2
2 3 /eu po)\AfL}—l{p(da)M == 3= 3 25 3
51(27) 120 (82 — r2w?) 120w 2w

(7.2.21)
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In fact, as asserted earlier, CS terms containing gravitational terms are sup-
pressed, while other gauge invariant CS terms are not. As noted above, here
we assume that their coefficients are either exactly zero or % suppressed, but
indeed that can be proved as in [159]. Then we move to study the action associ-
ated to the gauge invariant Lagrangian density containing e**??*. We compute

some non-vanishing terms of this kind, e.g.,

B4

1 6 —60 pvpor I I I pdas op BT (ATAT)E B2 (ATAT)?
51(277)3/ B I T oo (VT P T = 30(82 — r2w?)® 30w

1 14 140 qwpor I I laf I 7J TJr T pdir 0y 8P WO (ATAT)
S / e R L R e T

_ i52w3(A1AJ)4 54“}1

T 3072 +0 r4 '

We observe that their scaling behavior in the limit f/r < w < 1 follows
. All these terms would be subleading corrections to the free energy.
This establishes our claimed result derived from an effective action
approach.

As a final comment, it may be useful to employ the background field ap-
proach at small S, to explore large non-BPS AdS black holes. Of course in this
case, we expect that additional dynamical information has to be put in, unlike
BPS black holes. Maybe not too surprisingly, we find similar structures as the

hydrodynamic approach to the large AdS black holes [247].
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Chapter 8

AdS black holes and finite N
indices

In this chapter, we study the index of 4d N/ = 4 Yang-Mills theory with U(N)
gauge group, focussing on the physics of the dual BPS black holes in AdSs x S°.
Certain aspects of these black holes can be studied from finite /N indices with
reasonably large N2. We make numerical studies of the index for N < 6, by
expanding it up to reasonably high orders in the fugacity. The entropy of the
index agrees very well with the Bekenstein-Hawking entropy of the dual black
holes, say at N? = 25 or 36. Our data clarifies and supports the recent ideas
which allowed analytic studies of these black holes from the index, such as the
complex saddle points of the Legendre transformation and the oscillating signs
in the index. In particular, the complex saddle points naturally explain the %—
subleading oscillating patterns of the index. We also illustrate the universality of

our ideas by studying a model given by the inverse of the MacMahon function.

1] _© 1] 3
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8.1 Introduction and summary

In this chapter, we want to present our numerical study of the 4d N = 4
superconformal index, showing that some aspects of the BPS black holes in
AdSs [83-86] can be investigated by numerically studying the index at finite
N. Our numerical data will also nontrivially support certain recent ideas which

enabled the analytic studies of these AdS black holes.

We define the Witten index of 4d N' = 4 superconformal field theory on
S3 x St as 69

Z(Ap,w;) = Tr | (=1)F e iz ArQr=3 wili (8.1.1)

with the constraint A; + Ag + Ag — w1 —we = 0 on the chemical potentials. Q;
with I = 1,2,3 denote the U(1)? ¢ SO(6) R-charges of N' = 4 superalgebra,
and J; with i = 1,2 denote the U(1)? C SO(4) angular momenta on S3. Only
the BPS states with the energy F = Z?:l Qr + 2?21 J; can contribute to
the index. Since the supersymmetric index is invariant under the continuous
deformation of the gauge coupling, one can evaluate the index from the weakly
interacting QFT. It can be done in a few steps. First, we obtain the following
single-letter index [69]

(1— e*Al)(l — e*A2)(1 — e*AS)
(1 —ewi)(1—ew2)

Isingle(Abwi) =1- (812)

by counting all single-letter operators in the A = 4 vector multiplet that sat-
isfy the above mentioned BPS energy condition. Next, we apply the Plethystic
exponential to this index Igpg1e multiplied by the adjoint character Xg(z) of the
gauge algebra g, [69]

o0

Lginete (AT, nw; 2y
PE[Linge(Ar. ) (2] = exp | 3 PnstelRLeONC) | (g )
n=1
11 © 1] 3
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Finally, we project to the set of gauge invariant states by integrating over z,
with the Haar measure of the gauge group. The index of the 4d N' = 4 theory
with a gauge group corresponding to the Lie algebra g reduces to a matrix

model calculation giving the following integral [69]:

Zg = j{dug(z) PE [Isingle(AI,wz‘)Xg(Z)] . (8.1.4)

Here dyig(z) is the Haar measure of g. Explicitly, it can be written as

11 dzy...dz, _ o
%d,ug(z)— @iy IV 7{“'”7{41 o [[Ta-2z, @315

aEA

where W is the Weyl group of g, r is the rank, z, is the fugacity corresponding
to its a-th Cartan generator and A is the set of its roots. It turns out that for
numerical purposes it is more efficient to use a slightly modified definition of
the Haar measure given by restricting the product in to only the positive
roots of g [248]:

1 dz1 ...dz, _ o
f to(2) = 7{2”:1 . fmzl T [0, sL9)

aEAT
This helps by removing the need to normalize the integral by the order of
the Weyl group. From and , Z(Aq,w;) is invariant under 27i
shift of each of Ay, w;. So one can equivalently study the index at the surface
Yo Ar— >, w; = 2miZ. Below, we shall often choose the right hand side to be
2mi.

For our purposes it suffices to consider a special unrefined case of the above

AL — g2 = A3 = A oW — W2 = % If one

integral by setting e
Legendre transforms to the microcanonical ensemble at macroscopic charges,
this amounts to taking equal charges and equal angular momenta, ()1 = Q2 =

Qs = Q and J; = Jo = J. From 3A — 2w = 27iZ, one can set 22 = e 2, 2% =
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e~ for certain x. The fugacity x is now conjugate to the charge j = 6(Q + J).
The expression in (8.1.4)) then becomes

Z, = fdug(z) PE[ <1 - m> Xg(z)} . (8.1.7)

The resulting index can be expanded as
©0 .
Z =Y Qa (8.1.8)
j=0

where j = 6(Q + J) and §2; are integers which count the number of BPS states
(with —1 factor for fermions). For U(N) gauge group, we shall study this index
at N = 2,3,4,5,6, by computing the coefficients of the fugacity expansion in
x up to fairly high orders, till O(z'%) for N < 5, and till O(z™) for N = 6.
Naively, finite N indices will be irrelevant for studying emergent gravitational
phenomena expected in the large N limit. In particular, one would like to study
the large N limit of ; when j is of order N? > 1. In this limit, black hole
like degeneracy will grow like log [€2;] ~ N2 when j ~ N2. Our starting point is
that, in practice, taking N = 5 or 6 has already large enough N2, so that we can
hope to see the black hole like exponential growth of €1; quite convincingly. In
fact, plugging in N2 = 25 or 36 to the geometric Bekenstein-Hawking entropy
formula for the known AdSs black holes, we shall find very good agreements
with the field theory calculus of log [€2;]. In non-Abelian gauge theories, how
small % should be at finite NV to exhibit large N behaviors depends on the type
of physics one is interested in. So not too surprisingly, our finite N approach
does not clearly see certain types of black holes. For instance, we empirically find
that the charge range for the so-called ‘small black holes’ is not clearly resolved
in our finite IV discretized analysis. (See section 2 for more explanations.) The
detailed physics that can be learned is outlined below, and will be elaborated

more in section 3.
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Our finite (but reasonably large) N calculus reveals various interesting struc-
tures which shed more concrete lights on the recent analytic studies of these
black holes. After computing the large N free energy log Z as a function of
chemical potentials Aj,w;, one makes a Legendre transformation to the mi-
crocanonical ensemble to compute the entropy. Legendre transformation is a

saddle point approximation of the inverse Laplace transformation

Q= § iz (8.1.9)

- 2mi T
at macroscopic charge j. (The formula can be generalized to refined Aj,w;,
but we present the above unrefined formula for simplicity.) The fact is that
the dominant saddle point values x, of z (or Ay, w;) are complex, at real j (or
Qr, Ji). The naively computed saddle point value of the integral, ;(z.) = e30),
at real positive j is therefore complex. Somewhat surprisingly, this simple fact
apparently seems to have confused many people, leading to a number of ad
hoc prescriptions and interpretations on how to extract the correct physics out
of this result. We stick to the natural interpretation of [75,/76.(78] and find
extremely nontrivial evidences supporting it from our numerical studies. We
think this will confirm our interpretation to be the canonical picture, which goes
as follows. From the unitarity of the underlying QFT, it is always guaranteed
that one can find the complex conjugate saddle point Z, for any complex x..
The conjugate saddle point value is given by Q;(Z.) = S0, Adding the two

equally dominant contributions, one obtains
Q; ~ Q) + y(3.) ~ exp [Re(S(j)) + -] cos [Im(S()) +---] , (8.1.10)

where - - - denote possible subleading corrections at large N2 and large j. (Note
that Re(S(j)) and Im(S(j)) scale like N2.) As will be manifest from our data

in the next section, the integers €); at macroscopic j grow exponentially fast to
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account for the dual black holes, but come with possible minus signs at certain
j’s. Namely, 2; as a function of (quantized) j oscillates between positive and
negative integers as j changes. However, the macroscopic Legendre transfor-
mation calculus is not sensitive to the precise quantized nature of j and €;.
Therefore, the best one can expect to see from this calculus is an exponentially
growing envelope function, which is provided by e®¢(5@) multiplied by a factor
which oscillates between +1 and —1, which is provided by cos [Im(S(j)) + - - -]

in the above expression.

Our numerical calculus will justify this interpretation. Firstly, the computed

entropy log [€2;| from the integers 2; indeed takes the form of
Re(S(j5)) + log [cos(Im(S(5) +---)] , (8.1.11)

where Re[S(j)] and Im[S(j)] are those computed recently from the index using
various analytic methods (in the large N and/or large charge limit). Further-
more, more importantly, investigating the overall signs in {2; from our numerical
calculus, the sign oscillating pattern is also determined by the sign oscillation
of cos (Im(S(j)) +---), upon fitting a constant O(1) phase shift in *--’ that
has not yet been computed by any analytic methods. Therefore, a precise in-
terpretation is given to Im(S(j)), as containing the overall sign information of
Q.

While comparing our numerically computed log |€2;| with , confirm-
ing the appearance of the second term is nontrivial. This is because, while the
first term is proportional to N2, the second term is typically subleading because
the macroscopic quantity Im(S(j)) ~ N? is inside the cosine function. To de-
tect the second term, it is crucial to make a precision computation of the index
which sees this ‘% corrections.” Our finite N indices (say at N = 5,6) provide a

perfect setup to confirm such structures, as these values of N2 are large enough
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to provide a large N hierarchy to various contributions to the entropy, while
not being too large so that the subleading corrections are visible. We think our
numerical support to the formula is compelling. See section 3 for the
details.

The interpretations outlined above appear to be universal, which may ap-
pear in any index-like generating functions that have negative integer coeffi-
cients at various orders. We illustrate that this is actually the case, by studying

in detail the inverse of the MacMahon function

oo oo
f(z) = H(l—x")” = Zﬂjxj = 1-2—222— 23+ 02 +42° + 428+ 7274328 —22° — 9210 17211 —. ..
n=1 7=0

(8.1.12)
At large j, one can analytically compute the macroscopic entropy given by
log || ~ 2 [2((3)]'2]% + .-+, where ‘-’ denotes small % corrections which
can be concretely computed to any desired accuracy. On the other hand, €;
exhibits a characteristic oscillation between positive and negative integers. We
shall illustrate that this is precisely realized in the Legendre transformation as
the complex saddle points, where a formula like will provide a perfect
match. As we can explicitly compute the % corrections to high orders, including
the finite phase shifts in the second term of , our interpretation can be

tested to very high accuracy in this model.

The remaining part of this chapter is organized as follows. Section 2 sum-
marizes our numerical results for the integers {1;. We also explain some salient
structures of the series 2, and also provide a comparison with the Bekenstein-
Hawking entropy of black holes. In section 3, we take a closer look at the
structures of €); and the % correction, and provide various interpretations and

discussions.
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8.2 Numerical study of the N/ = 4 index

We now specialize to the case of 4d N/ = 4 theories with a U(N) gauge group.
We would like to probe the regime

QrJi~N?>>1. (8.2.1)

However, the last inequality will be reasonably met by trying to take N2 and
charges to be as large as possible within our computational capability. We
expand the index in x (as introduced in section 1), perform the integral over N

variables on computer, to obtain various coeflicients of
m .
Zyey = Qal  with  j=6(Q+J) . (8.2.2)
7=0

This is a straightforward exercise, with the main impediment coming from the
availability of sufficient computing power. The computational-complexity of the
integral grows extremely quickly as the rank of the gauge group increases. We
were able to explicitly evaluate the above integral for 2 < N < 5 up to O(z!'%),

as given in appendix A of [80]. For U(6) we evaluated it up to O(z™). The
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explicit expression of the U(6) index is given by:

Zye) =1+ 32% — 22° + 92 — 62° + 212° — 182" + 482° — 4227 + 992'° — 962"
+ 20022 — 198213 + 3452 — 34021 + 5402'¢ — 4262'7 4 56428 — 234210
+ 189220 + 636221 — 102627 + 2262223 — 258322 + 343822 — 1851226
— 794227 + 87572 — 2046022 + 4039820 — 63054231 + 88401232
— 99388233 4 8085623 + 468023% — 184576230 4 494910237 — 920943238
+ 139236023 — 1690101240 4 145156824 — 114147242 — 2931498243 + 8129358244
— 15183836x° + 22398435210 — 25748382247 4 18439724248 + 864511224
— 641666612°° + 15057013021 — 254339973z52 + 3340695362°% — 31053283824
+ 687703862°° 4 5144596052°% — 15015347682°7 4 2775637323258 — 38872296062
+ 3923925613250 — 152042650225 — 48140891912%% + 158635509445
— 3028265859625 + 428022854281x5% — 428176027052% + 1483192449057

+ 571701040142% — 1794363055802%° + 3318942445292 + O(z™) . (8.2.3)

It was pointed out in [76] that the alternation of + signs of €2; demands special
care when one attempts to extract it out at large j using Legendre transforma-
tion. These sign alternations are generic: they also happen at lower N’s. See the
results in appendix A of [80]. We shall later observe more organized patterns of
the sign alternations, as will be explained in section 3. Here, we simply note that
the absolute degeneracy [€2;| indeed grows very fast at large j. For instance,
one finds Q7] ~ 3.3 x 101t at N = 6, and Q00| ~ 1.4 x 101 at N = 5. We
will see shortly that €1; grows quantitatively like the black hole entropy even
at N =5,6. See Fig. for log |€2;| and the signs of Q; at N =5,6.

We want to compare our indices at reasonably large N with the spectra in

the gravitational dual. At low energies, the BPS spectrum can be computed

1 3 11 &1
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u(s)

j
(b) N=6

Figure 8.1: Plots of log || for U(5) and U(6) indices. The colors of the points
encode the sign of (—1)7§;: red being positive and blue being negative. Re(S(5))
computed from the black hole entropy function is the Bekenstein-Hawking en-
tropy, given by the curve drawn with a solid black line.
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from the gas of gravitons [69]. A BPS graviton particle corresponds to a par-
ticular single trace BPS operator in the QFT dual. It is a valid approach when
the energy F satisfies F < N. In this limit, the BPS multi-graviton states cor-
respond to multi-trace operators obtained by multiplying the above mentioned
single trace operators, where one does not have to consider trace relations. As
the energy grows, the finite IV effects of these graviton states have been studied
in some detail in the BPS sector. The trace relations will start to enter from
an energy of order IV, reducing the number of independent operators than the
naive multi-particle spectrum beyond this threshold. To see how this picture
is reflected in our €2;’s, we first consider the index over BPS gravitons given

by [69]
e 0 3n\2
9,.J — (1 -z )
Comparing our €; and Q? , one finds that Q; = Q? holds for 5 < 2N + 1. This
can be seen exactly for all N = 2,--- , 6, and presumably holds exactly for other
values of N. Slightly beyond this point, j 2 2N +1, |€;| is smaller than \Q§’| for

a certain while. So j = 2N + 1 is naturally interpreted as the threshold where

the trace relation starts to reduce the BPS states.

Now we consider the regime in which j is substantially larger than this
threshold, so that the resulting |Q2;| cannot be explained from ]QJQ\ with the
trace relation reduction. (|€2;| becomes bigger than \Q}q | for sufficiently large j.)
Eventually we enter a region with j ~ N2, whose gravitational dual descrip-
tion will be the BPS black holes in AdS. To provide the comparison with the
Bekenstein-Hawking entropy of these black holes, let us first explain the en-
tropy function approach to understand its structures in a simple manner [90].
We present the results in the version which only keeps one fugacity x |75L/76].

The entropy function we shall discuss assumes the convention 3A — 2w = 27i.

A5
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Then 22 = e 2, 23 = ¢ can be solved as
27 A
r=ec¢3t3 =72 . (8.2.5)

In this setup, consider the following entropy function of j and w:

S(w, j) = (8.2.6)

N2A3  w—2mi . N? /271 + 2w 3 w — 27 .

27 T3 ]:2w2< 3 > T
The first term on the right hand side originates from log Z in the grand canonical
ensemble, and the second term is the Legendre transformation factor, whose ex-
ponential becomes 27 of . At fixed charge j > 0, one extremizes S(w, j)
with w. This yields a cubic equation in w, which yields three different solutions

ws. Among these three, we take the one which yields maximal Re(S(j)) > 0
where S(j) = S(ws, j). At this solution, one finds

3+ 3¢

wy = —¢& W_3€+4§ (8.2.7)
N2 (r—20)%(r +€)
- .

NP —9ne? 8P [ e N (n—8)(n + &)
log Z = +§ ¢ \/;_ ey €2 ’

where £ is a real number satisfying —7 < & < 0. It parametrizes the imaginary
part of w, and is a monotonically increasing function of j implicitly given by

the second line. Inserting this value back to S(w,j), one obtains S(j) given by

:EW(W2—27T€—3£2) T+

Re(S(j)) = — o —T (8.2.8)
27T T — s ™
tm($(7)) = ~ ¢ g 2,

where the relation j(£) is assumed. The fact is that Re(S(j)) is precisely the
Bekenstein-Hawking entropy of the BPS AdS black holes of [83,84],86] at Q =
Q1 = Q2 = Q3 and J = J; = Jo. More precisely, [83]84,86] found black

'y 3 1] 3
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hole solutions carrying two charges @), J, depending on only one independent
parameter. The entropy is a function of this parameter, which is in one to one
correspondence with j = 6(Q + J). Therefore, expressing the one-parameter
Bekenstein-Hawking entropy in terms of j, one obtains the above Re(S(7)).
Here, N? in the gravity side is related to the inverse Newton constant Ggl of

the 5d gravity as N? = %, where £ is the radius of AdSs.

The classical gravity description will be reliable at small enough Newton
constant, i.e. N2 > 1. To compare with our numerical results at N = 5,6,
we plug in N? = 25 or 36 to expecting that N? is reasonably large. In
Fig. we have drawn these Re(S(j)) by the black solid lines. At large enough
charge j (especially for U(5) where we could do numerical calculations for larger
charges), this agrees very well with the numerically computed entropy log |Q2;| of
the index. There appear intriguing oscillations of our numerical log [€2;], which
appear to be subleading in % at large enough charges. We shall comment on

these subleading fluctuations in the next section.

Similar plots are shown for lower N in appendix A of [80]. Of course, insert-
ing the finite values of N? to becomes less meaningful for those lower
values. As one can see from these figures, the numerical log |©2;| and Re(S(j))
do not agree that well for N = 2 or N = 3. Here we note that, although S(5)
of is introduced here as the entropy function for the black hole, valid at
N? > 1, it has been shown [75] that and (8.2.8)) are true at any finite
N? when w becomes small (or equivalently, when j > N?). This is called the
‘Cardy limit’ of higher dimensional SCFT's in the recent literature. In this case,
and have been derived from the field theory side for any value
of N. As one can see gaps between log |€2;| and Re(S(j)) for N = 2,3 in Figs.
4 and 5 in appendix A of [80], it appears that the charge j = 100 has not yet
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reached the Cardy regime.

We can also try to characterize which kinds of black holes are well described
by our numerical data, and which kinds are not well visible. In AdS, one can
classify black holes into ‘small black holes’ and ‘large black holes’ depending
on various (closely related) criteria. The classification was originally made for
AdS-Schwarzschild black holes. However, similar notion exists for our BPS black
holes by the charge playing the role of energy, and the inverse chemical potential
playing the role of temperature. The most intuitive way to distinguish the AdS
black holes is whether the ‘size’ of the black hole is smaller than the AdS radius
£, or larger than it. To make it more precise, consider the temperature T of the
black hole given by 7 = %. For our BPS black holes, Re(w), j, Re(S(j))

play the role of T!, E, S(F) respectively. They satisfy the analogous relation

1 _ d[ReS(j)]
gRe(w) =g (8.2.9)
Now consider taking the second derivative with energy (or j),
dT"'(E) _ d*S(E)  1dRe(w(j)) _ d?[ReS(j)] (8.2.10)

dE  dE* ' 3 dj gz
where the first and second expressions apply for Schwarzschild black holes and
our BPS black holes. The negativity of these expressions implies that the black
holes are stable in the canonical and grand canonical ensemble, respectively,
due to the heat capacity or susceptibility being positive. We call these black
holes ‘large black holes.” They are characterized by the entropy being a convex
function of F or j. Our BPS black holes are in the large black hole branch for
j > jo = w (or —% < & < 0). On the other hand, for j < jp (or
—T<E< —%), the curve S(j) is concave and one is in the small black hole
branch. As one sees from the black curves in Fig. the visibly concave region

is at so small charges, that they are essentially overlapping with the region

¥ , 1
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j < 2N +1 in which the graviton description is good. Namely, we find that the
small black hole branch squeezed by the graviton region from the left and jg
from the right is not clearly visible from our finite N indices. At large enough
N, the two charge scales j ~ 2N +1 and j ~ jg will be given enough hierarchy
to allow a visible small black hole region. However, our finite N index does not
seem to have large enough N to make this region clearly visible. Indeed, this
can be clearly seen from our numerical plots in Fig. In the small black hole
region, S(j) will increase very fast in j. However, our numerical log [€2;| does
not manifestly exhibit such an inflating region. It will be interesting to compute

2;’s for larger N’s to see this region.

So far, we explained how to compare our log|€2;| with Re(S(j)) of the dual
black holes. There is other interesting information that one can get from our
numerical data, concerning Im(S(j)), the signs of €;, and the subleading os-
cillations that one sees in the figures. These will be discussed in more detail in

the next section.
8.3 Interpretations and discussions

In this section, we discuss more detailed information encoded in our numerical

(2, and relate it to the interpretations made on ({8.2.6).

We first study the signs of ;. The pattern of the signs visible in the series
Z(x) =), j QjZL‘j apparently looks very complicated. However, one observes
simplifications upon inserting r — —x:
Z(—z) = (-1)Qa’ . (8.3.1)

J
The signs of (—1)jﬂj are shown in Fig. and also in the figures of appendix A
of [80] by the colors of the dots. After this substitution, one finds that the sign
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change pattern is correlated to the subleading oscillation pattern of log |€2;|.

Namely, the sign changes only at the local minima of the oscillation.

At this point, we revisit the interpretation of complex S(j) at the saddle
point of the Legendre transformation at macroscopic charges, that we outlined
in section 1. The interpretation asserts that the sign of cos[Im(S(j)) + - -]
equals the sign of the integers (1;. Since we have observed very simple sign
oscillation patterns of our data (—1)7€);, let us try to understand this also from

the entropy function (8.2.6)). Since (—1)7 = €™/ one finds that

N?(3 4 28=)3 o, 4 mi

(=1)7Q; ~ exp 22 3 Jj+-| +ee, (8.3.2)
where - -- are possible subleading corrections in small ﬁ and % that have not
been computed to date. From this, one obtains

(—=1)7Q; ~ exp [Re(S(5)) + - -] cos Im(S(j)) +7j +---] . (8.3.3)

Although the subleading corrections to Re(S(j)) will not affect our studies
below, the corrections to Im(S(j)) will be somewhat important since they will
make a finite phase shift of the oscillation. The corresponding entropy
improving the black curve of Fig. is shown in Fig. [8.2

Firstly, Fig. clearly shows that the signs of (—l)ij are equal to the
sign of cos[Im(S(j)) + mj + n]. As mentioned in the previous paragraph, we
empirically fitted the possible subleading correction 1 by an O(1) constant.
Although 7 is in principle a function of j, N? such as n(Nig), constant 7 seems
to be reasonably good within the relatively short ranges of charges in Fig. 8.2/l"

The agreements in Fig. [8.2] justify our interpretation that the oscillation caused

"We also note that, upon including the 1-loop determinant factor of the Legendre transfor-
mation in this framework, one obtains much better agreements than those in Fig.|8.2
However, we do not show these results here since they do not seem to be based on a systematic
calculus of the subleading terms.
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Figure 8.2: Same plots as Fig. m with the extra red/blue curves for Re(S(j))+
log |cos [Im(S(j)) + 75 + n]|. A subleading constant 7 is empirically tuned to
1 =~ —1 to minimize the overall off-phase behaviors. The red and blue colors of
the curves denote cos[Im(S(j)) + 7j + n] = 0, respectively.
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by the complex saddle point accounts for the sign oscillations of €2;. Moreover,
Fig. shows that the oscillation of |cos [Im(S(j)) + 7j + n]| accounts for the
subleading oscillations of our numerically computed log |2;|. Therefore, we find
that our finite N numerical data strongly supports the detailed structures of
the macroscopic entropy computed at the complex saddle points of Legendre

transformation.

As mentioned in the introduction, it seems that our interpretation for the
complex saddle point is very universal. To confirm this expectation, it will be
helpful to study other index-like generating functions which are simpler than
the large N index of the N' = 4 Yang-Mills theory. In particular, for the Yang-
Mills index, note that the analytic form of S(j) is known only to the leading
order in large N and j. Due to this limitation, we added an empirical constant
n at a subleading order to see if the structures of S(j) and €, are compatible
with each other. So it will be desirable to study simpler examples in which we

can easily compute the subleading corrections for the precision tests.

As a simple example, consider the inverse of the MacMahon function,

f:[l—x —exp[ Z ] ZQ:UJ. (8.3.4)

Numerically, one can easily expand f(x) in power series of = with a computer to
very high orders. At large charge j, one can see that the resulting €2;’s become
macroscopic with sign oscillations. We shall now make an analytic evaluation
of the asymptotic entropy at j > 1, with necessary subleading corrections in %

included. We would like to compute

1
Q= — zl — 8.3.5
T omi [ o fl@ T o % P [JB Z (1—emB)2 ( )

where 2 = e~ ?. The saddle point values 8, of 8 will be small complex numbers

'y 3 1] 3
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with Re(8«) > 0. At small 3, one can use

— 1 3 1 32 B 3°
_ - _71 :
Zln 1— e—nB)2 32 08 f=C'(—1, 0+ 5ee5+ 7a5760 T 13545600 T
(8.3.6)
where ((s) is the Riemann zeta function, and ¢’'(—1,0) ~ —0.165421 is the

derivative ('(s,q) =

% of the Hurwitz zeta function. Using this formula

with higher order corrections in small 5, one can approximate the integral
{D with subleading corrections in % included. One finds that the following
mutually complex conjugate pair of saddle points are dominant:

L g 25(3)>;’ 1 il 8.3.7
e <j +36j+1296(2g())%Jr ' (8:3.7)

Performing the Gaussian approximations at these two saddle points (with some

subleading terms included) and adding the two contributions, one obtains

1 3 4 1 log(2¢(3)) _ i
~ o e 3T oo+ gions — 1.0y - FEEE £ S

g\ Lew( i V1L
X[?’ﬁ (@) +17% (o)~ mc

Here, the three factors on the right hand side come from the saddle point action,

1
2

. [1 + ] . (8.3.8)

the 1-loop determinant, and possible higher loop corrections, respectively. We

plot this asymptotic log |€2;| in Fig. together with the dotted plot obtained

200)

from the series expansion up to O(x order.
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Figure 8.3: Two plots of log|€2;| for the MacMahon function. Red/blue colors
denote the positive/negative signs of ;.
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Chapter 9

Comments on deconfinement in

AdS/CFT

In this chapter, we study the index of N' = 4 Yang-Mills theory on S3 x R. We
argue that the index should undergo a large N deconfinement phase transition,
by computing an upper bound of its ‘temperature.” We compute this bound
by optimizing the phases of fugacities. The bound we find has some features

analogous to the Hagedorn temperature.
9.1 Introduction

In this chapter, we make a small extension of |[69] to probe the deconfinement
transition from the index. More precisely, we find an upper bound of the transi-
tion temperature by studying the local instability of the confining saddle point.
Some aspects of this bound is similar to the so-called the Hagedorn tempera-
ture [57,59,60]. The similarity arises from the fact that a tachyon condensation

instability appears to the confining saddle point [57]. The bound we find is
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indeed order 1 in the unit of S® radius, obtained by optimizing the phases of
fugacities.

We further sketch a possible scenario on how a first order deconfinement
transition may happen below our bound. Note that in the partition function
of [57], without (—1)¥ insertion, there is a plenty of room for this to happen
because the partition function depends on the coupling constant. Indeed, study-
ing the interaction effects, [57] suggested a mechanism in which a first order
deconfinement transition can happen below the Hagedorn temperature. In the
index, this mechanism cannot be realized since one should trust the free QFT
calculus. We suggest a new mechanism (without any quantitative studies) of

how a deconfinement transition may be realized below our bound in the index.

The remaining part of this chapter is organized as follows. After developing
the basic setup at the beginning of section 2, we compute an upper bound
of the deconfinement transition temperature from the index in section 2.1, by
optimally tuning the phases of fugacities in the index. In section 2.2, we revisit
the high temperature Cardy-like behavior studied in [75]. Section 3 concludes

with some discussions and remarks.
9.2 The large N index at complex fugacities

The index of 4d N = 4 Yang-Mills theory was found in [68,/69]. Its definition is
given by
Z(Ap,wi) = Tr | (—1)Fem Zim ArQi=Xi wili| (9.2.1)

with the constraint

A1 +As+A3—w;—wy =0 (922)

on the chemical potentials. Q; with I = 1,2,3 are three U(1)? c SO(6) R-

charges, and J; with i = 1,2 are two U(1)? C SO(4) angular momentum on

1 3
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spatial S3. They are all normalized so that fermionic fields assume :l:% eigenval-
ues. This index counts states whose energy is given by £ = Q1+Q2+Q3+J1+J2,
when the S% radius is multiplied to E to make it dimensionless. See, e.g. [75]
for more explanation on our notation. The free QFT calculus with the U(N)

gauge group yields the following unitary matrix integral form of the index [69]:

dog ab T3, 2sinh "QA :
[ I TL o) e | 3031 (1 i ) oo

1n1

(9.2.3)
where g =, — ap. @,’s are the U(1)Y C U(N) gauge holonomies along the
temporal circle, if one interprets this as a partition function of a Euclidean QFT
on S x St

As pointed out in [75], we shall give nonzero imaginary parts of Ar,w;
compatible with . This will turn out to yield phase factors of fugacities,
obstructing ‘cancelations’ between bosonic/fermionic states at nearby charges.
This schematic idea was already explained in the introduction. Making a macro-
scopic saddle point approximation of the inverse Laplace transformation of the
index at charges ~ N2, one wishes to see if one captures macroscopic entropies.
Macroscopic charges are insensitive to whether they are integers or half-integers.
In particular, it is unclear whether the saddle point approximation computes
+(degeneracy) or —(degeneracy). Due to a rapid oscillation between + signs
in the index as one changes charges by ‘indistinguishable’ units, the apparent
degeneracy captured by the index may look much smaller than it actually is.
Our suggestion is to try to maximally improve this situation by inserting extra
phase factors for fugacities, making the rapid oscillation milder, or hopefully
absent in favorable cases. A priori, we merely try an optimal obstruction of
rapid oscillation, hoping to provide a better lower bound on the true BPS en-

tropy from the index. In case the lower bound saturates the entropy of known
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black holes, as in |75|, this approach would count them. However, still we mod-
estly have the general possibilities in mind: we seek for possible lower bounds
for entropies, which probably will mean upper bounds on various transition
temperatures. Conservatively, most of the results in this chapter in principle
has to be interpreted this way. However, such bounds will lead to interesting

predictions on the gravity duals.

Once we complexify the chemical potentials Ay, w;, the effective potential
for a, appearing in (minus log of the integrand) will be complexified.
Then the large N saddle points for a, may deviate from real oy, i.e. away from
the unit circle in the space of e'®. Finding the large N saddle points in this
complex plane appears to be a difficult problem. Here, we first review the large
N analysis of the index at real fugacities [69], where the saddle points for e*®e
all stay on the unit circle, and slightly improve it in the following section to see

a tachyon instability from the index.

[57,69] replaces the integrals over a large number of variables «a, by a
functional integral over the distribution function p(#) of N particles on a circle.
Here, 6 ~ 6 4+ 2. The exact, or fine-grained, distribution for NV particles would

have been

N

o) N
o(0) = %Z 56— ag) = ﬁ 3 Y el (9.2.4)

a=1 n=—oo a=1
with the normalization f027r dOp(0) = 1. At large N, with a dense distribution

of eigenvalues along the circle, we coarse-grain p() to generic functions. One

may Fourier expand p(f) as

o
p(0) = — > [pneme + pfne‘”‘e]  Pen =P (9.2.5)

n=1

1
27T

This function is subject to the local constraint p(#) > 0. The global constraint

'y 3 1] 3
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"dfp(f) = 1 is already solved in the above expression. In the exact fine-

grained expression (9.2.4)), the n’th Fourier coefficient p,, is given by

1 N
=) e o (9.2.6)
N a=1

The functional integral form of Z in the large N limit is given by [69]

/ H (Apnidp exp[ NQZ R L0 e

[1;(1 —emmer)
Here, in the manipulation, we used ) ; Ay =", w;.

For simplicity, from now on, let us consider the case with equal charges,

Q1= Q= Q3 =Q, Jp = Jy = J. Then one sets A1 = Ay = A3 = A,

w1 = wy = w, satisfying 3A = 2w. We label e % = 23, e=® = 2. Then one
finds
- 2 = f(z")
= H [dpndp_n]exp | —N Z - PnP-n (9.2.8)
n=1 n=1
with
(1-2?%°
= — . 2.
F@) = (a2 (9:2.9)

At real fugacity in the physical range 0 < x < 1, f is positive. This implies
that all the mode integrals over p,, can be approximated by a Gaussian integral
around p, = 0. Since the large N saddle point is a uniform distribution p(6) =
5=, one does not have to worry about the positivity constraint p(6) > 0. The

resulting partition function is given by

1 ny—1 - (1 B $3n)2
Z~ [ e =1] T2 (9.2.10)
n=1 n=1

and agrees with the index over gravitons in AdS5 x S® [69]. (This analysis was
done in [69] with all 4 fugacities kept.) Since the free energy is independent
of N, the index does not see deconfinement at arbitrary high ‘temperature’

(meaning z close to 1, or w close to 0).

'y 3 1] 3
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On the other hand, in the partition function without (—1)F at weak cou-

pling, the term f(2") appearing in (9.2.8)) is replaced by [57]
1 —zp(a™) — (=1)" tzp(z") . (9.2.11)

zp and zpg are bosonic and fermionic parts of the ‘letter partition function’
respectively. This expression turns negative beyond certain values of z, say at
x > zg for n = 1. It turns out that the coefficient for n = 1 becomes nega-
tive first, driving p; to condense. As discussed in [57], this implies that the low
temperature saddle point with p,, = 0, preserving the ‘winding number symme-
try’ in the Euclidean picture, seize to exist. So one identifies Ty = —logxy as
the Hagedorn temperature of this system. The actual phase transition to the
high temperature deconfining phase may happen below this temperature, and
various scenarios at weak but nonzero coupling are discussed in [57]. In any
scenarios, T is the upper bound for the temperature for which the free energy
of the dominant saddle point can be at O(N?) order. This allows us to identify

Ty as an upper bound for the deconfinement transition temperature.
9.2.1 Instability of the confining saddle point

Now we introduce a phase for z, shifting © — xe'® with real x, ¢ ~ ¢ + 27,
and redo the analysis starting from . Now with the complexified effective
action, one should allow e'®*’s away from the unit circle at the saddle points.
This would mean that one will have to generalize the ansatz from the unit circle
to a more general curve on the complex plane. This apparently complicated task

will not be discussed here.

We restrict our interest to the fate of the graviton saddle point, focussing

on the local fluctuations. In ((9.2.8)), we are simply asking whether the effective
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Re(f)

X

Figure 9.1: Contour plot of Re(f) on the z-¢ space. The red line shows the
curve Re(f) = 0.

action

o f(=")
Ser = N?> = PP (9.2.12)
n=1

is locally stable or not around p,, = 0. Clearly, even with complex f(z"), p, =0
will continue to be an extremum under their small variations. One simply has
to make sure if the real part of Seg is at its local minimum, and if the imaginary
part of it is stationary. If both of these conditions are met, the Gaussian inte-
gration of the virtually unconstrained small fluctuations dp,, (around p, = 0)
clearly yields the known graviton index on AdSs x S° [69], simply with com-

plexified fugacities.

The above analysis will hold if Re(f(z"e™?)) > 0. If this can go negative
at finite x < 1, at optimally tuned ¢, this will imply the disappearance of the
graviton saddle point. One should tune ¢ so that Re(f) becomes 0 at lowest pos-

sible . This is because, with boson/fermion cancelation, we see less spectrum
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and the phase transitions apparently look delayed or even become invisible in
the index. With minimized boson/fermion cancelations, we can probably see a
transition with minimized delay. So we identify the lowest x with Re(f) =0 as
the ‘temperature’ where tachyon condensation starts. We call this value xg.

One finds that Re(f(ze'®)) as a function of x, ¢ is given by

(1 —2?)(1+ 2% — 2z cos ¢)? (22(2 + 5a? + 22*) cos ¢ + (1 + 2?)(1 + 4a? + 2 + 322 cos(2¢)))

(1 + 26 — 223 cos(3¢))?
(9.2.13)

All other factors are positive except the last factor on the numerator. The

vanishing condition
2¢(2 4+ 522 + 22) cos ¢ + (1 4+ 2%) (1 4 4% 4+ 2 + 322 cos(2¢)) =0 (9.2.14)

is solved by

—2 522 — 22 + /=2 + 222 + 924 + 226 — 228

5o+ 27 (9.2.15)

cos ¢ =

This line on the z-¢ plane is shown in by Fig.[9.1] by the red curve. On the right

sides of this curve, one finds Re(f) < 0. In the remaining region, Re(f) > 0.

On the red curve, the minimal value of z (maximal value of chemical po-
tential w, meaning minimal ‘temperature’) is obtained when the two solutions

for ¢ get degenerate, i.e. when
— 242224927 + 220 — 228 = 0. (9.2.16)

The relevant solutions is xg = 4/ @ ~ 0.605. This is the point at which
one can optimally tune ¢ to trigger the tachyon condensation at lowest x. The
tuned value of ¢ is given by cos¢ = —ﬁ, ie. ¢ ~ 0817 or = (2 — 0.81)7.

The two values of ¢’s are symmetric around ¢ = m, as is manifest from Fig.

They are at the top of the two dome regions for Re(f) < 0. This will set

) -1l =]
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the upper bound on the actual deconfinement transition temperature. At these
points, one finds

wy = —3logxy ~ 1.508. (9.2.17)

This is higher than the Hawking-Page transition point

whnown % 414 — 66v/33 ~ 1.159 (9-2.18)

of the known black holes, computed in section 2.3 of [75]. See also our section
2.3 below for a review and summary. Our upper bound w;ll is lower than the

Hawking-Page temperature of known black holes, w;ll < (wlk{l}.f’wn)_l.

The tachyon instability of p; has some similarities with the Hagedorn be-
havior in the partition function of [57]. In particular, as one approaches z — x g
from below, the density of states exhibits an exponential growth [57]. However,

in the index, this feature is not visible in the graviton index ({9.2.10f). Namely,

1

Ty the index remains finite even at

due to nonzero Im(f) at xpg, cos = —
T =xq.

For = > xp, p1 should condense. The free energy is expected to be of order
N?2. In this regime, w < wy, there seem to be no reason to expect that the true

saddle point for e®’s be on the unit circle. So it seems that we cannot apply
the studies made in [57], beyond the transition.

At x < xp, whether the saddle point with p, = 0 is a global one or not is
of course unclear. To this end, one should make a more global study, again at

more general contour on the space of e'®e.

9.2.2 Cardy limit revisited

Despite the complication stated at the end of section 2.1, due to complex ef-

fective action, one can still make a quantitative analysis at w = —3logz < 1.
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(Here, x means the real modulus of the complex fugacity ze'?.) This is the so-
called ‘Cardy limit’ studied in [75]. To see this, consider the following 2-body
potential

Veg(0) = —log (28111 > ii( Z"en?) 1) (€™ + e~%) (9.2.19)

o0 _2n 21n¢
(1-=z )? nd | —ind
= —log <2s1n ) ( 1 = oncding)2 1) (e + e0)

M

between two eigenvalues oy, ayp, where 8 = agp. This leads to a ‘force’ on the
complex 6 plane, which is in fact a cylinder with 6 ~ 6 + 27, given by

8%& 1 _ $2ne2in¢)3 )

The first term coming from the Haar measure behaves like ~ % at small 6,
which is repulsive at real §. Had 6 been real and nonzero (even if small), one

could have rearranged part of the second term in Vg as
. 4 0\ 2
_ Z e 4 e %) — Jog(1 — €)(1 — ) = log (2 sin 2) . (9.2.21)

canceling the first term of Vig. However, for complex 0, separating terms in the

sum over n could be dangerous.

Now let us consider the second term of Vg in the ‘high temperature limit’
w — 0. In the index, this limit may or may not be nontrivial, depending on the
value of ¢. For instance, at ¢ = 0 and 0 < x < 1, the index will never exhibit
a macroscopic entropy as shown in [69]. The crucial reason for this was that
Re(f(z™)) remained positive, as shown in Fig. along the z-axis. However,

L there is a region in the 2-¢ plane which

note that beyond =z > g =
has Re(f) < 0, providing chances for a macroscopic entropy. Even though the
analysis of section 2.1 was limited to the situation where e’®’s sit on the unit

circle, it is still an important question whether Re(f(2"e™™?)) can go negative,

'y 3 1] 3
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since this will allow Vig(#) to have negative real part even at (small) complex
0. So we carefully re-investigate the results of section 2.1 on the behaviors of
Re(f(z"e?)).

We first study the term with n = 1, i.e. Re(f(ze'®)). It will turn out that
understanding this term will be most important even in the Cardy limit. The
region with Re(f(ze'®)) < 0 is on the right side of the red curve shown in Fig.
9.1] consisting of the ‘dome’ regions. Therefore, if one wishes to take the Cardy
limit x — 17, one should again keep ¢ at an optimal value in this region, to
maximally obstruct cancelations of nearby bosons/fermions. For the term with
n = 1, it is easy to see from Fig. how to set ¢, as x — 17. This is easily
noticed by following the valley of lowest Re(f) inside the dome. At z = zp,
the optimal value was shown to be ¢ = cos™! (—ﬁ) ~ 0.81w. From here,
we only consider the lower dome, ¢ < w. As one further increases x, the value

of ¢ which minimizes Re(f(ze')) will decrease, towards ¢ N\, 2F as z — 1™.

Namely, setting ¢ = %’r, Re(f(ze')) will maximally diverge to —co as z — 17.

We would like to see this behavior more quantitatively, including all other

terms at higher n’s in Vog. Let us take x = e~ 3 with w < 1 and RS %’r Then
one finds
(1 . x2ne2in¢)3 (1 - $2n64gni )3 1 amni 5

(1—e3") (9.2.22)

(1 — 3ne3ing)2 =~ (1 —a3n)2 ~ 2.2
At n # 1, the real part of this term will oscillate in its sign. Therefore, it may
not be clear at this stage whether setting ¢ = %’r is an ideal one or not. A
more general study can be made by setting ¢ to be an arbitrary real number
between 0 and 27, and maximize log Z or the entropy after all the calculus.
This was in fact done in |75] (with maximally deconfining distribution, to be

addressed shortly below), which indeed confirms that ¢ = %’T is the optimal one.

So with this understood, we shall set ¢ = %” in this chapter for the simplicity
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of presentation.

Since this term (9.2.22) is dominant in (9.2.20)) due to the diverging factor

(17647r37ln )3
n2w?

ﬁ, the vanishing force condition at the leading order requires y >~ ; sin(nf) =~
OE| So the leading order solution at small w is # ~ 0 for all pairs ag, ap, i.e.
the maximally deconfining configuration. Since all matters are in the adjoint
representation, it does not matter in the leading order in w whether e’@’s stay

on the unit circle or not. These are precisely the Cardy saddle points considered

in [75]. As in [75], we assume the global dominance of this saddle point.

With the discussions in the previous paragraph, we can regard the eigen-
values as asymptotically living on the unit circle. Thus we can use the formula
(9.2.12)), where p,, are Fourier coefficients of the distribution on unit circle. Just
like the studies made in section 5.3 of [57] for the maximally deconfining saddle

point, we set p, = 1 for p(f) = 6(6). One thus obtains
4min

o0 [o¢]
J(x" N? l—e3 )3 3N%/ am ., 8mi
log Z ~ —Se = —N? n§:1 ( )Pnpfn s _“’2”2:1 ( 3 r_ (L13(e 3°) — Lig(e s )) ~

n w?
(9.2.23)

Liz(2) = Y0 | 25 converges for |z| < 1, and also at || = 1if z # 1 (i.e. not at

the branch point of this function). Here, note that
Uy s’ ]_ 2 N\ 3
Lis(e'd) — Lig(e) = ~ ( 4 . (9.2.24)
6\ 3
This can be proved by using an identity of Lig and the Bernoulli polynomial Bs,

as in [75]. Alternatively, one can confirm this simply by performing the infinite
sums on the left hand side. For instance, as a brutal but clearest check, we
reconfirmed it numerically by computing the infinite sum till n = 1000, finding

that both sides are ~ —1.53117¢. So one obtains

N (%)’

log Z ~
0g 202 )

(9.2.25)

' A more careful treatment of the sum over n, separating n < |w|™! and n > |w|™!, was
presented in |75].
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at w < 1. This is the specialization of the Cardy-like formula found in |75,/90],

N2A AA
log Z ~ — 228 Aj 4+ Ao+ Ay —wi —wy = 2mi . (9.2.26)
20.)1(.02

Restricting to the case A1 = Ay = Ag = A and w; = wy = w K 1, one obtains

A= % So ((9.2.26]) indeed reduces to ((9.2.25)) in the setting of this subsection.
9.3 Discussions

In this chapter, we pointed out that the index of N’ = 4 Yang-Mills theory on
S3 x R should undergo a large N phase transition. A key idea is to turn on the
finite phases of BPS fugacities, to optimally obstruct boson/fermion cancela-
tions of nearby BPS states at macroscopic charges. We compute a temperature
which sets an upper bound of the confinement-deconfinement transition of the
gauge theory in the BPS sector. Recently, in [249], it was shown that when
the action is complex as in our model, due to destructive interference, tachy-
onic modes do not immediately condense and the deconfinement transition is

delayed.

One would hope to better understand the actual transition from the index.
We think our calculations and arguments clearly indicate the existence of such a
transition, visible in the index. Unfortunately, the large N saddle point analysis
of the index appears technically tricky, and we leave this interesting question
for future studies. However, the studies of this chapter and of [75] shed concrete

lights on the BPS black holes in AdSs x S°.

Turning the logic around, one would also like to find (perhaps unstable)
saddle points of the large IV index at small charges, to study small AdS black
holes in the microcanonical ensemble [250]. For instance, it will be interesting
to see if the non-interacting mix picture [116] between the small black hole and

the hair can be confirmed from the QFT side. See also [117].

A5
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More generally, it will be desirable to further study how rich the landscape of
BPS black holes is in AdS5 x S°. It is almost certain to us that BPS hairy black
holes will be playing prominent roles. The mildly singular nature of BPS hairy
black holes, studied in [111,112], might be a clue for better understanding their
differences from the previous analytic solutions of [83-86]. It may be helpful to
get a better notion on the near-horizon distinction of these two classes of black
holes. From the QFT dual side, it will be nice to develop a sharper criterion
for the hairiness of the deconfining saddle points. The condensations of certain
modes in the bulk force their dual operators to assume expectation values at
nonzero BPS chemical potentials. Within the simple consistent truncation of
[116], further studied in [111,[112/117], the dual operator is easy to identify. With
no guarantee that the deconfining saddle points of this chapter and of [75] will
be within this truncation ansatz, one should figure out what kind of operators
should be considered. Technically, it is also interesting to see whether one can

find supersymmetric operators that can be inserted in the index.

It has been found in [75] that the large charge limits of non-hairy black
holes [83-86] are counted by the index. This presumably means that they are
likely to be the dominant saddle points in the large charge limit. It will be inter-
esting to clarify how this happens: for instance, whether there are further phase
transitions to non-hairy black holes, or whether hairy black holes asymptoti-
cally become indistinguishable with non-hairy ones. For instance, we find some
studies on large rotating AdS black holes [251], which can be made hairy only
at very low Hawking temperature. Although these are non-BPS black holes,

they may give lessons to large BPS black holes.
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Appendix A

Asymptotic behavior and
identities of special functions

The g-Pochhammer symbol (|g| < 1) is defined as

n—1
(@i = [J(1 —ag’), n>0,
=0
(a;q)o =1, (A.0.1)
(a;q) 1 <0
a;q)n = , n .
1 (aq™; q)—n

The Cardy limit (¢ — 17) of the infinite g-Pochhammer symbol is given by

(aq™;¢%) = (aq™; ¢*)oo = [ [(1 = ag™™) , q=¢",
=0
Bli%l+(aqm;q2)m = (1—ag™)"? exp [— QZLiQ(aqm)} (1+0()

= exp [— ;Lig(aqm_l)} (1+0(3), acC&agll,o0),

2
o _ Vor (e 1.
Jim (0750%)0 = g5 (28) " e | =SR] (1+0(9))

(A.0.2)
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These asymptotic formulae are well-known for |a| <1 [252]. To extend
it to whole complex plane C, we used the modular property of the Jacobi
theta function and the Dedekind eta function. Also note that these asymptotic
formulae have a branch cut along (1,400). For further details, refer to
appendix A of [79].

We can extend the definition of the infinite g-Pochhammer symbol to |g| > 1
region using the plethystic exponential function as following;:

2 -2

(a;q2)w:PE[—1a2]:PE[aq }:PE[— 4 ]_1:(@—1'

—q 1_q—2 1_q—2

(A.0.3)
Using this formula, one can easily check that the ¢ — 17 limit of the infinite

g-Pochhammer symbol is given by
1
Jim (aq™; ¢%)oo = exp |~ 55Tia(ag" )] (14 0(9) , e Cladlo0),
(A.0.4)
i.e. the same as the ¢ — 1~ limit.

In addition, ¢-Pochhammer symbol satisfies the following infinite g-binomial

theorem:;

i (4:¢°)n_pn _ (023¢%)oo (4.0.5)

= (% ¢*)n (#3¢%)o0
The polylogarithm function is defined by a power series in a when |a| < 1

as
. = aF A
Lln(a):;l:kn, (A.0.6)

and can be extended to |a| > 1 by the process of analytic continuation. Note that
the polylogarithm function is multi-valued. It has a branch point at ¢ = 1, and
we take the principal branch with a branch cut along (1, +00) and the principal
value range [0, 27). Accordingly, we set the branch cut of the logarithm function

as (0, —00), i.e. its principal value range is (—, +].
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The polylogarithm function satisfies the following inversion formula involv-

ing Bernoulli polynomials By, (z) (n € Z):

omi) (1
Lin(a) + (—1)"Lin(1 /a) = — ¢ ”f) B, ( gg,a —p> . 2mp <Im(loga) < 2r(p+1) & |a| < 1,
n: T

1 1
Bi(z)=x— =, Bg(x):xz—x—i-é, Bg(x):xB—;xQ—i-im,“-
(A.0.7)

Also, the polylogarithm function exhibits the following limiting behavior:

lim Li,(a) =a, (A.0.8)

la]—0

which gives the asymptotic formula of the polylogarithm function when |a| — oo

from

We also use the theta function defined as following:
0(a;¢*) = (a;¢*)oo(a % ¢%)oo (A.0.9)

whose Cardy limit 8 — 0 is given by

1 1 2
lim 6(ag™; ¢*) = exp [—25 <—2 log®(ag™ ") + milog(ag™ ") + 7;)] (1+0(8)) ,
(A.0.10)
where
a=ae 7P = loga=loga—2mip . (A.0.11)

Here, we used (A.0.2)) and (A.0.7).
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