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Abstract

Holographic approach to quantum black holes

Sunjin Choi

Department of Physics and Astronomy

The Graduate School

Seoul National University

This thesis aims to holographically study the black holes in anti-de Sitter

spacetime from the dual conformal field theories. We show that the Cardy

limit of the indices of superconformal field theories in d = 3, 4, 5, 6 exhibit the

deconfined degrees of freedom in the large N limit. They precisely agree with

the Bekenstein-Hawking entropies of supersymmetric black holes in AdS4,5,6,7,

thus accounting for their microstates as dual deconfined quark-gluon plasma.

We also clarify that the N3/2 deconfined degrees of freedom of M2-brane

superconformal field theory (SCFT) arises from the magnetic monopole conden-

sation. We further study the N5/2 deconfined degrees of freedom of 5d SCFTs

and subtle roles of the instanton solitons realizing such exotic deconfinement.

Moreover, we numerically study the index of 4d N = 4 supersymmetric-

Yang-Mills theory and show how the rapid oscillation of the index can be real-

ized by the complex chemical potential saddle points of the Legendre transfor-

mation. Finally, we comment on the deconfinement transition from the index.
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Chapter 1

Introduction

One of the most important and challenging problems in theoretical physics is to

establish the quantum theory of gravity. A complete formulation of the quan-

tum gravity is aimed at the consistent unification of two major subjects of the

modern physics: general relativity and quantum mechanics. Black holes, which

are both strong gravitational objects with event horizon and thermodynamic

objects with macroscopic number of quantum states, provide a theoretical probe

to understand the major properties of such yet unknown quantum gravity. The

goal of this thesis is to deepen our understanding of quantum gravity through

the holographic approach to quantum black holes.

In this chapter, we briefly review on the developments of viewpoints on the

quantum gravity, with great emphasis on the quantum black holes as a key to

reveal the mysteries of quantum gravity.
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1.1 Why black holes?

Whereas the other three fundamental interactions of nature; electromagnetic

interaction, weak interaction, and strong interaction, are successfully elucidated

by the quantum field theory (QFT) and now unified as the Standard Model,

the gravitational interaction defies such quantum field theoretical description.

Why is it so? What makes the gravity so special?

General relativity, a classical field theory of gravity, is non-renormalizable

as a quantum field theory viewpoint. There is nothing wrong about this. It just

means that the general relativity is the effective field theory (EFT) of quantum

gravity at low energy. Then, let us recall what we have done when we have

such non-renormalizable EFT at low energy in particle physics. One of the

well-known examples is the Fermi theory of beta decay. It has a dimensionful

coupling GF ∼ 1/(293GeV)2, so it was supposed to be break down at energies

below 293 GeV. Below this energy scale, the physics changes drastically and

new particles are produced. That is the W and Z bosons of the electroweak

theory. Similar things happen when we approach to other characteristic energy

scale of the EFT, such as the QCD scale; new physics appears and new particle

are produced.

One may try to use the above approach to the EFT of quantum gravity,

the general relativity. Its characteristic energy scale is the Planck energy Ep =√
ℏc3/G ∼ 1019GeV. The problem is that when we go beyond that energy

scale, the black holes are created. No new particles appear and we cannot learn

any new physics. Adding more energy just results in larger black holes, which

is even more classical. So naive reductionist experiment with colliders comes to

an end.
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In fact, there are some deeper reasons why we cannot study the naive UV

completion of general relativity. When we say about the quantum gravity, it

means that a quantum theory of the dynamical metric. From the linearized

equation of motion for general relativity, we can get a propagating mode of the

metric, which can be viewed as a massless spin-2 particle called a graviton. Thus,

if there is an UV completion of general relativity, this massless spin-2 graviton

would be described as a bound state of two massless spin-1 particles. However,

there is a powerful no-go theorem that forbids it. According to the Weinberg-

Witten theorem [1], a QFT with a Poincaré invariant non-zero conserved stress-

energy tensor does not admit massless particles with spin s > 1. (General

relativity is still OK as an EFT since the stress-energy tensor vanishes due to

the equation of motion.)

Of course, this does not mean that we have to give up to find a quantum

theory of gravity. It signals that we are heading in the wrong direction. A

good example is the Coleman-Mandula theorem [2], which classifies all possible

symmetries of the S-matrix. One natural assumption of this theorem was that

the symmetry generators are bosonic, and it was a loophole. It missed the

possibility of the supersymmetry whose generator is fermionic.

So the lesson of the no-go theorem is to violate its assumption. But in or-

der to do so, we should understand the major property of quantum gravity.

Our Gedanken experiment somehow seems to indicate that lots of information

about quantum gravity is hidden inside the black holes. Indeed, we will see

that the black holes are not just the classical solutions of gravity, but thermo-

dynamic objects with macroscopic number of quantum states, which should be

understood statistically through the quantum gravity.
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1.2 Black hole thermodynamics

Black holes are the classical solutions of the general relativity, with an event

horizon in which the gravitational interaction is so strong that not even light

can escape from it. In 1970’s, it was known that the black holes satisfy several

universal laws under very basic assumptions such as “the energy should be pos-

itive.” They are called the laws of black hole mechanics [3]. In the geometrized

units, i.e. c = G = 1, they are stated as following.

The 1st law For perturbations of stationary black holes, the change of its

energy E is given by

dE =
κ

8π
dA+ΩdJ +ΦdQ , (1.2.1)

where κ is the surface gravity, A is the horizon area, Ω is the angular velocity, J

is the angular momentum, Φ is the electrostatic potential, and Q is the electric

charge of the black holes.

The 2nd law Under the null energy condition, Tαβk
αkβ ≥ 0 for every future-

pointing null vector field kα, the horizon area of black holes does not decrease

over time t:
dA

dt
≥ 0 . (1.2.2)

This is also known as the Hawking’s area theorem [4].

These laws are very universal in a sense that they do not assume any kind of

matter or additional interaction between them, but just the gravitational inter-

action according to the Einstein’s equivalence principle. They even hold regard-

less of the spacetime dimension. This universality is reminiscent of the laws of

thermodynamics, and suggests that one should identify the surface gravity and

the horizon area with temperature and entropy of black holes [5]. Nonetheless,
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at the classical level, black holes do not emit any particles, thus they have zero

temperature. Hence, these laws seem to be just the analogous thermodynamic

laws, classically. However, if one carefully analyzes the quantum field theory

near the event horizon, one will find that the black holes do emit thermal radi-

ation at a temperature

TH =
ℏ

ckB

κ

2π
, (1.2.3)

which is the celebrated Hawking radiation [6]. Then, from the 1st law of black

hole mechanics, we can read off the entropy of the black holes given by

SBH =
c3kB
Gℏ

A

4
, (1.2.4)

which is called the Bekenstein-Hawking entropy. Now, the 1st law of black hole

mechanics is indeed the 1st law of thermodynamics. The first term in (1.2.1)

is nothing but TH dSBH. Reflecting that the horizon area equals the black hole

entropy, the 2nd law should be generalized as d
dt(S + SBH) ≥ 0, where S is the

entropy outside the black hole horizon, which states that the total entropy of

the universe does not decrease over time, i.e. the 2nd law of thermodynamics [7].

Note that these laws of black hole thermodynamics turn out to hold even in

generalized gravity theories [8], such as Lovelock gravity [9], which take into

account the higher curvature corrections, in any spacetime dimensions.

Understanding the black holes as thermodynamic objects, a direct question

is whether we can statistically account for the Bekenstein-Hawking entropy of

black holes. Namely, can we derive the Bekenstein-Hawking entropy formula by

counting microstates of black holes as SBH = kB log Ω ? This question is hard to

answer since it basically asks about the spectrum of quantum gravity. Moreover,

the Bekenstein-Hawking entropy formula gives rise to central issues of black

holes, which are connected to the mysterious properties of quantum gravity.

One prime example is the black hole information paradox [10]. If basically
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occurs since the Hawking radiation is purely thermal and does not keep any

information about the matters formed black holes. If this is true, then the

information is lost in the black holes and the unitarity of quantum mechanics

breaks down. We believe this is not the case in the consistent quantum theory

of gravity.

In order to resolve various puzzles of black holes, we should first understand

the Bekenstein-Hawking entropy of black holes microscopically. The rest of this

chapter will focus on the microstates of black holes.

1.3 Black holes in string theory

It is known that the string theory gives a consistent quantum gravity theory.

In the low energy spectrum of the string theory, there exists the massless spin-

2 particles, i.e. gravitons. Note that the string theory is nothing to do with

the Weinberg-Witten theorem since it is not a quantum field theory. The next

question will be whether the string theory can provide a microscopic picture to

understand black holes.

In the pioneered work of [11], the authors derived the Bekenstein-Hawking

entropy of certain five-dimensional supersymmetric black holes by counting

the degeneracy of BPS bound states of strings and branes in the string com-

pactification model. They considered the type IIB string theory compactified

on K3 × S1. The low energy effective theory can be described by the five-

dimensional supergravity. It admits a supersymmetric black hole solution with

three electric charges Q1, Q5, P and its Bekenstein-Hawking entropy is given

by SBH = 2π
√
Q1Q5P . On the other hand, this black hole can be formed by

the BPS bound states of fundamental strings with Q1 D1-branes wrapped on

S1 and Q5 D5-branes wrapped on K3 × S1. Degeneracy of such bound states
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can be computed from the world-volume theory of branes. When the size of K3

is much smaller than S1, the world volume theory of branes can be effectively

described by two-dimensional superconformal field theory (SCFT), which is a

supersymmetric sigma model whose target manifold is a symmetric product

orbifold (K3)Q1Q5+1/SQ1Q5+1, where SN is the permutation group of order N .

When the S1 size becomes small, the momentum P along S1 becomes large

and the partition function of the 2d conformal field theory (CFT), using the

modular invariance, is given by

Z = Tr[e2πiτP ] ∼ exp

[
πic

12τ

]
(τ → i 0+) , (1.3.1)

where the central charge c = 6Q1Q5 for our CFT. Then, the Legendre trans-

formation gives the asymptotic degeneracy, which is the Cardy formula [12]:

S = 2π
√

Q1Q5P , (1.3.2)

which precisely agrees with the Bekenstein-Hawking entropy of black holes.

Soon after, the rotating version of the above black holes were analyzed

in [13]. While the general five-dimensional black holes can have two indepen-

dent angular momenta, the supersymmetric black holes can have only one. In

microscopic point of view, this angular momentum corresponds to one of two

R-charges of the BPS states in 2d SCFT living on the D1-D5 system. Slight

modification of the Cardy formula gives the entropy S = 2π
√

Q1Q5P − J2

and this coincides with the Bekenstein-Hawking entropy of rotating BPS black

holes. Similarly, four-dimensional supersymmetric black holes with four electric

charges are studied in the context of the type IIA string theory compactified

on T 6 [14, 15]. The relevant BPS bound states forming black holes correspond

to the BPS states of the world-volume theory of Q2 D2-branes, Q6 D6-branes,

and m NS5-branes. With large momentum P along S1 ⊂ T 6, the entropy reads

7



S = 2π
√
Q2Q6nP , which exactly equals to the Bekenstein-Hawking entropy of

the black holes.

The above approach based on string theory provides a powerful tool for

microscopic understanding of black holes. However, it has a disadvantage due

to our lack of understanding about the string theory itself. In order to account

for certain black holes, one should assume certain bound states of branes and

strings, which form the black holes. Then, one should study the effective theory

describing such bound states. This will only give us an effective description for

that certain black holes. For other types of black holes, one should design other

effective descriptions. The famous example is the black rings in five-dimensional

spacetime whose horizon topology is given by S2×S1 [16–22]. The microscopic

accounting for the entropy of black rings [23] comes from not the D1-D5 CFT

we discussed above, but the wrapped M5-brane CFT [24].

All these things happen because we do not use the full description of quan-

tum gravity but just an effective one for the black holes of our interest. In

fact, the quantum gravity in flat spacetime is not fully defined due to our lack

of knowledge about the full non-perturbative definition of the string theory.

In other words, in order to systematically study the black holes and various

phases of quantum gravity, it is desired to have a set-up with a full description

of quantum gravity. It turns out to be a holographic description.

1.4 Holographic approach to quantum black holes

1.4.1 AdS/CFT correspondence

Let us go back to the Bekenstein-Hawking entropy formula of black holes. It has

a peculiar property that the entropy is not proportional to the volume but the

8



surface area of black holes, which implies that the information inside the event

horizon is encoded on the event horizon. This is the largest possible entropy for

a system with given surface area, which is called the Bekenstein bound [25–27].

Note that this formula or bound is very universal in a sense that it does not

depend on the matter inside the event horizon. This suggests that it is not

just a peculiar property of the black holes but the fundamental property of

quantum gravity. This idea leads to the holographic principle, which states

that the quantum gravity in any volume of space is described by the quantum

field theory on its boundary [26, 27]. This violates the hidden assumption of

the Weinberg-Witten theorem: the graviton bound state as the gauge boson

constituents moves in one additional spacetime dimension.

In order to realize the holographic principle, one should first decide where to

place the holographic screen. The holographic screen should be non-penetrable

since we want an unitarily evolving quantum gravity system. The anti-de Sit-

ter(AdS) spacetime provides such a setting. The AdS spacetime is the maxi-

mally symmetric spacetime with negative curvature and a vacuum solution to

the Einstein’s equation with a negative cosmological constant. In the global

patch, the metric tensor of AdSd+1 is given by

ds2 =
1

cos2
(
r
ℓ

) (−dt2 + dr2 + sin2
(r
ℓ

)
dΩ2

d−1

)
, (1.4.1)

where the radial coordinate r ∈
[
0, π2

)
, and time t ∈ (−∞,∞), and the angular

coordinates Ω cover Sd−1. ℓ is called the AdS radius. Note that although the

AdS is non-compact, the radial coordinate r runs only over a finite range.

There is the conformal boundary at the spatial infinity r → π
2 , which is the

Lorentzian cylinder Sd−1 × R. Thus, we can think of AdS as the interior of

the cylinder. Furthermore, due to the warp or Weyl factor 1/ cos2(r/ℓ) of the

metric, the particles in AdS feels a strong gravitational force pushing towards
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the center and cannot reach the boundary cylinder. In fact, they move along

the periodic orbits passing through the center with the same period. This fact

makes AdS spacetime like a ‘periodic box’ and suggests the interpretation of

the AdS spacetime as the IR regulated version of the flat Minkowski spacetime.

Therefore, the AdS spacetime gives an ideal setting for the holography. We can

safely place the holographic screen at the conformal boundary. (One should

demand proper reflective boundary conditions for the null geodesics [28–31].)

Note that one can get the conformal boundary manifolds other than the

cylinder by taking other limits approaching the boundary of AdS. For example,

one will naturally find a Minkowski spacetime as the conformal boundary of AdS

in the Poincaré patch. In fact, we can obtain any conformally flat manifold as

the boundary of AdS. However, in this thesis, we shall mostly focus on the case

when the conformal boundary is given by the cylinder. This is because the black

holes in AdS have the natural boundary as the cylinder.

The next task is to design the QFT living on the boundary, which holo-

graphically describes the quantum gravity on AdS. In fact, there are already

some hints on AdS. The isometry of AdSd+1 is SO(d, 2) and this should be

realized as the symmetry of the boundary QFTd. This is the conformal group

in d-dimensions. Furthermore, the fact that all particles in AdS have the same

period means that the energy level for the free particles in AdS are integer

quantized with a lower bound. Quantum mechanically, this fact implies that

the particle states in AdS can be described by the language of the so(d, 2) con-

formal algebra such as the primary and descendant states. Therefore, we can

now say that the boundary QFT should be the conformal field theory (CFT),

that is the RG fixed point of the QFT, which is scale-invariant due to the con-

formal symmetry. One can further relates the radial coordinates in AdS to the
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energy scale in the CFT, which is called the holographic renormalization group

(RG) [32,33].

Now, we need two more ingredients to finish our heuristic ‘derivation’ of the

duality. In order that the bulk gravity emerges, we should impose two nontrivial

conditions to CFT. We want that the boundary CFT has large number of

degrees of freedom so that it can take into account the macroscopic degrees of

freedom of black holes in AdS. Additionally, we want the gauge boson bound

state behaves like a graviton and not like a gauge boson pair, so the CFT should

be very strongly coupled. Thus, the strongly coupled CFT with large number

of degrees of freedom is needed to holographically describe the bulk gravity. In

fact, in the large N limit, or the ’t Hooft limit, of the gauge theory, where N

is the gauge group rank, the correlation functions factorize and the quantum

fluctuations are highly supperessed [34]. Thus, the large N gauge theory really

behaves like a “free, classical” theory, similar to the classical gravity, or the

string theory [35].

Note that as we shall focus on the case with the conformal boundary of

AdS is given by the Lorentzian cylinder Sd−1 × R, we should understand how

to put the CFT on Sd−1 × R. This can be achieved by the so-called radial

quantization. Consider the CFT on the plane Rd. Using a Weyl transformation,

we can comformally map the plane to the cylinder. That is to regard the radial

coordinate in Rd as the time coordinate. Then, we will quantize the theory in

the slices with equal radius, i.e. Sd−1, which we interpret as the equal time slices.

Basically, this is the radial quantization. In addition, there is one more intriguing

fact: the operator-state correspondence. We can insert an local operator at the

origin of Rd and then path-integrate inside Sd−1 under this insertion. Then, this

will naturally define the quantum state on Sd−1 and vice-versa. Thus, the local
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operators of CFT on Rd are in one-to-one correspondence with the quantum

states of CFT on Sd−1×R. This can be also argued using the conformal algebra.

Note that this is only true for the CFT, where we can map the cylinder to plane.

In general non-conformal theories, the local operator creates many different

states.

We have now arrived at the celebrated proposal, the AdS/CFT correspon-

dence [36–38]. This is the most successful realization of the holographic princi-

ple. There are many more motivations and evidences for the AdS/CFT corre-

spondence. (For pedagogical review, refer to [35,39–43].) In fact, the string/M-

theory gives many explicit examples for the AdS/CFT correspondence and most

of the concrete evidences are found in these examples [35]. These examples can

be ‘derived’ from the string/M-theory studying two equivalent descriptions of

the low energy physics of a stack of multiple branes in the decoupling limit: grav-

ity on the near horizon AdS geometry of (black) branes and the SCFT living

on the branes. The most famous example comes for the stack of N D3-branes,

which gives rise to the equivalence between the 4d N = 4 U(N) supersymmetric

Yang-Mills theory (SYM) and the type IIB string theory on AdS5 × S5. The

parameters; N , the gauge group rank, and gYM, the coupling constant, of SYM

determines the quantum corrections to the classical type IIB supergravity on

AdS5 × S5 as following:

1

Ng2YM

=
ℓ4s
ℓ4

,
π4

2N2
=

ℓ8p
ℓ8

, (1.4.2)

where ℓs is the string scale, and ℓP is the 10d Planck scale. The first factor

is about the stringy correction and the second one is about the gravity loop

correction to the classical supergravity. Hence, the classical gravity description

is valid when the gauge group rank N and the ’t Hooft coupling λ = Ng2YM is

very large, as expected.
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There are lots of other examples in other spacetime dimensions from string/M-

theory. From the decoupling limit of M2-branes, we get the equivalence between

the 3d U(N)1 × U(N)−1 ABJM SCFT, which is the N = 8 supersymmetric

Chern-Simons-matter theory, and the M-theory on AdS4 × S7 [44]. Similarly,

fromM5-brane stacks, we get the correspondence between the 6d AN type (2, 0)-

SCFT [45,46] and the M-theory on AdS7×S4. Of course, there are AdS6/CFT5

examples states that certain 5d N = 1 SCFTs [47, 48] are equivalent to the

massive type IIA string theory on AdS6 × S4/Z2 [49–51]. These are the prime

examples we will cover in this thesis. We will study the black holes in AdS4,5,6,7

from the above SCFT3,4,5,6 duals in the large N limit. In addition, the example

discussed in Strominger-Vafa’s work [11], in fact, can also be understood as the

AdS3/CFT2 correspondence. In the decoupling limit, the D1-D5 system gives

the equivalence between the type IIB string theory on AdS3 × S3 × T 4 and

the 2d N = (4, 4) SCFT whose target space is the symmetric product orbifold

of T 4, which we discussed. AdS3 × S3 × T 4 is nothing but the near horizon

geometry in the decoupling limit of the type IIB string theory on T 4 × S1.

Note that the AdS/CFT correspondence is not limited to the string/M-

theory. There is a prominent example states that the Vassiliev’s higher spin

gravity in AdS4 and the 3d CFT called the critical O(N) vector model are

equivalent [52,53]. Thus, we should regard the AdS/CFT correspondence as the

basic principle describing the full quantum gravity, whatever it is, in AdS. At

least, there are lots of evidences supporting it and many physicists believe that it

is true. Some people even believe that it gives the definition of quantum gravity

on AdS as the CFT dual. Nevertheless, one can ask, under what conditions on

the boundary CFT, the classical Einstein gravity emerges in the bulk AdS, just

like the string/M-theory example. The answer is believed to be when the CFT

has a large central charge with a low-lying sparse spectrum [54].
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1.4.2 Black holes as deconfined quark-gluon plasma

Now, we have the systematic and ideal setting to study the black holes: the

AdS/CFT correspondence. Then, what will be the CFT dual states of AdS

black holes? Let us first consider the thermodynamic behavior of the AdS in

the canonical ensemble. At low temperature, there will be just a thermal gas of

gravitons in AdS. Due to the gravitational potential in AdS, these particles will

mostly move around the center. Then, as we increase the temperature, more and

more energy will be put into the region nearby the center of AdS. Eventually,

at the critical temperature THP, this hot gas with large energy density will

collapse and form a black hole in AdS. This is the famous Hawking-Page phase

transition [55], which is the 1st order phase transition between the thermal

gas of gravitons and black holes in AdS. These two solutions, graviton gas and

black holes, should be understood as the classical saddle points of the quantum

gravity in AdS.

Before we move our discussion to the dual CFT side, let us study the ther-

modynamic behavior of AdS black holes in more detail. Our concrete example

is the AdS5-Schwarzschild black holes. They have mass (energy) M , conjugate

to the temperature T . The relations of M , T and the horizon radius r+ is given

by

T =
r+
πℓ2

+
1

2πr+
, r2+ = −ℓ2

2
+ ℓ

√
ℓ2

4
+ ωM , (1.4.3)

where ℓ is the radius of AdS5, and ω ≡ 16πGN
3vol(S3)

with 5d Newton constant

GN , and vol(S3) is the volume of unit 3-sphere. For instance, see [56] for its

summary. r+ is a monotonically increasing function of M , and thus labels the

energy to certain extent. From the expression of T , one finds that the black

holes exist only at T ≥ T0 ≡
√
2

πℓ . At given temperature T > T0, two black

hole solutions exist, solving the first equation of (1.4.3). The one with smaller
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r+ is called small black holes and has negative specific heat, ∂r+(T )
∂T < 0 and

thus ∂M
∂T < 0, irrelevant for discussing canonical ensemble. However, we can

consider the small black holes in the microcanonical ensemble and this gives

the IR regulated version of the black holes in flat spacetime, which also have

the negative specific heat. Thus, studying the small black hole limit of the AdS

black holes, we can also study the physics of the black holes in asymptotically

flat spacetime. The solution with larger r+ is called large black holes, having

positive specific heat.

The thermodynamics in the canonical ensemble with two saddle points: large

black holes and thermal gravitons in AdS5, is what we have discussed before.

The thermal graviton phase is dominant at T < THP with THP = 3
2πℓ , while

the large black hole is dominant at T > THP [55–57]. Since the free energy

of thermal gravitons is of order O(G0
N ), as they are free gas, while that of the

black hole is O(G−1
N ), due to the 1/GN factor in the Einstein-Hilbert action, the

dominant saddle point is determined by the sign of the black hole free energy.

The transition is known to be of first order, called Hawking-Page transition.

Now, let us consider the dual CFT side. Our concrete example is the 4d

N = 4 U(N) SYM, which is dual to AdS5 × S5. The CFT dual picture of

the Hawking-Page transition is the confinement-deconfinement phase transition

at strong coupling [56, 57]. One can ask how does the phase transition exist

and what is the confinement in the CFT, which is scale-invariant. These all

come from the fact that we put our CFT on the compact space Sd−1 × S1,

where S1 is the Euclidean time circle. When the temperature is lower than

the energy scale given by the sphere radius, we can only see the gauge singlet

composite particles, the hadrons, on the sphere due to the Gauss’ law. However,

when the temperature becomes high enough, we can see the small constituents
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of the hadrons on the sphere, which is the quark-gluon plasma. This is the

confinement-deconfinement phase transition of the CFT on compact manifold

[56, 57]. The confined hadrons are dual to the thermal gas of gravitons in AdS

and the deconfined quark-gluon plasma is dual to the large black holes in AdS.

Hence, the quark-gluon plasma of CFT will be the main target of this thesis

to holographically study black holes in AdS. Also note that this sharp phase

transition on the compact manifold is only possible in the large N limit, where

there is infinite number of degrees of freedom in the theory [58].

One important properties of the confined phase is the Hagedorn behav-

ior [59], which means that the density of states d(E) grows exponentially at

large E, i.e. d(E) ∼ eE/TH . This Hagedorn behavior implies that the confined

phase is ill-defined in the canonical ensemble above the Hagedorn temperature

TH . This is because the canonical partition function diverges when we approach

to the Hagedorn temperature. Accordingly, it takes infinite amount of energy

to reach the Hagedorn temperature, and the Hagedorn temperature sets the

maximum temperature of the confined phase. These confined hadrons, which

are the gauge singlets, are dual to the closed strings in AdS, which serves as the

gravitons at low energy and exhibits the Hagedorn behavior at high energy [60].

The breakdown of the canonical ensemble at the Hagedorn temperature TH im-

plies the existence of the phase transition below TH . That is the deconfinement

transition we discussed above. The quarks and gluons, which are gauge non-

singlet, are liberated from the hadrons before the Hagedorn temperature and

the growth of the density of states is tamed down. In dual AdS, the strings are

deconfined to the string bits, which are dual to the gauge non-singlets such as

the quarks and gluons. Although we do not know how to describe the string

bits, at least in the classical level this implies the black hole formation since

deconfinement transition is dual to the Hawking-Page transition.

16



When there is a phase transition, there should be the corresponding order

parameter. The conventional order parameter for the deconfinement transition

is the Polyakov loop P = tr
[
T exp

(
i
∮
S1
β
A
)]

, where S1
β is the temporal circle

[61, 62]. The Polyakov loop < P >= e−βF represents the free energy cost F of

the quark-anti-quark pair creation and annihilation along the temporal circle.

In the confined phase, this costs the infinite energy, so < P >= 0. In the

deconfined phase, the energy cost will be finite, so < P ≯= 0. Note that while

the local operators are not charged under the center symmetry of the gauge

group, this loop operator is charged. So, one can understand < P > ̸= 0 as the

spontaneous symmetry breaking of the center symmetry [56,63].

As we are dealing with the largeN gauge theory, there is another more useful

order parameter for the deconfinement transition. That is f = limN→∞ F/N2

[57]. In the confined phase, the hadrons cannot see N since they are gauge

singlets and thus, F ∼ O(N0) and f = 0. In the deconfined phase, the quark-

gluon plasma have matrix degrees of freedom, so F ∼ O(N2) and f ̸= 0. This is

consistent with the fact that the thermal graviton gas has free energy of order

O(G0
N ), while that of black holes are of order O(G−1

N ) in the AdS gravity dual.

So far, we have discussed with the AdS5/CFT4 example: 4dN = 4 SYM and

the gravity on AdS5×S5. However, most of the argument in this subsection can

be generalized to the other spacetime dimensions except for theN2 scaling in the

deconfined phase of CFT. It is known that the degrees of freedom of 3d SCFT

living on M2-branes scales like N3/2. For the 6d SCFT living on M5-branes, we

get N3 scaling and the 5d SCFTs exhibit N5/2 scaling. These were studied from

the black brane geometry [64] or the sphere partition function [65–67]. One goal

of this thesis is to explain such exotic behavior of SCFTs from counting states

in the deconfined phase.
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1.5 Overview of thesis

This thesis is devoted to holographically study black holes in AdS from the

CFT dual. In this thesis, we will focus on the solvable sector: the supersymmet-

ric black holes with electric charges and angular momenta. One will concern

that the supersymmetric black holes exhibit no interesting thermodynamics as

its Hawking temperature is 0. However, in chapter 2, we shall see that the su-

persymmetric black holes exhibit interesting thermodynamics analogous to the

AdS-Schwarzschild black holes such as the Hawking-Page phase transition.

In the dual CFT side, we will mostly analyze the superconformal indices

[68–70], which count the excited states of the radially quantized SCFT on Sd−1×

R satisfying the BPS condition with (−1)F . Like the Witten indices [71], this

quantity is invariant under the RG flow due to the supersymmetry, which makes

it exactly calculable by the supersymmetric localization [72]. However, one will

concern that, due to the (−1)F factor, the macroscopic degrees of freedom of

black holes is invisible in the index, and this was the standard lore [69, 73].

We will see that this is not the case. Introducing the phase of the fugacity,

the index does capture deconfined degrees of freedom of SCFT, as we shall

see through chapters 3,4,5,6. Furthermore, we will show that in chapter 8, this

phase precisely shows the boson-fermion oscillating behavior of the index.

The rest of the thesis is orgranized as follows. In chapter 2, we will study

the thermodynamics of the supersymmetric AdS black holes in terms of the

entropy functions. These entropy functions are simple but encode the apparently

complicated properties of the supersymmetric AdS black holes. Utilizing these

functions, we will see that they exhibit nontrivial thermodynamic behaviors

analogous to the AdS-Schwarzschild black holes.
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In chapter 3, we study the index of 4d N = 4 SYM on S3 × R at large

angular momenta. We show that introducing the phases of the fugacities, the

index exhibits the deconfined N2 degrees of freedom. This precisely captures

the Bekenstein-Hawking entropy of the BPS black holes in AdS5 × S5.

In chapter 4, we study the indices of 5d SCFT on S4 × R at large angular

momenta and large N . The large N free energy scales like N5/2, statistically

accounting for the entropy of the large supersymmetric AdS6 black holes. In-

stanton solitons play subtle roles to realize these deconfined degrees of freedom

In chapter 5, we study the index on S2 × R at large angular momenta and

large N , in gauge theories describing N M2-branes. Monopole condensation

confines most of theN2 degrees of freedom exceptN3/2 of them, even in the high

temperature deconfined phase. The resulting large N free energy statistically

accounts for the Bekenstein-Hawking entropy of large BPS black holes in AdS4×

S7.

In chapter 6, we discuss the large angular momentum limit of 3d supersym-

metric partition functions, which allow the factorization into the hemisphere

indices: the generalized superconformal index, the refined topologically twisted

index and the squashed sphere partition function. Our result provides the mi-

croscopic derivation of the universal relations among entropic quantities of the

gravity theory in AdS4.

In chapter 7, we use a background field method on S3 and S5 and ’t Hooft

anomalies to analyze the asymptotic free energies of the indices on S3×S1 and

S5 × S1 at large angular momenta. The resulting free energies exactly agree

with the entropy functions of the BPS black holes in AdS5×S5 and AdS7×S4

respectively, thus statistically accounting for their microstates.

In chapter 8, we study the index of 4d N = 4 SYM numerically. We shall
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explicitly see the oscillating behavior of the index and how it is realized by the

complex chemical potential saddle points of the Legendre transformation.

In chapter 9, we will study how the deconfinement transition can be captured

from the index of 4d N = 4 SYM introducing the phases of the fugacities.

This thesis is based on the author’s papers [74–80].

20



Chapter 2

Entropy functions of
supersymmetric AdS black holes

In this chapter, we introduce the entropy functions of supersymmetric AdS black

holes with electric charges and angular momenta in four, five, six, and seven

spacetime dimensions. Extremizing these functions, one obtains the entropies

and the chemical potentials of known analytic black hole solutions.

These entropy functions can be regarded as the free energies of the super-

symmetric black holes. Analyzing them, we show that the supersymmetric AdS

black holes exhibit interesting thermodynamic properties analogous to the AdS-

Schwarzschild black holes, such as the Hawking-Page phase transition and the

small/large black hole branches.
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2.1 Introduction

Understanding black holes [55–57] is an important subject in AdS/CFT [36]. In

models with supersymmetry, one expects that quantitative analysis at strong

coupling would be easier in the BPS sectors of SCFTs. Supersymmetric AdS

black holes correspond to thermal ensembles of BPS states, carrying angular

momenta and also internal charges (electric charges in AdS). In AdSd with

d > 3, supersymmetric black holes have very complicated structures. First of

all, it is known that there are no BPS black holes with electric charges only,

at zero angular momenta. This is because in the dual field theory, the local

BPS operators will reduce to chiral rings which do not have enough numbers

of microstates to form black holes: e.g. see [69] for the case with d = 5. With

nonzero angular momenta, the solutions appear very involved. See, e.g. [81,82]

for d = 4, [83–86] for d = 5, [87] for d = 6, and [88,89] for d = 7.

Recently, it was discovered that the apparently complicated properties of

supersymmetric AdS black holes can be encoded by extremely simple formulae,

so called the entropy functions: e.g. see [90] for the AdS5 case, [91] for AdS7,

and [74] for the AdS4 and AdS6 cases. These simple functions provided very

useful inspirations for microscopic studies based on CFT duals. We will discuss

some of these works aiming at microscopic accounts for the BPS black holes in

the following chapters.

In the rest of this chapter, we will summarize the properties of known su-

persymmetric black holes in AdS4,5,6,7, and show that the entropy functions we

suggest encode these properties. These functions can be interpreted as the free

energies of the BPS black holes. Analyzing these free energies, we shall see that

the supersymmetric AdS black holes have small/large black hole branches, and

undergo the Hawking-Page phase transition in terms of the BPS chemical po-
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tentials. These properties are analogous to the AdS-Schwarzschild black holes,

which have non-zero Hawking temperature. Further note that these entropy

functions or the free energies can be obtained from the (regularized) Euclidean

on-shell actions of the supersymmetric AdS black holes [92,93].

2.2 AdS4 black holes

2.2.1 Black hole solutions

We study the supersymmetric black holes in AdS4 × S7 of [82]. These are ob-

tained by taking supersymmetric limits of [94], also demanding the existence of

smooth horizons.

Black holes in AdS4 × S7 can carry six kinds of conserved quantities: mass

(or energy) E, angular momentum J on S2 of global AdS4, and four Cartan

charges QI (I = 1, 2, 3, 4) of SO(8) symmetry on S7. The last four conserved

quantities QI appear in 4d gravity as U(1)4 electric charges. The convention

of [82] for QI is to take four angular momenta acting on the orthogonal 2-planes

of R8 related to S7. The most general black holes known to date have pairwise

equal electric charges, Q1 = Q3, Q2 = Q4. With the last charge restrictions, the

four conserved quantities E, J,Q1, Q2 are labeled by four parameters m, a, δ1, δ2

as [82]

E =
m

2GΞ2
(cosh 2δ1 + cosh 2δ2) , J =

ma

2GΞ2
(cosh 2δ1 + cosh 2δ2) ,

Q1 = Q3 =
m

4GΞ
sinh 2δ1 , Q2 = Q4 =

m

4GΞ
sinh 2δ2 , (2.2.1)

where Ξ = 1− a2g2. The entropy is given by

S =
π(r1r2 + a2)

GΞ
, (2.2.2)

where ri = r++2m sinh2 δi. r = r+ is the location of the event horizon. G is the
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4d Newton constant, which will be replaced by microscopic parameters later.

(In [82], all charges and entropy are computed omitting the overall 1
G factor,

or at G = 1. E.g. the entropy is computed by dividing the horizon area by 4,

rather than S = A
4G .) g is a parameter of the 4d gauged supergravity, and is

related to the radius ℓ of AdS4 as g = ℓ−1.

The BPS limit of these black holes is given by

e2δ1+2δ2 = 1 +
2

ag
, (2.2.3)

which corrects a typo of [82]. Only after this correction, the BPS relation

E = gJ +
4∑
I=1

QI = gJ + 2Q1 + 2Q2 (2.2.4)

is met. A further condition to have a regular horizon is ∆r = 0 having a double

root at r = r+. (See [82] for the definition of the function ∆r.) This happens

only after a further tuning of m. After the tuning, the horizon location r = r+

is given by

r+ =
2m sinh δ1 sinh δ2
cosh(δ1 + δ2)

, (2.2.5)

when m satisfies

(mg)2 =
cosh2(δ1 + δ2)

eδ1+δ2 sinh3(δ1 + δ2) sinh(2δ1) sinh(2δ2)
. (2.2.6)

This again corrects the formula mg = cosh(δ1+δ2)

e
δ1+δ2

2 sinh2(δ1+δ2) sinh(2δ1) sinh(2δ2)
of [82].

The typos found in this paragraph are also reported in [95].

Taking the BPS limit, the entropy of the supersymmetric black hole is given

by

S =
2π

g2G(e2δ1+2δ2 − 3)
. (2.2.7)

The two conditions (2.2.3), (2.2.6) leave two independent parameters among

m, a, δ1, δ2. Even after restricting E as (2.2.4) due to the BPS condition, the
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remaining charges Q1, Q2, J satisfy a relation. Together with S, we find the

following two relations after taking the BPS limit:(
2Q1

g
+

2Q2

g

)
S =

π

g2G
J,

S2 +
π

g2G
S − 4π2 2Q1

g

2Q2

g
= 0.

(2.2.8)

Since these equations determine S twice, one will get a charge relation between

Q1, Q2, J from the compatibility of two equations. Explicitly, we insert the

solution of the first equation to the second equation, demanding two equations

have the same solution for S. Then, taking the unique positive solution assuming

Q1, Q2, J > 0, one obtains

S =
π

g2G

J(
2Q1

g + 2Q2

g

) ,

J =
1

2

(
2Q1

g
+

2Q2

g

)(
−1 +

√
1 + 16g4G2

2Q1

g

2Q2

g

)
.

(2.2.9)

Thus, we have explicitly found the charge relation between Q1, Q2, J .

The black hole chemical potentials and the free energy F satisfy

S = −T−1F (T ) + T−1E − T−1ΩJ − T−1
4∑
I=1

ΦIQI , (2.2.10)

where T is the temperature, Ω is the angular velocity, and Φi’s are the electro-

static potentials. The chemical potentials are evaluated on the horizon. In the

BPS limit we are interested in,

T =
∆′
r

4π(r1r2 + a2)
→ 0 (2.2.11)

because ∆r has a double root at the horizon. On the other hand, as one inserts

the value of the variables in the BPS limit, a = 2
g(e2δ1+2δ2−1)

, mg given by

(2.2.6), and then the horizon location r → r+ (2.2.5), one finds

Ω =
a(1 + g2r1r2)

r1r2 + a2
→ g , Φ1 =

mr2 sinh(2δ1)

r1r2 + a2
→ 1 , Φ2 =

mr1 sinh(2δ2)

r1r2 + a2
→ 1 .

(2.2.12)
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Defining ∆E by E = ∆E + 2Q1 + 2Q2 + gJ , one finds that

S = −T−1F (T ) + T−1∆E − T−1(Ω− g)J − T−1
4∑
I=1

(ΦI − 1)QI . (2.2.13)

The BPS limit satisfies T → 0, ∆E → 0. One first finds that

ω = − lim
T→0

(
T−1(Ω− g)

)
, ∆I = − lim

T→0

(
T−1(ΦI − 1)

)
(2.2.14)

are well defined in the BPS limit, by explicitly computing them (although the

expressions are very complicated). Since S is also finite in this limit, the ‘BPS

free energy’ FBPS ≡ limT→0(T
−1(F −∆E)) should also be well defined. So one

finds

S = −FBPS + ωJ +
4∑
I=1

∆IQI (2.2.15)

in the BPS limit. −FBPS is to be interpreted as logZ, where Z is the BPS

partition function of this system. We again stress that the BPS limit is taken

by first inserting ag → 2
e2δ1+2δ2−1

, mg →
√

(coth(δ1+δ2)−1) coth2(δ1+δ2)
sinh(2δ1) sinh(2δ2)

and then

r → 2m sinh δ1 sinh δ2
cosh(δ1+δ2)

. This results in quite complicated expressions for ω,∆i.

After taking the BPS limit, one can show that they satisfy

∆1 +∆2 =
1

g
ω ⇒

4∑
I=1

g

2
∆I − ω = 0 . (2.2.16)

This is an alternative statement of the charge relation between Q1, Q2, J .

2.2.2 Entropy function

We now present an entropy function, whose suitable Legendre transformation

in ∆I , ω yields the entropy S(QI , J) and the BPS chemical potentials of the

supersymmetric black holes. Our entropy function S(∆I , ω;QI , J) is given by

S(∆I , ω;QI , J) = −i
4
√
2N

3
2

3

√
∆1∆2∆3∆4

ω
+ ωJ +

4∑
I=1

∆IQI . (2.2.17)
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We extremize S in ∆I , ω with the constraint

∆1 +∆2 +∆3 +∆4 − ω = 2πi . (2.2.18)

A microscopic derivation of the entropy function (2.2.17) from the CFT3 dual

was studied in [79] in the Cardy limit ω → 0, and we will discuss it in chapter

5. Just like AdS5, AdS7 black holes analyzed in [75], discussed in chapter 3, 7,

the constraint (2.2.18) is given an interpretation in [79]. Here the number of

M2-branes N is related to the 4d Newton constant G as follows:

G11 = 16π7ℓP
9, ℓS7 = 2ℓ = ℓP(2

5π2N)1/6 ⇒ 1

g2G
=

vol(S7)

g2G11
=

2
√
2

3

N3/2

g2ℓ2
=

2
√
2

3
N3/2 .

(2.2.19)

ℓP is the 11d Planck scale, ℓS7 is the radius of S7, and ℓ is the AdS4 radius

as defined in the previous subsection. We claim that the resulting extremal

value of Re(S) is the entropy of supersymmetric black holes. We shall check

this against the known solutions summarized in the previous subsection, at

Q1 = Q3, Q2 = Q4 (which is equivalent to ∆1 = ∆3, ∆2 = ∆4). Here, note that

the chemical potentials ∆I , ω are all complexified. With complex ∆I , the square

root
√
∆1∆2∆3∆4 in (2.2.17) should be understood as to take the argument of

∆1∆2∆3∆4 in the principal branch (−π, π) [79].

We show our claim by extremizing S, subject to the constraint (2.2.18). We

introduce the Lagrange multiplier λ and extremize

S = −i
4
√
2N

3
2

3

√
∆1∆2∆3∆4

ω
+ ωJ +

4∑
I=1

∆IQI + λ

(
4∑
I=1

∆I − ω − 2πi

)
.

(2.2.20)

The extremum conditions are given by

λ+QI = i
4
√
2N

3
2

3ω

√
∆1∆2∆3∆4

2∆I
(I = 1, · · · , 4) , (2.2.21)

λ− J = i
4
√
2N

3
2

3ω2

√
∆1∆2∆3∆4 .
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Inserting these charges into (2.2.20), to eliminate the appearances of QI , J , one

obtains

S = −2πiλ . (2.2.22)

Multiplying the four equations on the first line of (2.2.21), one finds

(λ+Q1)(λ+Q2)(λ+Q3)(λ+Q4) =
64N6

81ω4
∆1∆2∆3∆4 = −2N3

9
(λ− J)2 .

(2.2.23)

So one obtains a very useful expression,(
S

2πi
−Q1

)(
S

2πi
−Q2

)(
S

2πi
−Q3

)(
S

2πi
−Q4

)
= −2N3

9

(
S

2πi
+ J

)2

.

(2.2.24)

One needs care to treat the above expression. While the above is the quartic

equation in S, only the half of them are the true solutions to (2.2.21) satisfying

the constraint (2.2.18). The other halves are the extraneous solutions. Hence,

after solving the above equation, one should check whether the resulting solution

is a true one.

After extremizing the entropy function, one would generally obtain complex

solutions for S by solving (2.2.24). Along the spirit of [75], we shall generally

regard Re(S) as the entropy at the extremum. See [75, 79, 80, 96] for the inter-

pretation of the imaginary part. We shall revisit this problem in chapter 8 in

a more concrete set-up of [80]. There, the imaginary part of the entropy will

be given a clear interpretation. (See also [96].) However, in this chapter, we are

primarily interested in comparing our results against the known black hole so-

lutions of section 2.2.1. Therefore, we impose the charge relation of these black

holes and compare the thermodynamic quantities on that surface only. Some-

what remarkably, the charge relation of known black holes will turn out to be

Im(S) = 0 at the extremum of our entropy function. So from now on, we demand

the existence of a real solution for S in (2.2.24), and compare the results with
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the known black holes. Demanding real S for real charges Q1, Q2, Q3, Q4, J , the

complex equation (2.2.24) is separated into two real equations as follows:

1

16π4
S4 −

∑
I<J QIQJ

4π2
S2 +Q1Q2Q3Q4 =

N3

18π2
S2 − 2N3J2

9
,

−
∑

I QI

8π3
S3 +

∑
I<J<K QIQJQK

2π
S =

2N3J

9π
S . (2.2.25)

These equations determine S twice as functions of charges. From the compati-

bility of two equations, one will get a relation of QI , J . Explicitly, one may take

the unique positive solution of the second equation and insert it to the first

equation, to obtain the charge relation. One can check that this solution is a

true solution satisfying (2.2.21) and (2.2.18).

To compare with known black holes summarized in section 2.2.1, we set

Q1 = Q3, Q2 = Q4. Then, taking the unique positive solution assuming

Q1, Q2, J > 0, one obtains

S =
2π

3

√
9Q1Q2(Q1 +Q2)− 2N3J

Q1 +Q2
,

0 = 2N3J2 + 2N3(Q1 +Q2)J − 9Q1Q2(Q1 +Q2)
2 . (2.2.26)

These can be rearranged as

S =
2
√
2πN

3
2

3

J

Q1 +Q2
=

π

g2G

J

Q1 +Q2
, (2.2.27)

J =
1

2
(Q1 +Q2)

(
−1 +

√
1 +

18

N3
Q1Q2

)
=

1

2
(Q1 +Q2)

(
−1 +

√
1 + 16g4G2Q1Q2

)
.

One can easily check that this solution indeed satisfies (2.2.21) and (2.2.18), i.e.

it is not an extraneous solution. The above expressions are exactly the same as

(2.2.9), which we obtained from the supersymmetric black holes. Note that the

charges and chemical potentials of the entropy function (2.2.20) are related to
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those of supersymmetric black holes as

SBH = S, JBH = J,
2

g
QI,BH = QI ,

ωBH = Re(ω),
g

2
∆I,BH = Re(∆I).

(2.2.28)

Here, the subscripts ‘BH’ denote the black hole quantities, while the others are

the quantities used in the entropy function. The second line can be shown by

a rather straightforward but tedious calculus. One also finds that the relation

between the chemical potentials in the entropy function (2.2.18) is equivalent

to that of the supersymmetric black holes (2.2.16).

To summarize, our entropy function (2.2.20) indeed reproduces the Bekenstein-

Hawking entropy of the supersymmetric AdS4 black holes (2.2.7) and the cor-

responding charge/chemical potential relations (2.2.9), (2.2.16), at Q1 = Q3,

Q2 = Q4 where solutions are known. Recently, 4 parameter BPS black hole solu-

tions with all different QI ’s were discovered in [97], whose physics is successfully

described by our entropy function (2.2.20).

Our entropy function (2.2.20) can be regarded as the free energy of the BPS

black holes in the grand canonical ensemble since its Legendre transformation

to the microcanonical ensemble gives the entropy. Accordingly, it can obtained

from the Euclidean on-shell action of the BPS black holes in AdS4 [93]. Analyz-

ing the free energy, we can investigate interesting thermodynamic properties of

the BPS black holes. As these properties are similar regardless of the spacetime

dimensions of the black holes, we simply omit to study them in this section. We

shall study thermodynamic properties of the supersymmetric AdS5 black holes

in the next section, and most of them can be applied to the supersymmetric

AdS4 black holes treated in this section.

One may think of generalizations of our results on AdS4×S7, to more general

4d N = 2 gauged supergravity models arising from string or M-theory. To see a

30



natural possibility of generalization, note that the numerator ∼
√
∆1∆2∆3∆4

of our entropy function (2.2.17) is the homogeneous degree 2 prepotential of

the U(1)4 supergravity [98]. The prepotential is the square root of a degree

4 polynomial. See, e.g. [99, 100] for such structures in other backgrounds. We

conjecture that, for BPS black holes in 4d N = 2 gauged supergravity, an

entropy function like (2.2.17) can be constructed by replacing the numerator

by the prepotential of the theory. Recently, such an entropy function was found

in [97], and also microscopically studied in [77] from the indices of SCFT3 duals

in the Cardy limit ω → 0.

2.3 AdS5 black holes

In this section, we study the supersymmetric black holes in AdS5×S5 of [82–86].

The entropy function of these black holes was introduced in [90]. Later, it was

extended in section 2.3 of [75] by checking the agreements of chemical potentials

as in the former section. This allows us to regard the real part of the entropy

function as the free energy of known BPS black holes. We will not cover the

detailed computations for the extremization of the entropy function in this

section. The procedures are essentially the same as the former section. For

details, refer to [90] and section 2.3 of [75].

Instead, we shall view the entropy function as the free energy of the BPS

black holes in the grand canonical ensemble, and focus on their thermodynamic

properties. Here, the grand canonical ensemble should be understood as the

restricted ensemble on the zero-temperature BPS sector. However, even in the

BPS sector, the BPS chemical potentials forming thermal ensemble exhibit

nontrivial thermodynamic structures such as the phase transition.
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The entropy function of supersymmetric AdS5 black holes is given by [90]

S(∆I , ωi;QI , Ji) =
N2

2

∆1∆2∆3

ω1ω2
+

3∑
I=1

QI∆I +
2∑
i=1

Jiωi , (2.3.1)

where

∆1 +∆2 +∆3 − ω1 − ω2 = 2πi , (2.3.2)

Extremizing this function, one obtains the entropies and the chemical potentials

of known analytic black hole solutions as in the former section. A microscopic

derivation of the entropy function (2.3.1) from the CFT4 dual was studied

in [75] in the Cardy limit ω1,2 → 0, and we will discuss it in chapter 3. Here

the number of D3-branes N is related to the 5d Newton constant G as follows:

N2 =
πℓ3

2G
, (2.3.3)

where ℓ is the AdS5 radius. In addition, QI and Ji are U(1)3 ⊂ SO(6) electric

charges and U(1)2 ⊂ SO(4) angular momenta, respectively. The Bekenstein-

Hawking entropy of the black hole is the extremal value of Re(S), at one of the

extremum solutions for ∆I , ωi [90]. The black hole chemical potentials are the

extremal values of Re(∆I), Re(ωi) [75]. This entropy function was later obtained

from the Euclidean on-shell action of the BPS black holes in AdS5 [92, 93].

Now, for simplicity, let us consider the case with equal electric charges,

Q1 = Q2 = Q3 ≡ Q, and equal angular momenta J1 = J2 ≡ J . Then, we also

set the corresponding chemical potentials to be equal, ∆1 = ∆2 = ∆3 ≡ ∆,

ω1 = ω2 ≡ ω. The constraint on chemical potentials is 3∆ = 2πi+2ω. Inserting

this, the entropy function is given by

S =
N2

2

(
2πi+2ω

3

)3
ω2

+ 2ω(J +Q) + 2πiQ . (2.3.4)

We ignore the last constant term 2πiQ, as this will not contribute to Re(S). (In

fact, e2πiQ = ±1 from charge quatization.) The saddle point equation ∂S
∂ω = 0
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yields

J +Q =
N2

54

((2πi+ 2ω)3

ω3
− 3

(2πi+ 2ω)2

ω2

)
. (2.3.5)

ω will be complex, but since the left hand side of (2.3.5) is real, it is helpful to

write ω = ωR + iωI with real ωI,R. Then (2.3.5) can be separated to real and

imaginary parts. Setting the imaginary part to zero, one obtains three solutions

for ωR at given ωI :

ωR =

 0 for ωI ∈ (−∞,∞)

±ωI

√
3π+3ωI
π−3ωI

for ωI ∈ (−π, π3 )
. (2.3.6)

If one inserts (2.3.6) to (2.3.5), the real part of this equation becomes

J +Q =


2N2

27
(2π−ωI)(π+ωI)

2

ω3
I

if ωR = 0

−N2

54
(π−2ωI)

2(π+ωI)
ω3
I

if ωR = ±ωI

√
3π+3ωI
π−3ωI

. (2.3.7)

Also, logZ = N2

2
∆3

ω2 becomes

logZ =

 i4N
2

27
(π+ωI)

3

ω2
I

if ωR = 0

∓N2

18
π3−9πω2

I−8ω3
I

ω2
I

√
π+ωI

3π−9ωI
− iN

2

54
(π−8ωI)(π+ωI)

2

ω2
I

if ωR = ±ωI

√
3π+3ωI
π−3ωI

.

(2.3.8)

The solution with ωR = 0 will yield imaginary logZ and therefore Re(S) =

0, making it an irrelevant solution. In the remaining two solution, the free

parameter ωI is related to the unique charge combination J + Q captured by

the index, which can be used to express logZ and S.

We further discuss which of the remaining solutions corresponds to black

holes. Since ωR should be positive, one should choose the upper sign for 0 <

ωI <
π
3 , and lower sign for −π < ωI < 0. Also, since J+Q has to be positive, one

obtains ωI < 0 from the second line of (2.3.7). Therefore the physical solution

is ωR = −ωI

√
3π+3ωI
π−3ωI

for −π < ωI < 0. Various quantities labeled by ωI are
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Figure 2.1: [left] Charge vs. temperature. There are small and large black hole

branches, with negative/positive specific heat, respectively. [right] Temperature

vs. free energy. The upper curve for is small black holes with positive free energy,

always losing against thermal AdS gravitons. The lower curve is for large black

holes, dominating for ω < ωknown
HP with F < 0.

summarized as

ω = −ωI

√
3π + 3ωI
π − 3ωI

+ iωI , −π < ωI < 0

J +Q = −N2

54

(π − 2ωI)
2(π + ωI)

ω3
I

logZ =
N2

18

π3 − 9πω2
I − 8ω3

I

ω2
I

√
π + ωI

3π − 9ωI
− i

N2

54

(π − 8ωI)(π + ωI)
2

ω2
I

. (2.3.9)

The plots for the ‘temperature’ ω−1, the ‘free energy’ F
N2 = −Re(logZ)

N2 ,

charge Q+J
N2 are shown in Fig. 2.1. Let us call T ≡ ω−1 the ‘temperature’ as this

plays this role, conjugate to Q+J . From the left figure, one finds that there are

two branches of black holes for T > T0 ≡
[
π
√

2√
3
− 1
]−1

≈ 1.24−1, similar to

the AdS-Schwarzschild black holes, which we discussed in the introduction. In

the small black hole branch, the specific heat (the slope) is negative. So we do

not consider this saddle point if we are in the grand canonical ensemble. The

large black hole branch is to compete with the thermal BPS graviton phase, at
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F
N2 ≈ 0, and the Hawking-Page like first order phase transition will occur at

this point. From the graph on the right side of Fig. 2.1, one finds that the large

black hole dominates over thermal BPS gravitons for

T−1 = ω < ωknown
HP ≡ π

16

√
414− 66

√
33 ≈ 1.16 , (2.3.10)

which corresponds to Q+ J > 3+
√
33

18 N2 ≈ 0.486N2.

As said, these interesting thermodynamic properties are analogous to those

of the AdS-Schwarzschild black holes, which have non-zero Hawking temper-

ature. Namely, even if the BPS black holes have zero Hawking temperature,

they exhibit nontrivial thermodynamics in terms of the BPS chemical poten-

tials. Thus, studying the BPS black holes, we may further semi-quantitatively

study the physics of finite temperature Schwarzschild black holes. These ther-

modynamic structures are not unique properties of the BPS black holes in AdS5.

One can easily check that the BPS black holes in AdS4,5,6,7 all exhibit similar

properties although we will not explicitly show that in this chapter.

2.4 AdS6 black holes

2.4.1 Black hole solutions

In this section, we study the supersymmetric AdS6 black holes, and find an

entropy function which accounts for their physics. We construct an entropy

function for the solution of [87]. The solution may be regarded as describing

BPS states of any large N 5d SCFT dual. For instance, as our favorite example,

results in this section may be understood in the context of massive type IIA

string theory on warped AdS6×S4/Z2 product background. This system is dual

to 5d N = 1 SCFT living on N D4-branes probing the O8-D8 system [47]. The

5d SCFT dual has a gauge theory description, with Sp(N) gauge group, rank
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2 antisymmetric hypermultiplet, and Nf ≤ 7 fundamental hypermultiplets.

However, we expect that our general analysis can be embedded to AdS6 black

holes in the backgrounds of [101–105].

The 6d N = (1, 0) SU(2) gauged supergravity was obtained by a consistent

Kaluza-Klein truncation of massive type IIA supergravity on S4/Z2 [106]. In

[87], the charged rotating AdS6 black hole solution in this gauged supergravity

was obtained. It has four kinds of conserved quantities: mass E, two angular

momenta J1, J2, which describe the orthogonal 2-plane rotations on S4 in global

AdS6, and one U(1) ⊂ SU(2) electric charge Q. They are given in terms of four

parameters m, a, b, δ of the solution as [87]

E =
2πm

3GΞaΞb

[
1

Ξa
+

1

Ξb
+ sinh2 δ

(
1 +

Ξa
Ξb

+
Ξb
Ξa

)]
, Q =

πm

GΞaΞb
sinh 2δ ,

J1 =
2πma

3GΞ2
aΞb

(1 + Ξb sinh
2 δ) , J2 =

2πmb

3GΞaΞ2
b

(1 + Ξa sinh
2 δ) ,

(2.4.1)

where Ξa = 1− a2g2 and Ξb = 1− b2g2. The entropy is given by

S =
2π2

[
(r2+ + a2)(r2+ + b2) + 2mr+ sinh2 δ

]
3GΞaΞb

. (2.4.2)

The event horizon is located at r = r+. Here, G is the 6d Newton constant.

(In [87], the unit G = 1 is used.) g is a gauge coupling constant in 6d gravity,

setting the inverse-radius of AdS6.

This black hole solution admits the supersymmetric limit without naked

closed timelike curves. The BPS condition

E = gJ1 + gJ2 +Q (2.4.3)

is satisfied if

e2δ = 1 +
2

(a+ b)g
. (2.4.4)
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In addition, a smooth horizon exists only if

m =
(a+ b)2(1 + ag)(1 + bg)(2 + ag + bg)

2(1 + ag + bg)

√
ab

1 + ag + bg
(2.4.5)

is satisfied. The horizon is located at

r+ =

√
ab

1 + ag + bg
. (2.4.6)

Taking the BPS limit, the entropy of the supersymmetric black hole is given by

S =
2π2ab(a+ b)

3gG(1− ag)(1− bg)(1 + ag + bg)
. (2.4.7)

The two conditions (2.4.4), (2.4.5) leave two independent parameters among

m, a, b, δ. Even after restricting E as (2.4.3) from the BPS condition, the re-

maining charges J1, J2, Q carried by the supersymmetric black holes will satisfy

a charge relation. Equivalently, together with S, we find the following two re-

lations:

S3 − 2π2

3g4G
S2 − 12π2

(
Q

3g

)2

S +
8π4

3g4G
J1J2 = 0 ,

Q

3g
S2 +

2π2

9g4G
(J1 + J2)S − 4π2

3

(
Q

3g

)3

= 0 .

(2.4.8)

Since these equations determine S twice, one will get a charge relation between

J1, J2, Q from the compatibility of two equations. Explicitly, one may take the

unique positive solution of the second equation and insert it to the first equation,

to get the charge relation.

The black hole chemical potentials and the free energy F satisfy

S = −T−1F + T−1E − T−1Ω1J1 − T−1Ω2J2 − T−1ΦQ , (2.4.9)

where T is the temperature, Ω1,Ω2 are the angular velocities, and Φ is the

electrostatic potential. The temperature of the supersymmetric black hole is
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zero in the BPS smooth horizon limit,

T =
2r2+(1+g2r2+)(2r

2
++a2+b2)−(1−g2r2+)(r

2
+ + a2)(r2+ + b2)+8mg2r3+ sinh2 δ−4m2g2 sinh4 δ

4πr+[(r2+ + a2)(r2+ + b2) + 2mr+ sinh2 δ]
→ 0 .

(2.4.10)

The other chemical potentials in the BPS limit are given by

Ω1 = a
(1 + g2r2+)(r

2
+ + b2) + 2mg2r+ sinh2 δ

(r2+ + a2)(r2+ + b2) + 2mr+ sinh2 δ
→ g ,

Ω2 = b
(1 + g2r2+)(r

2
+ + a2) + 2mg2r+ sinh2 δ

(r2+ + a2)(r2+ + b2) + 2mr+ sinh2 δ
→ g ,

Φ =
mr+ sinh 2δ

(r2+ + a2)(r2+ + b2) + 2mr+ sinh2 δ
→ 1 .

(2.4.11)

Similar to the analysis in section 2.2.1, the following limits exist,

FBPS = lim
T→0

(T−1(F−∆E)) , ωi = − lim
T→0

(
T−1(Ωi − g)

)
, ∆ = − lim

T→0

(
T−1(Φ− 1)

)
,

(2.4.12)

where ∆E ≡ E −Q− gJ1 − gJ2. Then, in the zero temperature BPS limit, one

obtains

S = −FBPS + ω1J1 + ω2J2 +∆Q . (2.4.13)

Using the computed expressions for ωi,∆, one finds that

ω1 + ω2 = 3g∆ . (2.4.14)

Again, this is the alternative statement of the charge relation of J1, J2, Q.

2.4.2 Entropy function

We now present an entropy function which encodes the physics of the BPS black

holes presented in the previous subsection. The entropy function is given by

S = −i
π

81g4G

∆3

ω1ω2
+∆Q+ ω1J1 + ω2J2 + λ

(
∆− ω1 − ω2 − 2πi

)
, (2.4.15)
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where G is the 6d Newton constant as before. Having in mind the concrete

example of massive IIA supergravity on warped AdS6×S4/Z2 background, one

would find 1
g4G

= 27
√
2

5π
N

5
2√

8−Nf
[78]. In that case, a microscopic derivation of the

entropy function (2.4.15) from the CFT5 dual was studied in [78] in the Cardy

limit ω1,2 → 0, and we will discuss it in chapter 4. Here, we introduced the

Lagrange multiplier λ to extremize S in ∆, ω1, ω2 subject to the constraint

∆− ω1 − ω2 = 2πi . (2.4.16)

Differentiating with respect to the chemical potentials, one obtains

λ+Q = i
π

27g4G

∆2

ω1ω2
, λ− J1 = i

π

81g4G

∆3

ω2
1ω2

, λ− J2 = i
π

81g4G

∆3

ω1ω2
2

.

(2.4.17)

Inserting these back to the original entropy function formula, one obtains

S = −2πiλ. (2.4.18)

Multiplying the last two equations of (2.4.17), one obtains

(λ− J1)(λ− J2) = −
(

π

81g4G

)2 ∆6

ω3
1ω

3
2

= −i
3g4G

π
(λ+Q)3 . (2.4.19)

Hence, one obtains(
S

2πi
+ J1

)(
S

2πi
+ J2

)
= i

3g4G

π

(
S

2πi
−Q

)3

. (2.4.20)

As in our section 2.2 and [75], we dismiss Im(S), focussing on Re(S) as our

entropy. However, again note that all known supersymmetric AdS6 black holes

have a charge relation. This charge relation will coincide with the condition

Im(S) = 0 at the saddle point. So we demand real S for real charges Q, J1, J2.

Then, (2.4.20) is separated into two real equations as follows:

S3 − 2π2

3g4G
S2 − 12π2Q2S +

8π4

3g4G
J1J2 = 0 ,

QS2 +
2π2

9g4G
(J1 + J2)S − 4π2

3
Q3 = 0 .

(2.4.21)
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These equations determine S twice as functions of charges. Therefore, from

the compatibility of two equations, one obtains a charge relation of Q, J1, J2.

These two equations of S,Q, J1, J2 (2.4.21), derived from the entropy function

(2.4.15), are exactly the same as those from the supersymmetric black holes

(2.4.8). Note that the charges and chemical potentials of the entropy function

(2.4.15) are related to those of the black holes as

SBH = S, Ji,BH = Ji,
1

3g
QBH = Q ,

ωi,BH = Re(ωi), 3g∆BH = Re(∆) .

(2.4.22)

The subscripts ‘BH’ denote the black hole quantities, while the others are the

quantities used in the entropy function. One can also realize that the relation

between the chemical potentials in the entropy function (2.4.16) is equivalent

to that of the supersymmetric black holes (2.4.14).

Thus, our entropy function (2.4.15) indeed reproduces the Bekenstein-Hawking

entropy of the supersymmetric AdS6 black holes (2.4.7), and also their chem-

ical potentials. Later, this entropy function was obtained from the Euclidean

on-shell action of the BPS black holes in AdS6 [93].

While AdS6 black hole solution known to date has only one electric charge

dual to R-charge of 5d SCFT dual, [78] obtained a more general form of the

entropy function, which describes AdS6 black holes carrying various electric

charges, dual to R-charge, mesonic charge and baryonic charges, yet to be dis-

covered. For example, when the black hole has one more electric charge dual

to the mesonic charge, the numerator ∼ ∆3 of our entropy function (2.4.15) is

refined to [(∆ + m̂)(∆ − m̂)]
3
2 , where m ≡ m̂ + 2πi is the chemical potential

conjugate to the mesonic charge.
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2.5 AdS7 black holes

The entropy function of the BPS black holes in AdS7 × S4 of [88, 89] is given

by [91]

S(∆I , ωi;QI , Ji) = −N3

24

∆2
1∆

2
2

ω1ω2ω3
+

2∑
I=1

QI∆I +
3∑
i=1

Jiωi , (2.5.1)

where

∆1 +∆2 − ω1 − ω2 − ω3 = 2πi . (2.5.2)

Here, QI and Ji are U(1)2 ⊂ SO(5) electric charges and U(1)3 ⊂ SO(6) angular

momenta. Extremizing this function, one obtains the entropies [91] and the

chemical potentials [75] of known analytic black hole solutions as in the former

sections. A derivation of the entropy function (2.5.1) from the CFT6 dual was

studied in [75] in the Cardy limit ω1,2,3 → 0, and we will discuss it in chapter

7. Here the number of M5-branes N is related to the 7d Newton constant G as

follows:

N3 =
3π2ℓ5

16G
, (2.5.3)

where ℓ is the AdS7 radius. This entropy function was later obtained from the

Euclidean on-shell action of the BPS black holes in AdS7 [93].

We will not cover the detailed computations for the extremization of the

entropy function. The procedures are essentially the same as the former sections.

For details, refer to [91] and section 4 of [75].
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Chapter 3

Large AdS5 black holes from 4d
N = 4 SYM

In this chapter, we study the index of N = 4 Yang-Mills theory on S3 × R at

large angular momenta. A generalized Cardy limit exhibits macroscopic entropy

at large N . Our result is derived using free QFT analysis but is valid even

in the strong coupling regime. The index sets a lower bound on the entropy.

It saturates the Bekenstein-Hawking entropy of known supersymmetric AdS5

black holes, thus accounting for their microstates. We further analyze the so-

called Macdonald index, exploring small black holes and possibly new black

holes reminiscent of hairy black holes.

3.1 Introduction and summary

It has been believed that the BPS black holes in AdS5 defied quantitative

understandings from indices of SCFTs on S3×R [68,69]. There have been many
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speculations on why the index fails to capture black holes. A possible reason is

that bosonic/fermionic states undergo big cancelation. For instance, the index

cannot see the deconfinement phase transition at an order 1 temperature in

the unit of AdS5 radius [69], which is the QFT dual of the Hawking-Page

transition of AdS black holes [55]. So the index cannot capture all the physics

of generic supersymmetric AdS5 black holes. Direct studies of BPS operators at

weak coupling did not discover enough microstates for such black holes either

[107–110], at least so far.

In this chapter, we show that the index of 4d N = 4 Yang-Mills theory does

capture large supersymmetric AdS5 black holes [82–86] in an asymptotic Cardy-

like limit. Our Cardy limit is more refined than [73], in that the imaginary

parts of chemical potentials are tuned to optimally obstruct boson/fermion

cancelations. The entropy of our asymptotic index is macroscopic, meaning that

it is proportional to N2 when all the charges are at this order. This sets a lower

bound on the true microscopic entropy of BPS states, assuring the existence of

BPS black holes in AdS5×S5. In particular, when a charge relation is met, our

asymptotic free energy agrees with the Bekenstein-Hawking entropy of known

supersymmetric AdS5 black holes [83,84,86], thereby microscopically counting

them. The asymptotic free energy of our index is the recently suggested entropy

function for supersymmetric AdS5 black holes [90], in our large black hole limit.

At general values of charges, perhaps our findings may have implications to

possible supersymmetric hairy black holes in AdS5 × S5 [111, 112]. The last

suggestion is indirectly supported by studying the asymptotic free energy of the

so-called Macdonald index [113]. Here, depending on charge regime, the Cardy-

like free energy differs from the entropy function of [90], showing properties

reminiscent of hairy black holes in AdS5 × S5.
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In the rest of this chapter, we will derive the asymptotic free energy of the

index of 4d N = 4 Yang-Mills theory, in a generalized Cardy-like limit. This free

energy counts known supersymmetric AdS5 black holes. In addition, we study

similar asymptotic free energy of the index in the Macdonald limit, suggesting

rich structures such as small black holes and new saddle points reminiscent of

hairy black holes.

3.2 Large supersymmetric AdS5 black holes

We study the the partition function of N = 4 Yang-Mills theory on S3 × R,

focussing on the index limit [69]. The partition function counts states carrying

six charges. The first one is the energy E, made dimensionless by multiplying the

S3 radius. Three charges Q1, Q2, Q3 are for the Cartans of SO(6) R-symmetry,

defined to be the angular momenta on three orthogonal 2-planes on R6, being

±1
2 for spinors. The final two are the angular momenta J1, J2 on S3, being ±1

2

for spinors. The BPS states of our interest saturate the bound E ≥ Q1 +Q2 +

Q3 + J1 + J2, but we shall impose the BPS limit at a later stage to see more

universal features. Consider the general partition function:

Z(β,∆I , ωi) = Tr
[
e−βEe−

∑3
I=1 ∆IQIe−

∑2
i=1 ωiJi

]
. (3.2.1)

The complex chemical potentials ∆I , ωi satisfy five periodicity conditions ∆I ∼

∆I +4πi, ωi ∼ ωi+4πi. The 16 supercharges are QQ1,Q2,Q3

J1,J2
. 16 possible values

of QI , Ji carried by Q are ±1
2 , where the product of all 5 ± signs is +. The

conformal supercharges are SQ1,Q2,Q3

J1,J2
with five charges being ±1

2 , where the

product of signs is −. Taking the trace without (−1)F , the fermionic fields are

anti-periodic along temporal circle, twisted by ∆I , ωi. So the SUSY connecting

periodic bosons and anti-periodic fermions are generally broken. In a sense,
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the supercharges are anti-periodic which has no zero modes on temporal S1.

However, if

3∑
I=1

sI∆I−
2∑
i=1

tiωi = 2πi (mod 4πi) , sI , ti = ±1 satisfying s1s2s3t1t2 = +1 ,

(3.2.2)

(3.2.1) becomes an index if one takes β → 0+. This is because

e−∆·Q−ω·JQs1,s2,s3
−t1,−t2 = e−

s·∆−t·J
2 Qs1,s2,s3

−t1,−t2e
−∆·Q−ω·J = −Qs1,s2,s3

−t1,−t2e
−∆·Q−ω·J ,

(3.2.3)

so that translating Qs1,s2,s3
−t1,−t2 along the trace will cause extra −1 sign, creating a

zero mode of this supercharge. So restricting Z to this hypersurface of ∆I , ωi,

it becomes an index which counts 1
16 -BPS states annihilated by Q ≡ Qs1,s2,s3

−t1,−t2

and S ≡ S−s1,−s2,−s3
t1,t2

. From the algebra

{Q,S} = E −
3∑
I=1

sIQI −
2∑
i=1

tiJi , (3.2.4)

one finds E = sIQI+tiJi. Therefore, having in mind that we shall eventually live

on one of the hyperspaces (3.2.2), we study Z in the ‘formal high temperature

limit’ β → 0+.

We shall analyze logZ in an asymptotic Cardy-like limit |ωi| ≪ 1. In our

limit, ∆I is kept complex, O(1), and generic. Our computation is based on

the free QFT analysis, which is reliable because Z will be independent of the

coupling constant at the hyperspace (3.2.2).

The partition function (3.2.1) of weakly-coupled N = 4 Yang-Mills theory

is given by [57]

Z =
1

N !

∮ N∏
a=1

dαa
2π

·
∏
a<b

(
2 sin

αab
2

)2
exp

[ N∑
a,b=1

∞∑
n=1

1

n

(
fv
B(nβ, nωi) + (−1)n−1fv

F (nβ, nωi)

+χ3(n∆I)(f
c
B(nβ, nωi)+(−1)n−1f c

F (nβ, nωi)) (3.2.5)

+χ3̄(n∆I)(f
a
B(nβ, nωi)+(−1)n−1fa

F (nβ, nωi))
)
einαab

]
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where αab ≡ αa − αb, χ3 =
∑3

I=1 e
∆I , χ3̄ =

∑3
I=1 e

−∆I , and

fv
B =

e−β(1− e−2β)(eω1 + eω2 + e−ω1 + e−ω2)− 1 + e−4β

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)
+ 1 (3.2.6)

fv
F =

e−
3
2
β(e∆ − e−∆e−β)(eω+ + e−ω+) + e−

3
2
β(e−∆ − e∆e−β)(eω− + e−ω−)

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

f c
B = fa

B =
e−β(1− e−2β)

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

f c
F =

e−
3
2
β−∆

(
(eω+ + e−ω+)− e−β((eω− + e−ω−)

)
(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

fa
F =

e−
3
2
β+∆

(
(eω− + e−ω−)− e−β((eω+ + e−ω+)

)
(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

,

with ∆ ≡ ∆1+∆2+∆3
2 , ω± ≡ ω1±ω2

2 . The superscripts v, c, a refers to N = 1

vector, chiral, anti-chiral multiplets, respectively, with the chiral supercharges

Qα ≡ Q+,+,+
α (at (t1, t2) = (+,+), (−,−)).

With the understanding that one of the BPS index conditions (3.2.2) will

be taken, we study the β → 0+ limit of this partition function. One might

worry that, before reaching β → 0, the factors 1−e−β+ω1,2 in the denominators

will hit zeros or make the sum divergent if Re(ω1,2) > 0 (for BPS states with

t1 = t2 = +1). These are divergences caused by two non-BPS derivatives, losing

fugacity factors smaller than 1. In general partition function, going beyond this

point will probably have no meaning, analogous to going beyond infinite tem-

perature. However, having in mind imposing (3.2.2) at t1 = t2 = 1, these poles

are canceled between bosons/fermions, so that one can reduce β below ω1,2.

Anyway, later in this subsection, we shall present a complementary derivation

manifestly within the index. (However, we think the analysis presented now has

a conceptual advantage.) In this limit, one finds f c,a
B → 0 due to the vanishing

of the equation of motion factor 1−e−2β → 0 on the numerators. Also, one finds
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fv
B → 1 for the same reason. The fermionic letter partition functions reduce to

fv
F → (e∆ − e−∆)(eω+ + e−ω+ − eω− − e−ω−)

(1− eω1)(1− eω2)(1− e−ω1)(1− e−ω2)
=

e∆ − e−∆

2 sinh ω1
2 · 2 sinh ω2

2

f c,a
F → ± e∓∆

2 sinh ω1
2 · 2 sinh ω2

2

. (3.2.7)

Z then becomes

Z → 1

N !

∮ N∏
a=1

dαa
2π

·
∏
a<b

(
2 sin

αab
2

)2
exp

 N∑
a,b=1

∞∑
n=1

1

n

1 +
∑

s1,s2,s3=±1

s1s2s3(−1)n−1e
nsI∆I

2

2 sinh nω1
2 · 2 sinh nω2

2

 einαab

 .

(3.2.8)

Note that the sum over n in the exponent is convergent with nonzero real parts

of ω1,2. For instance, let us have in mind imposing
∑

I ∆I =
∑

i ωi+2πi for an

index, with all chemical potentials having positive real part. For the terms with

given s1, s2, s3, the sum over n is separately convergent if (s1, s2, s3) ̸= (+,+,+).

This is because, for large n, one finds

∼
∑
n

(−1)n−1

n
e−

n
2
(ω1+ω2)einαabe

ns·∆
2 = −

∑
n

1

n
e−

n
2

∑
I(1−sI)∆Ieinαab . (3.2.9)

If some sI is −1, this sum is convergent at large n, due to an exponential

damping. On the other hand, the remaining terms in the exponent are the first

term ‘1’ and the term with (s1, s2, s3) = (+,+,+). The sum over each term

over n may be divergent, for instance at αab = 0. For a ̸= b, divergence at

αab = 0 is fine because there is a suppression factor given by the Haar measure(
2 sinh αab

2

)2
. For the Cartans, a = b, one has to study the possible convergence

of the sum of these two terms without resorting to the phase factor eiαab or the

Haar measure. The sum of these two terms at large n behaves as

∑
n

1

n

(
1 +

(−1)n−1e
∆1+∆2+∆3

2

2 sinh nω1
2 · 2 sinh nω2

2

)
eiαab =

∑
n

1

n

(
1 +

(−1)n−1e
ω1+ω2+2πi

2

2 sinh nω1
2 · 2 sinh nω2

2

)
eiαab

∼
∑
n

1

n

[
1−

(
1−O(e−nω)

)]
eiαab .(3.2.10)
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So even at αab = 0, or a = b, the sum over n converges.

Having realized that the sum converges at
∑

I ∆I = ω1 + ω2 + 2πi, we also

note here that it will be useful later to consider this sum slightly away from

this surface. Namely, we shall consider the approximation of the index in the

‘Cardy limit’ |ωi| ≪ 1. Imposing the relation
∑

I ∆I = ω1 + ω2 +2πi, ∆I ’s will

share the O(1) imaginary part 2πi, and furthermore will have small real parts

to match Re(ω1+ω2). However, for convenient intermediate manipulations, we

shall take ∆I ’s slightly away from this surface by temporarily demanding them

to be of order 1 and purely imaginary. This parameter deformation clearly does

not affect the convergence analysis of (3.2.9) for (sI) ̸= (+,+,+). So as for

this part, the function is well defined even after slight deformations. However,

for (3.2.10), the convergence issue becomes tricky after the deformation. Just

working with the left hand side of (3.2.10) with ∆1+∆2+∆3 being imaginary,

the second term containing ∆I , ωi will be convergent by itself, for any a, b, while

the first term ‘1’ will remain divergent at a = b. Therefore, in the analysis below,

we shall separate the Cartan parts at a = b and the off-diagonal parts at a ̸= b.

The former has an exponent proportional to N , and it can be taken out of the

αa integral. The latter part has N
2−N terms, and only for these terms we shall

make a deformation to purely imaginary ∆I ’s. Ignoring the former contribution

to the free energy ∼ O(N1) will be justified if one obtains a free energy and

entropy of order N2 from the latter part only. So with this understanding, we

shall often ignore the exponents at a = b in the discussions below. Note also

that, for the off-diagonal parts, the term ‘1’ in the exponent completely cancels

the Haar measure part, so we can ignore this term together with the Haar

measure.1

1Probably, using asymptotic properties of special functions in the integrand carefully, one
can do the approximation below without using our small deformations of ∆I . We just regard it
as a short-cut derivation, similar to familiar ‘iϵ’ prescriptions which often makes many calculus
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Now we consider the Cardy limit |ωi| ≪ 1, keeping ∆I order 1 and purely

imaginary. The sum over n can be divided into two parts: the ‘dominant part’

till n ≪ |ωi|, and the ‘suppressed part’ from n ≳ |ωi|. As for the ‘dominant’

part, we can approximate 2 sinh nωi
2 ≈ nωi. The terms in the exponent of (3.2.8)

from these n’s is given by

s1s2s3
ω1ω2

∑
n<n0

(−1)n−1

n3
en(

s·∆
2

+iαab) (3.2.11)

where n0 ≪ |ω|−1 is a ‘cut-off’ which defines the ‘dominant part.’ (Note again

that we considser the terms at a ̸= b only, and we ignored the term 1 which

cancels the Haar measure.) The summation over n is now independent of the

cut-off value n0, as the summand is independent of ωi and converges when

e
s·∆
2

+iαab is a pure phase. So one obtains the dominant part given by

s1s2s3
ω1ω2

∑
n<n0

(−1)n−1

n3
en(

s·∆
2

+iαab) n0→∞−→ −s1s2s3
ω1ω2

Li3

(
−e

s·∆
2

+iαab

)
. (3.2.12)

Before proceeding, we note that if one wishes, one can take the cut-off n0 to be

as big as |ω|−1. This is because at n ∼ |ω|−1, both summands en( s·∆2 +iαab)

n3ω1ω2
and

1
n

e
n( s·∆

2 +iαab)
2 sinh

nω1
2

·2 sinh nω2
2

are very small, much smaller than the final asserted result

(3.2.12) which is O(1)
ω1ω2

. So we proceed with assuming n0 ∼ |ω|−1 below. Now we

discuss the ‘suppressed’ part. It is easy to see that it is indeed suppressed at

|ωi| ≪ 1. This is because∣∣∣∣∣∣
∑

n≳|ω|−1

s1s2s3
n

(−1)n−1en(
s·∆
2

+iαab)

2 sinh nω1
2 · 2 sinh nω2

2

∣∣∣∣∣∣ ≲
∑

n≳|ω|−1

1

n · 2 sinh nω1
2 · 2 sinh nω2

2

≲ |ω|
∑

n≳|ω|−1

(
2 sinh

nω

2

)−2

(3.2.13)

which is indeed much smaller than 1
ω2 . With these approximations, one then

more straightforward.
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obtains

Z ∼ 1

N !

∮ N∏
a=1

dαa
2π

exp

− 1

ω1ω2

∑
a̸=b

∑
s1,s2,s3=±1

s1s2s3Li3

(
−e

sI∆I
2 eiαab

)
(3.2.14)

where we used the series definition Li3(x) =
∑∞

n=1
xn

n3 when |x| ≤ 1. The sum-

mations over a ̸= b, (s1, s2, s3) can be arranged so that

Z ∼ 1

N !

∮ N∏
a=1

dαa
2π

·exp

− 1

ω1ω2

∑
a̸=b

∑
s1s2s3=+1

(
Li3

(
−e

s·∆
2

+iαab

)
− Li3

(
−e−

s·∆
2

−iαab

)) .

(3.2.15)

Here, we note an identity

Li3(−ex)− Li3(−e−x) = −x3

6
− π2x

6
, (3.2.16)

valid for −π < Im(x) < π, taking −ex = ex+πi, −e−x = e−(x+πi), respectively.

When (2p − 1)π < Im(x) < (2p + 1)π for p ∈ Z, similar identity holds with

x → x− 2πip on the right hand side. This identity can be continued to include

either positive or negative real parts of x.

Now we treat the integrals over αa’s by a saddle point approximation at

|ω1ω2| ≪ 1. Considering a pair of terms Li3(−e
sI∆I

2
+iαab)+Li3(−e

sI∆I
2

−iαab) at

given sI , one finds that αa derivative of these are all zero at α1 = α2 = · · · =

αN . In fact, one can analytically prove the dominance of this U(N) saddle

point in our generalized Cardy limit. Moreover, it will reproduce the physics

of known large black holes. As a very basic check, one can confirm at N = 2

that α1 = α2 is the global maximum of logZ, making its real part maximal

and imaginary part stationary, along the line of [114]. Since our free energy

will depend on various complex parameters ∆I , ωi, it will be convenient to test

it self-consistently at the extremal values of ∆I , ωi found in section 2.3, at

Q1 = Q2 = Q3, J1 = J2. The dominance of such a saddle point was assumed in
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the Cardy limit of [73]. But it may fail to be dominant in certain models, e.g.

for other gauge groups than U(N), with fields in certain representations [114].

More conceptually, [114] discussed the relation between other possible saddle

points and the behaviors of the S3 partition function of 4d QFT reduced on

small S1. Depending on how bad the IR divergence of this partition function

is [73,114], one may either expect more nontrivial saddle points to be dominant,

or otherwise zero modes like αa to cause subleading N1 logω corrections. As we

shall discuss further in section 1 of chapter 7, our reduced QFT on S3 is maximal

SYM, belonging to the latter class [73,114]. The expected log correction at N1

order should come from the Cartan terms that we have ignored. So mostly in this

chapter, we shall proceed with the fact that the above ‘maximally deconfining’

saddle point is dominant. (In only section 3, we discuss a different saddle point

in a non-Cardy scaling limit.)

Perhaps as a related issue, one may worry from the Haar measure factor

∼
(
2 sin αa−αb

2

)2
that there is a net factor of 0 when all αa are the same,

making this saddle point suppressed. Indeed, in the usual large N saddle point

analysis (see e.g. [57]), the Haar measure provides relative repulsions between

pairs of αa’s, forbidding them to be on top of each other. However, in our Cardy

saddle point, log of Haar measure is sub-dominant O(ω0). So α1 = · · · = αN

should make sense only as the asymptotic Cardy saddle point at ω ≪ 1.

So assuming this saddle point, one finds

logZ ∼ − N2

ω1ω2

∑
s1s2s3=+1

[
Li3

(
−e

sI∆I
2

)
− Li3

(
−e−

sI∆I
2

)]
(3.2.17)

where we used N2 −N ∼ N2. Now using the identity (3.2.16), one obtains

logZ ∼ N2

6ω1ω2

∑
s1s2s3=+1

[(
s ·∆
2

− 2πps

)3

+ π2

(
s ·∆
2

− 2πps

)]
(3.2.18)
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in the chamber defined by

(2ps−1) < π
3∑
I=1

Im

(
sI∆I

2

)
< (2ps+1)π , ps ∈ Z , s1s2s3 = +1 . (3.2.19)

Let us consider the ‘canonical chamber,’ with all four ps = 0. This chamber is

an octahedron in the space of Im(∆I). In this chamber, summing over 4 values

of s, one obtains

logZ ∼ N2∆1∆2∆3

2ω1ω2
. (3.2.20)

This is the final form of our free energy in the generalized Cardy-like limit.

Now we can continue ∆I ’s to have (small) real parts, to go back to one of the

surfaces (3.2.2). This formula is reliable at strong coupling on any hypersurface

(3.2.2). Note that in our notation, it appears that [73] restricted their interest

to ω1 = ω2 ≡ ω ≪ 1, one of ∆I ’s 2πi + O(ω), and the remaining two of

∆I ’s at O(ω). The partition function is trivial in this setting. However, as we

shall explain in section 2.3, complex ∆I ∼ O(1) are required for all I = 1, 2, 3

to see the black hole saddle points, with minimally obstructed boson/fermion

cancelation by the phases of fugacities.

We discussed the asymptotic free energy in the octahedral ‘canonical cham-

ber,’ defined by

−2π < Im(∆1 +∆2 +∆3) < 2π , −2π < Im(∆1 −∆2 −∆3) < 2π ,(3.2.21)

−2π < Im(−∆1 +∆2 −∆3) < 2π , −2π < Im(−∆1 −∆2 +∆3) < 2π .

Here, note that we should seek for an expression on one of the surfaces (3.2.2).

For instance, let us consider ∆1 +∆2 +∆3 −ω1 −ω2 = 2πi. Since ω1,2 are very

small in our scaling limit, our hypersurface is very close to the right boundary

of the first inequality, Im(∆1 + ∆2 + ∆3) = 2π. Whether one is within the

octahedral chamber or not will depend on the small imaginary parts of ωi’s. So
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one may wonder if the expression (3.2.20) can be used or not. This issue does

not matter, as (3.2.18) is continuous across ∆1 + ∆2 + ∆3 = 2πi. To see this,

note that one uses

Li3(−ex)− Li3(−e−x) = −(x− 2πi)3

6
− π2(x− 2πi)

6
, (3.2.22)

outside the boundary, instead of (3.2.16), where x = ∆1+∆2+∆3
2 . However, the

differences between the right hand sides of (3.2.22) and (3.2.16) is πi(x− πi)2,

being continuous and differentiable at x = πi. We shall therefore use (3.2.20)

at the surface (3.2.2).

Note that we used large N limit very trivially so far, just to ignore the

Cartans. We basically relied on |ωi| ≪ 1 to approximate the calculations. This

is similar to the Cardy limit of 2d QFT’s describing black holes or strings. There,

central charge c is kept fixed while the chemical potential τ conjugate to the left

Hamiltonian is taken small. However, the entropy in the Cardy limit is useful

to study black holes with large c [11], sometimes beyond the Cardy regime. To

derive the true largeN free energy in the non-Cardy regime, one should consider

the large N saddle point approximation of αa integrals, at finite ∆I , ωi. As we

explained above, we expect a more complicated saddle point. Also, we are not

sure how the graviton phase will get converted to the black hole phase as we

change chemical potentials. In section 3, in the Macdonald limit, we find that

(3.2.20) may not be true in general. However, still there might be other regime

in which (3.2.20) is true, which we shall partly probe in the Macdonald limit.

With this in mind, in section 2.3, we shall also explore the ‘thermodynamics

phenomenology’ of (3.2.20) beyond Cardy limit, especially pointing out the

existence of a Hawking-Page transition of this free energy.

So far, we took the limit β → 0 first, having in mind imposing the index

condition (3.2.2) later. We think this is completely fine, but some people might
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think that this way of thinking is dangerous. Appreciating possible worries, we

start from the index given by [69] and rederive (3.2.20) at (3.2.2). A direct

consideration of the index will also give interesting lessons beyond the Cardy

limit, in the Macdonald limit [113]. Let us insert the following shifted values to

the chemical potentials in (3.2.1),

∆I → ∆I − β , ωi → ωi − β , (3.2.23)

after which the partition function is given by

Z(β,∆I , ωi) = Tr
[
e−β(E−

∑
I QI−

∑
i Ji)e−∆IQI−ωiJi

]
. (3.2.24)

Now imposing the condition ∆1+∆2+∆3−ω1−ω2 = 2πi, the measure in the

trace commutes with the supercharge Q+++
−− , S−−−

++ , at any value of β. We take

β → ∞ to suppress the contributions from all non-BPS letters. Let us redefine

one of the chemical potentials, say ∆1 − 2πi as the new ∆1, so that the index

condition becomes

∆1 +∆2 +∆3 = ω1 + ω2 . (3.2.25)

Then, the shift by 2πi generates extra e−2πiQ1 = (−1)F in the trace formula

(3.2.24), making it a manifest index. (This redefinition can be made with any

one of the five chemical potentials.) After this redefinition, and taking β → ∞

in (3.2.5), one obtains [69]

Z =
1

N !

∫ N∏
a=1

dαa
2π

∏
a<b

(
2 sin

αab
2

)2
PE

(1− ∏3
I=1(1− t2vI)

(1− t3y)(1− t3/y)

)
N∑

a,b=1

einαab

 ,

(3.2.26)

where vi’s satisfying v1v2v3 = 1 are the fugacities for SU(3) ⊂ SO(6) part of

R-symmetry. The parameters t, vi, y are related to our parameters in (3.2.5)

by (e−ω1 , e−ω2 , e−∆I ) = (t3y, t3/y, t2vI), manifestly satisfying (3.2.25). This is
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rewritten as

Z =
1

N !

∫ N∏
a=1

dαa
2π

∏
a<b

(
2 sin

αab
2

)2
exp

 ∞∑
n=1

1

n

(
1−

∏3
I=1 2 sinh

n∆I
2

2 sinh nω1
2 · 2 sinh nω2

2

)
N∑

a,b=1

einαab

 .

(3.2.27)

We again take |ωi| ≪ 1, keeping them complex with Re(ω1,2) > 0. Had

we been taking this limit with real positive ∆i’s, which is the canonical range

for the chemical potentials, ∆i’s should also vanish at order O(ω1,2) due to

the relation (3.2.25). This will make the free energy to be small, ∼ ∆3

ω2 ≪ 1,

making the index uninteresting. However, we keep finite imaginary parts of ∆i’s

while taking the limit ω1,2 → 0. Physically, we take advantage of the possibility

of tuning the phases of bosonic/fermionic terms to maximally obstruct their

cancelations. The asymptotic limit of (3.2.25) is ∆1 +∆2 +∆3 ≈ 0, so we take

all ∆I ’s to be purely imaginary whose sum is zero, and continue back to complex

numbers later. The details of the approximation is the same as we presented

above. Following very similar procedures, again taking out the Cartan parts

and ignoring them, one obtains

Z ∼ 1

N !

∫ N∏
a=1

dαa
2π

exp

[
− 1

ω1ω2

∑
s1s2s3=+1

∑
a̸=b

(
Li3

(
e

s·∆
2

+iαab

)
−Li3

(
e−

s·∆
2

−iαab

))]
.

(3.2.28)

Here, note that Li3(e
x) − Li3(e

−x) = − (2πi)3

6 B3(
x
2πi) for Re(x) ≥ 0 and 0 <

Im(x) < 2π, with B3(x) = x3 − 3
2x

2 + 1
2x. After some computations using this

formula similar to the above, one can obtain

logZ ∼ N2

2ω1ω2

3∏
I=1

(∆I + 2πinI) , (3.2.29)

where 2πpI < −i∆I < 2π(pI+1) (pI ∈ Z), and n1 ≡ 1+p2+p3, n2 ≡ 1+p3+

p1, n3 ≡ 1+p1+p2, satisfying
∑3

I=1 nI = ±1. (For detailed computations, refer

to [75].) This agrees with the previous analysis, supposing that ∆1 +∆2 +∆3

there and here are related by a shift of 2πi (mod 4πi).
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Now, let us consider a Legendre transformation of the free energy (3.2.20) to

the microcanonical ensemble, as the macroscopic saddle point approximation of

the inverse Laplace transformation. One should extremize the following entropy

function

S(∆I , ωi;QI , Ji) =
N2

2

∆1∆2∆3

ω1ω2
+

3∑
I=1

QI∆I +

2∑
i=1

Jiωi . (3.2.30)

Since this free energy is reliable only at one of the surfaces (3.2.2), we make

variation with 4 independent variables, which couples to four combinations of

5 charges. This is our ignorance due to restricting considerations to the index.

We consider the surface

∆1 +∆2 +∆3 − ω1 − ω2 = 2πi , (3.2.31)

for BPS states saturating E ≥ Q1 + Q2 + Q3 + J1 + J2. The above is noth-

ing but the entropy function of the BPS black holes in AdS5 × S5, which we

considered in section 2.3. Thus, assuming the charge relation, the lower bound

of entropy given by our index saturates the black hole entropy. Namely, we

have microscopically accounted for the microstates of large BPS black holes in

AdS5 × S5.

Even though we managed to derive the free energy (3.2.30) only in our Cardy

limit, it is correct one describing the known black holes. However, beyond the

Cardy regime |ωi| ≪ 1, it is not guaranteed that there are no more black hole

saddle points, so that the true free energy of large N N = 4 Yang-Mills may be

more complicated. Indeed, in the next section, we find that the true free energy

may be more complicated than (3.2.30), by studying another special limit. Now

focussing on our Cardy limit, it demands that the four combinations of charges

QI + J1, J2 − J1 are much larger than N2. This is all one can say intrinsically

from the index. However, we can discuss the implication of the Cardy limit on
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the known black hole solutions that we have just counted. Their charge relation

in the Cardy limit becomes

(Q1 +Q2 +Q3)(Q1Q2 +Q2Q3 +Q3Q1)−Q1Q2Q3 ≈
N2

2
J1J2 . (3.2.32)

When all charges are equal, ≡ Q, and also when all angular momenta are equal

≡ J , it becomes (J/N2)2 ≈ 16(Q/N2)3. So our Cardy limit on known solutions

demands J/N2 ≫ Q/N2 ≫ 1.

As emphasized, (3.2.30) is the free energy of known black hole saddle points.

Our microscopic analysis assures that this is the dominant one for large black

holes in the Cardy limit. But for not-so-large or small black holes, the situation

is unclear. In particular, numerical studies are made recently on hairy BPS

black holes [111], predicting more general black holes as one approaches the

zero temperature BPS limit. In particular, as far as we see from the reported

charge regimes in [111], evidences for new black holes are found for small angular

momenta, at around J
N2 ≲ 0.05. If we take these results seriously, the true free

energy may deviate from (3.2.20) for small black holes. Of course, there could be

a possibility that the intrinsic prediction from the index has its own ambiguity,

in that the physical charges Q, J cannot be separately be specified.

Before end this section, let us make a basic consideration on what the ex-

tremization of (3.2.30) does. Although the entropy function (3.2.30) has real co-

efficients only, it should have complex solutions for ∆I , ωi due to the constraint

(3.2.31). During the extremization, we will be led to distribute 2πi on the right

hand side suitably to the 5 chemical potentials. We assert that one should pay

attention to nontrivial distribution of this phase to the fugacities. Allowing non-

trivial imaginary parts of ∆I , ωi (mod 2πi) satisfying (3.2.31), one can hope to

reduce unnecessary boson/fermion cancelations in the index. Namely, we insert

(−1)F in the index because we want pairs of bosonic/fermionic states related
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by Q,S to cancel. If the index does not acquire contributions from such states,

it can be computed at any coupling constant. However, inserting −1 factor to

all fermions, it may cause unnecessary cancelations between bosonic/fermionic

states which are not superpartners of each other. So as long as it is allowed by

(3.2.31), we attempt to insert extra phase factor e−iφ for each state, defined

by e−iIm(∆IQI+ωiJi) ≡ (−1)F e−iφ, trying to maximally obstruct cancelations.

Converting to microscopic ensemble at definite charges, the ‘entropy’ is counted

with such phase factor inserted for each state:

eS(QI ,Ji) ∼
∑
B

e−iφB −
∑
F

e−iφF =
∑
B

e−iφB +
∑
F

e−i(φF+π) . (3.2.33)

Morally, the real parts of chemical potentials are extremized to tune the system

to definite charges in the microscopic ensemble, while imaginary parts are tuned

to make (3.2.33) maximally unobstructed. However, the two extremizations are

intertwined, so that both real and imaginary parts participate in both processes.

If one is lucky so that all phases φB, φF +π at a saddle point are same (mod 2π)

for all microstates, then Re(S) of the index would be the true BPS entropy. In

the unlucky case that one cannot make all these phases collinear, Re(S) would

be smaller than the entropy. In any case, Re(S) computed from our index sets

a lower bound on the true entropy, and there is no a priori way of knowing

when this bound saturates the true entropy. In particular, there seems to be

no a priori reason to care about Im(S), as the saturation may happen or not

irrespective of whether Im(S) assumes a specific value.

3.3 The 1
8-BPS Macdonald sector

In this section, we investigate the Cardy-like and non-Cardy-like free energy of

the index in the so-called Macdonald limit [113]. We first explain the Macdonald
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index in the context of N = 4 Yang-Mills theory. Consider the index

Z = Tr
[
(−1)F e−∆IQI−ωiJi

]
(3.3.1)

at ∆1+∆2+∆3 = ω1+ω2, which is obtained from (3.2.24) by shifting a chemical

potential by 2πi, and by sending β → ∞. This is an index counting 1
16 -BPS

states preserving Q+++
−− and S−−−

++ . Eliminating ω2 = ∆1 +∆2 +∆3 − ω1, one

obtains

Z = Tr
[
(−1)F e−∆1(Q1+J2)−∆2(Q2+J2)−∆3(Q3+J2)−ω1(J1−J2)

]
(3.3.2)

in terms of four independent variables ∆I , ωi with positive real parts. Now we

take the limit ∆3 → ∞, projecting to states satisfying Q3 + J2 = 0. One can

show that this projection demands the BPS states to be annihilated by an extra

pair of supercharges, Q++−
−+ , S−−+

+− . A quick way to see this is that the new pair

demands the BPS energy relation E = Q1+Q2−Q3+J1−J2, which is satisfied

by imposing the original BPS bound E = Q1 +Q2 +Q3 + J1 + J2 and the new

projection condition Q3+J2 = 0. This is a limit which takes ∆3, ω2 → ∞, with

∆3
ω2

→ 1. One also has to keep ∆3 − ω2 (= ω1 −∆1 −∆2) finite. This way, one

obtains the Macdonald index for 1
8 -BPS states depending on ∆1,∆2, ω1.

In the weakly interacting theory, 1
16 -BPS operators are made of: 3 anti-chiral

scalars Φ
QI with (QI) = (1, 0, 0), (0, 1, 0), (0, 0, 1); three chiralinos ΨQI

+ 1
2
,+ 1

2

with (QI) = (−1
2 ,

1
2 ,

1
2), (

1
2 ,−

1
2 ,

1
2), (

1
2 ,

1
2 ,−

1
2); two gauginos Ψ

1
2
, 1
2
, 1
2

± 1
2
,∓ 1

2

; one self-

dual component of field strength f+1,+1; two covariant derivatives D1,0, D0,1.

In the Macdonald limit, 1
8 -BPS operators are made of: two complex scalars

Φ
1,0,0

, Φ
0,1,0

; two fermions Ψ
+ 1

2
,+ 1

2
,± 1

2

+ 1
2
,∓ 1

2

; one derivative D1,0. Despite preserving

enhanced SUSY, the full spectrum of this sector is not completely solved yet

even at weak coupling, to the best of our knowledge. This is in contrast to other

1
8 -BPS sectors of N = 4 Yang-Mills theory. There are two more inequivalent
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1
8 -BPS subsectors of the above canonical 1

16 -BPS sector, specified by either

J1 + J2 = 0 or Q1 + Q2 = 0. The former is the well-known chiral ring sector,

completely solved in, e.g. [69]. The solution in the second sector can be found,

e.g. in [109]. It might be surprising that the last 1
8 -BPS sector given by the

Macdonald limit is still unsolved. As we shall see below, perhaps the reason is

that this sector is too rich to admit a simple exact solution.2

We shall study a new Cardy-like limit and a non-Cardy-like limit of the

Macdonald index at |ω1| ≪ 1. Although we also call the former a Cardy limit,

it is different from the one in section 2 in that ω2 is sent large. In a way, the

previous one is a 4d Cardy limit, acquiring large contributions from two BPS

derivatives. Here, it is more like a 2d Cardy limit.

In the Macdonald limit ∆3, ω2 → ∞, ∆3/ω2 → 1, the index (3.2.27) reduces

to

Z =
1

N !

∫ N∏
a=1

dαa
2π

∏
a<b

(
2 sin

αab
2

)2
exp

 ∞∑
n=1

1

n

(
1− (1− e−n∆1)(1− e−n∆2)

1− e−nω1

) N∑
a,b=1

einαab

 .

(3.3.3)

As before, we ignore the exponents for the Cartans, a = b, which will giveO(N1)

contribution to the free energy. Then, for a ̸= b, the term ‘1’ in the exponent will

cancel with the Haar measure. Taking ω1 ≪ 1 with the remaining non-Abelian

terms, with ∆1,2 kept fixed, and again assuming the maximally deconfining

saddle point α1 ≈ · · · ≈ αN , one obtains

logZ ∼ −N2

ω1

[
Li2(1)− Li2(e

−∆1)− Li2(e
−∆2) + Li2(e

−∆1−∆2)
]

(3.3.4)

with unconstrained ∆1,∆2, ω1. This is the Macdonald-Cardy limit of the index.

2However, [115] solved the Schur index problem, which is an unrefined version of the
Macdonald index. The Schur limit of the general 1

16
-BPS index (3.2.27) is defined as ∆3 = ω2.

In the Macdonald index, to be studied shortly, one further unrefines as ∆1 +∆2 = ω1 to get
the Schur index.
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On the other hand, had (3.2.20) or the result of [90] been exact for general

ω1,2, one would have obtained a very different result from (3.3.4). Namely,

taking the Macdonald limit of (3.2.20) assuming its validity at general ω1,2,

∆3, ω2 → +∞ with ∆3/ω2 → 1, one would have obtained

logZ ∼ N2∆1∆2

2ω1
(3.3.5)

without any constraint on ∆1,∆2, ω1. But keeping ω1 ≪ 1 and ∆1,2 finite, we

derive (3.3.4) instead of (3.3.5) (assuming maximally deconfining saddle points).

So the true phase structure of black holes may be richer than simply the known

black holes, or [90], even in the 1
8 -BPS Macdonald sector.

However, before proceeding, we explain that there appears to be a scaling

limit of the Macdonald index which yields (3.3.5). To see this, let us scale

ω1 ≪ 1, but also take ∆1,∆2 ≪ 1 keeping ∆1∆2
ω1

finite. In this case, we take

large N and disregard the integrand factors for the Cartans, a = b, assuming

that this O(N1) term will not affect our scaling free energy at O(N2). In fact, as

we shall see later, the last assumption will fail, with an interesting implication:

however, let us proceed for now to derive (3.3.5) first. With the summation in

the exponent restricted to a ̸= b, (3.3.3) can be written as

Z ∼ 1

N !

∫ N∏
a=1

dαa
2π

exp

−∆1∆2

ω1

∞∑
n=1

∑
a̸=b

einαab

 . (3.3.6)

Since

∞∑
n=1

∑
a̸=b

einαab =
∑
n̸=0

∑
a<b

einαab =
∑
a<b

(2πδ(αa − αb)− 1) , (3.3.7)

one obtains

Z ∼ 1

N !

∫ N∏
a=1

dαa
2π

exp

[
−
∑
a<b

Veff(αa − αb)

]
, Veff(θ) ≡

∆1∆2

ω1
[2πδ(θ)− 1] ,

(3.3.8)
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where δ(θ) is the delta function on a circle, with θ ∼ θ + 2π. Therefore, by

keeping Re(∆1∆2
ω1

) > 0, one finds an effective potential with very small repulsive

core. Whether this is satisfied or not will be controversial at the end, for a reason

to be explained shortly. In any case, let us assume this and proceed. In this case,

if αa’s are not equal, the potential is at its flat minimum, with constant negative

energy. Since the repulsive core is scaling to zero size in our scaling limit, one can

take Veff = −∆1∆2
ω1

for most values of αa. It makes real part of logZ maximal,

and imaginary part stationary. Therefore, one approximates

logZ ∼ (N2 −N)∆1∆2

2ω1
≈ N2∆1∆2

2ω1
. (3.3.9)

In fact, as we will show below, the assumption that O(N1) terms are ignorable

will fail, by the free energy (3.3.5) failing to have nontrivial large N saddle

point with logZ ∼ N2. But we shall use this free energy as a probe of small

black holes.

We shall now discuss the thermodynamic aspects of two free energies (3.3.4)

and (3.3.5).

It is first illustrative to see what is the consequence of (3.3.5). As we em-

phasized in section 2.3, we can regard (3.2.20) as describing known black holes,

even beyond the Cardy limit. Firstly, from the known black hole solutions, one

can show that the horizon area vanishes as one takes limit Q3+J2 → 0+. To see

this, we start from the charge relation of known black holes. Setting J2 = −Q3,

and rearranging, one obtains

0 =

(
Q1 +Q2 +

N2

2

)(
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2) +Q2

3

)
,

(3.3.10)

where we suitably inserted back Q3 → −J2 on the second factor. The first factor

is positive since Q1 +Q2 ≥ 0 in the BPS sector. On the second factor, Q2
3 ≥ 0

for the last term. The remaining terms in the second factor are simply square
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of the black hole entropy
(
S
2π

)2
. So the solution becomes meaningless if this

is negative. So from the vanishing of (3.3.10) on the solutions without naked

singularities, one finds

Q3 → 0 , Q1Q2 +Q2Q3 +Q3Q1 −
N2

2
(J1 + J2) =

(
S

2π

)2

→ 0 . (3.3.11)

We conclude that the known black solutions become ‘small black holes’ in the

Macdonald limit. Here ‘small’ and ‘large’ is an entropic notion, different from

those used in the other part of this chapter: the above configuration has small

entropy at large charges. Collecting all the conditions, the charges carried by

these small black holes satisfy

Q1Q2 =
N2

2
J1 , Q3 = J2 = 0 , (3.3.12)

where the first relation is the vanishing condition of the horizon area when

Q3 = J2 = 0.

Similar conclusion can be obtained from (3.3.5), in a rather curious manner.

Note that

N2∆1∆2

2ω1
+ (Q1 + J2)∆1 + (Q2 + J2)∆2 + (J1 − J2)ω1 (3.3.13)

is homogeneous degree 1 in three independenet ∆1,∆2, ω1. Therefore, the over-

all scaling mode of them plays the role of Lagrange multiplier, making the

extremized entropy to vanish. Since the remaining two ratios of the chemical

potentials determine three charges Q1+J2, Q2+J2, J1−J2, the charges satisfy

a relation. The relation is

(Q1 + J2)(Q2 + J2) =
N2

2
(J1 − J2) . (3.3.14)

We find it as closest as one can get to (3.3.12) from the index, without extra

input on the charges that the index cannot see (such as ‘Q3 = J2 = 0’). However,
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we emphasize that both approaches predict small black holes S → 0 in the 1
8 -

BPS Macdonald limit. And coming back to the derivation of (3.3.5) ignoring

O(N1) terms, we simply arrive at the conclusion that we may have to include

them to obtain the leading entropy. In any case, both known black hole solutions

and the QFT analysis in the non-Cardy scaling limit predicts small black holes.

As an additional comment, we cannot determine in this framework whether

Re
(
∆1∆2
ω1

)
is positive or not, because an overall scaling mode is a Lagrange

multiplier which cannot be determined. The sign of this quantity was important

above, when we want to regard (3.3.13) as derived from the Macdonald index

in a scaling limit. Perhaps it is related to the degenerate nature of this saddle

point, which one may resolve clearly by going slightly beyond the Macdonald

limit and doing a more careful calculation. We leave a more detailed study to

the future.

Now we study the free energy (3.3.4). We study the associated entropy

function:

S = logZ +Q1∆1 +Q2∆2 +Q3∆3 + J1ω1 + J2ω2

= −N2

ω1

[
Li2 (1)− Li2

(
e−∆1

)
− Li2

(
e−∆2

)
+ Li2

(
e−∆1−∆2

)]
+ (Q1 + J2)∆1 + (Q2 + J2)∆2 + (J1 − J2)ω1 .

(3.3.15)

Extremizing, one obtains

Q1 + J2 =
N2

ω1

[
− log

(
1− e−∆1

)
+ log

(
1− e−∆1−∆2

)]
,

Q2 + J2 =
N2

ω1

[
− log

(
1− e−∆2

)
+ log

(
1− e−∆1−∆2

)]
,

J1 − J2 =− N2

ω2
1

[
Li2 (1)− Li2

(
e−∆1

)
− Li2

(
e−∆2

)
+ Li2

(
e−∆1−∆2

)]
.

(3.3.16)

From now on, we shall use some identities of Li2 to make a semi-analytic study.

However, all solutions below are cross-checked numerically against (3.3.16).
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Using the following identity (W. Schaeffer, 1846)

Li2 (xy)−Li2 (x)−Li2 (y)+Li2 (1) = Li2

(
1− x

1− xy

)
−Li2

(
y
1− x

1− xy

)
+log(x) log

(
1− x

1− xy

)
,

(3.3.17)

the extremized entropy becomes

S =
N2

ω1

[
− Li2

(
1− e−∆1

1− e−∆1−∆2

)
− Li2

(
1− e−∆2

1− e−∆1−∆2

)

+ Li2

(
e−∆2

1− e−∆1

1− e−∆1−∆2

)
+ Li2

(
e−∆1

1− e−∆2

1− e−∆1−∆2

)]
.

(3.3.18)

From this formula, one finds S < 0 if ∆1,∆2, ω1 are strictly real and positive.

This is because Li2(x) is an increasing function of x > 0, so that first plus third

terms are negative, and second plus fourth terms are also negative. Hence, in

order to get black holes with Re(S) > 0 at positive chemical potential, we

should turn on the imaginary part of chemical potentials. Physically, this again

implies that one should turn on phases of fugacities to obstruct boson/femrion

cancelation in the index to see black holes.

Now, for simplicity, we consider the case with equal charge: Q1 = Q2. Below,

we will frequently use (3.3.17) at x = y and the Euler’s reflection formula:

Li2
(
x2
)
− 2Li2 (x) + Li2 (1) = Li2

(
1

1 + x

)
− Li2

(
x

1 + x

)
− log(x) log (1 + x) ,

Li2(x) + Li2(1− x) = Li2(1)− log(x) log(1− x).

(3.3.19)

Then, setting ∆ ≡ ∆1 = ∆2, one obtains

q ≡ Q1 + J2
N2

=
Q2 + J2

N2
=

1

ω1
log
(
1 + e−∆

)
, (3.3.20)

j ≡ J1 − J2
N2

= − 1

ω2
1

[
Li2 (1)− 2Li2

(
e−∆

)
+ Li2

(
e−2∆

)]
= − 1

ω2
1

[
Li2 (1)− 2Li2

(
1

1 + e∆

)
−
(
log
(
1 + e−∆

))2]
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Figure 3.1: Various solutions f(r) of (3.3.21)

= q2 − 1

ω2
1

[
Li2 (1)− 2Li2

(
1− e−qω1

)]
,

s ≡ S

N2
= 2(q∆+ jω1) =

2

ω1

[
Li2

(
1

1 + e∆

)
− Li2

(
1

1 + e−∆

)]
=

2

ω1

[
Li2
(
1− e−qω1

)
− Li2

(
e−qω1

)]
= 2ω1(j − q2)− 2q log(1− e−qω1)

≡ 2q
[
rf (r)− log

(
1− e−f(r)

)]
,

where r ≡ j
q2

− 1, f
(
j
q2

− 1
)

≡ qω1, and f(r) is defined implicitly by the

following equation:

f(r)2r = 2Li2(1− e−f(r))− Li2(1). (3.3.21)

Note that Li2(1) = π2

6 . We expect macroscopic physical solutions only when

q > 0 and j > 0. Indeed, with some efforts, one can check this fact explicitly

from the above formulae.

Due to the complexity of these equations, we numerically/graphically solve

this problem. For r = j
q2

− 1 > 0, one finds that f(r) is a double-valued,
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Figure 3.2: Blue/yellow line denotes the real/imaginary part of (a) ω1, (b) ∆.
Red line denotes ω1,∆ corresponding to f(r) described as the red line in Fig.
3.1 (a), which we dismiss.

while for −1 < r < 0, it is single-valued. See Fig. 3.1. We find that only

when r > r0 ≡ 0.2003559478..., Im(f(r)) ̸= 0. If r is smaller than this critical

value r0, f(r) is strictly real. Then, one finds that ω1,∆ are also real, from the

definition of f and the first equation of (3.3.20), since f = qω1 > 0. Namely,

only when j > (1 + r0)q
2, Im(ω1), Im(∆) ̸= 0, and we may expect a solution

with macroscopic entropy and positive chemical potentials. One can see that

we have two distinct solutions f(r) = x(r) ± iy(r) when r > r0. In fact, one

can analytically show that if f(r) = x(r) + iy(r) is one solution of its defining

equation (3.3.21) at certain r, then (f(r))∗ = x(r) − iy(r) becomes another

solution. Correspondingly, for given j, q, one will find the following form of two

distinct solutions for the chemical potentials and entropy: ω1 = ωR1 ± iωI1 , ∆ =

∆R ± i∆I , and S = SR ± iSI . So the directly observable physical quantities,

given by the real parts ωR1 ,∆
R, SR, are uniquely determined in terms of j, q.

As commented below (3.3.18), the region r < r0 does not yield sensible saddle

points.

For r > r0, we study whether Re(∆),Re(ω1) are actually positive. In Fig.

3.2, ω1,∆ are plotted with respect to q, at fixed j. Note that among two solutions
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Figure 3.3: s(q, j) at particular slices: blue/yellow line denotes its
real/imaginary part.

of f(r), we chose the blue one and the yellow one in Fig. 3.1. From Fig. 3.2(b),

Re(∆) decreases to zero as q increase to a finite quantity, qmax(j). We find that

only for r > rc ≈ 1.9488532..., i.e. j > (1 + rc)q
2 ≈ 2.9488532q2, Re(∆) > 0.

So at given angular momentum j, a sensible saddle point at Re(∆) > 0 exists

only when the electric charge q is smaller than a maximal value qmax(j) =√
j

1+rc
≈ 0.582336j

1
2 . If r is smaller than this critical value rc, Re(∆) < 0.

Note that in the BPS partition function, Re(∆) → 0+ is analogous to infinite

temperature limit, since its dual charge is positive. It is curious to find such

an ‘infinite temperature limit’ at finite qmax(j). See a related comment below.

In Fig. 3.3, s is plotted with respect to j, q. As before, we chose the blue and

yellow solution of f(r). One can see that Re(s) > 0 for arbitrary j, q > 0. Also,

when j > (1 + rc)q
2, the entropy S increases as the charges j, q increases, as

expected.

One may want to find explicit forms of chemical potentials and entropy,

in terms of charges, at least in certain asymptotic regime. This amounts to

knowing the function f(r). An explicit asymptotic form of f(r) can be deduced

at very large r. When r ≫ 1, f(r) → 0. Hence, we can approximate the equation
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(3.3.21) as

(f(r))2r ∼ 2Li2(f(r))− Li2(1) ∼ 2f(r)− Li2(1) → f(r) ∼ 1

r

(
1± iπ

√
r

6

)
.

(3.3.22)

So when r ≫ 1, i.e. j ≫ q2, one obtains the asymptotic formula of the chemical

potentials and the entropy in terms of j, q as follows:

ω1 =
f(r)

q
∼ 1

qr

(
1± iπ

√
r

6

)
∼ 1

j

(
q ± iπ

√
j

6

)
,

∆ = − log(eqω1 − 1) = − log(ef(r) − 1) ∼ − log f(r) ∼ log r − log

(
1± iπ

√
r

6

)
∼ 1

2
log r − 1

2
log

π2

6
∓ log i ∼ 1

2
log

j

q2
− 1

2
log

π2

6
∓ log i,

s = 2(q∆+ jω1) ∼ q log
j

q2
+

(
2− log

π2

6
∓ 2 log i

)
q ± iπ

√
2j

3
.

(3.3.23)

One finds that the Cardy-like condition |ω1| ≪ 1 is met in this regime, since

Re(ω1) ∼ q
j ≪ 1 and Im(ω1) ∼ j−

1
2 ≪ 1. In fact, just as a side comment, the

above approximate entropy formula is very well-fitted even from r ≳ rc. At,

r = rc,
∣∣∣S−Sapprox

S

∣∣∣ ∼ 0.07.

We study the validity of our Cardy approximation ω1 ≪ 1 for more general

q, j’s, at r > rc. This can be easily seen in Fig. 3.4, where we showed the lines

with constant |ω1| on the q-j space. We can highly trust our approximation

when |ω1| ≪ 1. When r > rc, one can see that if j ≳ 200, then |ω1| < 0.1.

Therefore, we can say that when r > rc and j ≳ 200, our results are within the

Cardy regime.

In summary, only when j > (1 + rc)q
2, or q < qmax(j) =

√
j

1+rc
≈

0.582532j
1
2 , all chemical potentials ω1,∆ and the macroscopic entropy S have

positive chemical potentials. Otherwise, we find solutions with Re(∆) < 0,

which we disregard.
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Figure 3.4: |ω1| > 0.1 in the region encircled by the red dashed line.

So far, we presented a semi-analytical analysis, using some identities of Li2

functions to simplify the structures. However, to be absolutely sure, we plugged

in our numerical saddle points back to the original extremization conditions

(3.3.16) without any analytic treatement, to numerically reconfirm the correct-

ness of our results, at least when Re(∆) > 0 in which case Li2(e
−∆), Li2(e

−2∆)

are very safely well defined.

We also note that, in the regime q < qmax(j), we numerically analyzed the

Hessian

Hij ≡ −∂2Re(S(Q))

∂Qi∂Qj
, (Q1 = q, Q2 = j) (3.3.24)

for S at the saddle point, to study the local thermodynamic stability. At least

for q < qmax(j), we find that both eigenvalues of Hij are positive, implying that

all susceptibility parameters are positive. Also, we find that logZ at the saddle

point is always positive in our Cardy regime with large charges, making it more

dominant than the gravitons.

Now we turn to discuss some aspects of our results. First of all, it is in-

70



teresting to see where the small black holes satisfying Q2 = N2

2 J1 are lo-

cated. Since J2 = 0 on the known solutions, this charge condition translates

to q = j
1
2√
2
≈ 0.707j

1
2 . This is the charge region where our new predicted saddle

points cannot exist, since its q is larger than qmax(j). So to conclude, our free

energy predicted new 1
8 -BPS black hole-like saddle points with macroscopic en-

tropy, when q < qmax(j) =
√

j
1+rc

≈ 0.582532j
1
2 , in the Cardy regime. Since no

such black holes are known so far in this sector, including the small black hole

limits of [83, 84, 86], one may ask where to seek for such objects in the gravity

dual.

Here we note that there has been some endeavors to construct black holes

beyond those known in the literature, based on allowing condensations of mat-

ters outside the event horizon. These black holes are called hairy black holes. In

the context of global AdS5×S5, [116,117] made studies of hairy black holes with

one electric charge Q ≡ Q1 = Q2 = Q3 at J1 = J2 = 0. At zero angular mo-

mentum, one finds that the hairy black hole horizon disappears as one reduces

the energy to its BPS bound E ↘ 3Q, with fixed Q. The end point is either a

smooth AdS soliton when Q is smaller than a critical value Qc, or a singular

horizonless solution if Q > Qc. Studying the temperature as E ↘ 3Q, the sub-

critical solutions have zero temperature T = 0, while the supercritical solutions

have T = ∞. As for hairy black holes with nonzero angular momenta, [111,112]

studied those at nonzero Q ≡ Q1 = Q2 = Q3 and J ≡ J1 = J2. In this case, as

E is reduced to its BPS bound M ↘ 3Q+2J at fixed Q, J , one still finds black

holes with nonzero entropy. Again here, one finds a signal of two different types

of endpoints. In the subcritical region Q < Qmax(J), the temperature of the

limiting hairy black hole goes to 0. In the supercritical region, Q > Qmax(J),

the temperature blows up to ∞. The critical charge depends on J . It seems

that due to numerical limitations, the precise value of Qmax(J) could not be
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determined [111].

Even if the hairy black holes explained above are in a different charge sector,

we find some qualitative similarities with the new saddle points that we find

in the Macdonald-Cardy limit. This is because our new saddle points also exist

only in a subcritical region q < qmax(j) ≈ 0.582532j
1
2 . The reason why this

gets spoiled at q = qmax(j) is because the chemical potential Re(∆) approaches

zero, which is analogous to the high temperature limit in the BPS sector. It

will be interesting to see if this more than just an analogy.

3.4 Discussions and future directions

We first discuss possible subtleties of our results. We also try to suggest con-

servative interpretations of our results, in case some readers might be worrying

about subtleties.

• Throughout this chapter, we mostly took (with one exception) Cardy-

like limits which suppress the fluctuations relying on large J . However,

general black holes are semi-classical saddle points at large N , rather than

large charges. So we are assuming an interpolation, which connects large

N saddle points given by black holes and large J saddle points of our

QFT. This often turned out to provide the correct quantitative results,

starting from the seminal work [11]. The fact that our Cardy free energy

successfully captures known black holes of [83–86] makes us to hope that

a similar situation is happening here.

• In our Cardy limit, we took the U(N) gauge holonomies αa to be at the

maximally deconfining point. One cannot imagine such saddle points at

finite charges (or finite ω), because the Haar measure repulsion forbids

αa’s to be on top of another [57,69]. We expect our maximally deconfining
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saddle point to actually mean that the distances of αa’s are suppressed

by small ω. It is easy to check that this is the local saddle point in the

Cardy limit, but one may ask if this is the global minimum of free energy.

There are examples of 4d N = 1 QFTs in which this fails to be true

[114]. Considering the empirical relation between more nontrivial saddle

points and the behaviors of Z[S3] [114], it seems that our model should be

safe of this issue. Indeed, one can analytically prove that the maximally

deconfining saddle point is the global minimum in our model.

• The fact that BPS black holes exist only with a charge relation might be

somewhat puzzling from the QFT dual side, especially after we claimed

that we have counted them (at large charges). We have little to comment

on it, especially in our Cardy regime in which other solutions seem to be

unknown so far [111,112]. Especially, intertwined with the ignorance of the

index on one of the 5 charges, the possibility of more general black holes

seems not easy to address within our results. However, technically from

the gravity side, such charge relations of BPS black holes are ubiquitous.

Familiar examples are single-centered 4d black holes [118] at zero angular

momentum, or 5d BMPV black holes [13] with self-dual angular momenta.

By now we know much richer families of BPS black solutions, such as

4d multi-centered black holes [119] or 5d black rings [20–22, 120, 121],

which violate such charge relations. In AdS, one can naturally seek for

hairy black holes. The BPS version of such black holes were recently

reported [111,112], even though it appears not in our large rotation regime

(at least from the data presented there).

• We studied Cardy-like and non-Cardy-like scaling limits of the 1
8 -BPS

Macdonald index. In the latter, we have identified the small black hole
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limit of the known BPS solutions (third reference of [83, 84, 86]). In the

former, our Cardy free energy is quite nontrivial, and exhibits rich saddle

points. These saddle points exhibit properties very reminiscent of hairy

black holes [111, 116]. If one can again trust the smooth interpolation

between our Cardy saddle point and the large N saddle point, we can

claim that we have predicted new (hairy) black holes in the Macdonald

sector. Since no solutions are actually constructed yet, we are much less

confident about the issues raised above in this section. Perhaps actual

constructions of such gravity solutions can clear the uncertainty.

We think there are many interesting future directions to pursue. We finish

this chapter by briefly mentioning some of them.

• Having seen macroscopic entropies from the index, one should expect

an explicit construction of such operators at weak-coupling. At 1-loop

level, the BPS states are mapped to cohomologies of the supercharge

Q. [69,107–110]. Considering the free QFT analysis of section 2.1, (3.2.7)

and comments above it, fermionic fields may be responsible for our asymp-

totic free energy. [107, 108] considered a class of such operators called

‘Fermi liquid operators.’ Unfortunately, the operators discussed there were

shown to be (weakly) renormalized, even at weak coupling. As already

mentioned in [108] as a possible scenario, dressing these operators with

other fermion fields might yield large number of new BPS states. Perhaps

a clever ‘ansatz’ for such operators using all four fermions should be dis-

covered, generalizing [107]. [110] performed a systematic analysis of this

cohomology at N = 2, 3, up to certain energy order, without using an

ansatz. However, it is not completely clear to us whether the energy or-

ders covered in [110] are definitely well above N2. For instance, our Cardy
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limit demands ω to be small. Its conjugate J is given by J ∼ 1
ω3 . So even

if one generously accepts ω ∼ 0.1 to be small, the associated charge will

be J ∼ 103, definitely out of reach in [110].

• On the other hand, the roles of fermions seen around (3.2.7) might be an

‘emergent’ one. This is because, if we study the Cardy limit honestly from

the index, (3.2.28) is obtained by both bosons and fermions. Here, note

that there is a known toy model in which a fermion picture emerges. This

is the half-BPS sector of 4d N = 4 Yang-Mills theory, exhibiting a Fermi

droplet picture [122,123]. It may be interesting to clarify the true nature

of the ‘fermion picture’ we think we see around (3.2.7).

• As also commented at various places earlier, it will be interesting to see

what one obtains by going beyond the Cardy limit, seeking for large N

saddle points of N integral variables, again carefully tuning the imaginary

parts of the chemical potentials. The analysis of [69] already seems to set

some limitation of this approach, but it would be interesting (if possible)

to see how their results at order 1 chemical potentials get connected to

our results in the Cardy-like limit. However, at least at the moment, this

appears to be a very challenging calculus.

• In the 1
8 -BPS Macdonald sector, our studies ‘predict’ that there should be

black holes, in case one believes that our Cardy saddle points will trans-

mute to large N saddle points. Known black holes reduce to small black

holes with vanishing entropy in this limit. Considering some qualitative

aspects similar to the recently explored hairy black holes, we speculate

that they might be hairy 1
8 -BPS black holes. Since one is now equipped

with 4 real Killing spinors, perhaps combining the general SUSY analysis

with a clever ansatz may shed lights on such solutions.
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Chapter 4

Large AdS6 black holes from CFT5

In this chapter, we study supersymmetric AdS6 black holes at large angular

momenta, from the index of 5d SCFTs on S4 × R in the large N and Cardy

limit. Our examples are the strong coupling limits of 5d gauge theories on

the D4-D8-O8 system. The large N free energy scales like N5/2, statistically

accounting for the entropy of large black holes in AdS6. Instanton solitons play

subtle roles to realize these deconfined degrees of freedom.

4.1 Introduction

Superconformal field theories (SCFTs) in spacetime dimensions d > 4 were

discovered indirectly from string theory. First examples are [45] in 6d, and [47]

in 5d. These QFTs defy microscopic descriptions from traditional Lagrangian

methods so far. One interesting aspect is that they have much larger numbers

of degrees of freedom than conventional gauge theories, at given gauge group

‘rank.’ For instance, if the QFTs are engineered by N (≫ 1) branes, the 6d/5d
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QFTs of [45] and [47,48] exhibit N3 and N5/2 degrees of freedom respectively.

This is much larger than N2 for gauge theories on D-branes at weak coupling.

Recently, formulae for certain supersymmetric partition functions for these

SCFTs have been suggested and explored. We shall be interested in the index

of 5d SCFTs on S4 × R [70]. Its matrix integral formula has been obtained in

[124]. This formula has been providing new channels to quantitatively study 5d

SCFTs. In this chapter, we shall add one more intriguing finding, by exploring

novel deconfinements of large N 5d SCFTs and the holographically dual black

holes in AdS6 spacetime. We study 5d SCFTs engineered on D4-D8-O8 systems

[47, 48]. In this setting, the large N deconfined degrees of freedom would be

visible in the high temperature phase. The gravity dual of deconfinement is

the nucleation of black holes after the Hawking-Page phase transition [55, 56].

Our deconfined index successfully counts the microstates of the supersymmetric

AdS6 black holes of [87], in the framework of [74].

We study a Cardy limit of the 5d SCFT index in this chapter. We shall

take large N limit, and also take the chemical potentials ω1,2 conjugate to the

two rotations on S4 to be small. The last limit partly defines our Cardy limit.

See section 2 for the precise definition. Apparently, the large N calculation

in the Cardy limit turns out to be rather simple. The index on S4 × S1 is

given by an integral over the U(1)r ⊂ G holonomies αa on S1 which are all

periodic variables on a circle, where G is the 5d gauge group of rank r [124].

The integrand consists of a pair of instanton partition functions [125], or more

abstractly the Omega-deformed partition functions of 5d SCFTs in the Coulomb

phase. We seek for the large N saddle points of αa, also taking the Cardy

limit |ω1,2| ≪ 1. To get the relevant saddle point, it turns out that one has to

complexify αa to variables living on cylinders, and spread them over a large
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interval of length ∼ N
1
2 . This is similar to the partition functions of 5d SCFTs

on S5 [67], and especially to the topologically twisted indices on suitable spatial

manifolds [126, 127] which counted certain black holes in AdS6. It seems that

the physical implications of such novel large N saddle points were not fully

discussed in the literature. We find this especially novel, having in mind the

deconfinement phase transition to N
5
2 degrees of freedom. The novelty partly

has to do with the rather mysterious instanton solitons in higher dimensional

gauge theories, concerning their noncompact internal zero modes and infinite

towers of bound states. We shall comment on these aspects briefly.

The rest of this chapter is organized as follows. In section 2, we study the

large N Cardy limit of the index for 5d gauge theories having AdS6 gravity

duals in massive IIA string theory. These Cardy free energies precisely account

for the large BPS black holes in AdS6, using the recently discovered entropy

functions [74] for these black holes. We also comment on subtle aspects of our

free energy, especially concerning the physics of instantons. In section 3, we

conclude and discuss some open questions.

4.2 Cardy limit of large N 5d SCFTs and black holes

We first briefly review the large N 5d SCFT models that we shall discuss in

sections 2.1 and 2.2. 5d N = 1 SCFTs of our interest live on N D4-branes

probing an O8-plane and Nf ≤ 7 D8-branes on C2/Zn [47,48,50,51]. Note that

Zn orbifold is transverse to D4 branes, while O8, D8’s are parallel to them. So

in the probe limit, the net spacetime is given by R4,1 × R+ × C2/Zn, where

R+ = R/Z2 is the direction transverse to the O8-plane.

When n = 1, the low energy dynamics on D4-branes is described by an

Sp(N) gauge theory with one rank 2 antisymmetric hypermultiplet and Nf ≤ 7
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orbifold gauge group matter flavor symmetries

Z−
2k Sp(N)×SU(2N)k−1×Sp(N)

∑k
i=1(2Ni,2Ni+1) U(1)M×U(1)k−1

B ×U(1)k+1
I

Z+
2k SU(2N)k A1+

∑k−1
i=1 (2Ni,2Ni+1)+Ak U(1)M×U(1)kB×U(1)kI

Z2k+1 Sp(N)× SU(2N)k
∑k

i=1(2Ni,2Ni+1) +Ak+1 U(1)M×U(1)kB×U(1)k+1
I

Table 4.1: Properties of the quiver gauge theories. Ai denotes rank 2 anti-
symmetric hypermultiplet of the i’th node, and fundamental matters are not
shown.

fundamental hypermultiplets [47, 48]. When n = 2, there is a Z2 orbifold. If it

is the orbifold without vector structure, the worldvolume theory on D4-branes

is SU(2N) gauge theory with two rank 2 antisymmetric hypermultiplets and

Nf ≤ 7 fundamental hypermultiplets [50,51]. The other orbifold theories for n ≥

2 are quiver gauge theories [50, 51]. Gauge groups, matter contents, and flavor

symmetries of these quivers are shown in Table 4.1. In all these models, the q’th

gauge node of the quiver may have N
(q)
f fundamental matters, which should

satisfy
∑

qN
(q)
f = Nf . In the table, Z±

2k denotes the orbifold without/with

vector structure, respectively. They are associated with two choices for the

orientifold projection in k-th twisted sector. Z+
2k projects onto even states, i.e.

this is the ‘ordinary’ orbifold [50].

Bifundamental and antisymmetric fields in these quiver gauge theories can

form various gauge invariant operators: a meson, nI di-baryons of the bi-

fundamental fields, and nA Pfaffian baryons of antisymmetric fields. Numbers

of the baryon operators (nI , nA) in each quiver gauge theories are given by

(k, 0), (k − 1, 2), (k, 1), respectively. These baryon operators are not all inde-

pendent since a product of them is related to the meson operator. The mesonic

U(1)M symmetry rotates all the antisymmetric and bifundamental fields of the

quiver, with charge 1 and 2, respectively. We shall introduce a mesonic charge

QM , nA+nI baryonic charges QBA
, QBI

and their conjugate chemical potentials
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m, bA, bI . Then we impose a constraint

nA∑
A=1

bA + 2

nI∑
I=1

bI = 0 , (4.2.1)

which reduces the number of independent baryonic charges by one. See [50] for

more details.

The strong coupling limits of these gauge theories are 5d SCFTs. In the large

N limit, these SCFTs are dual to the massive IIA string theory in the warped

AdS6 × (S4/Z2)/Zn product background [49–51]. The SU(2)R R-symmetry

of the SCFT corresponds to the SU(2) part of SU(2) × U(1) isometry of

(S4/Z2)/Zn. The overall U(1)M mesonic symmetry, acting on all the antisym-

metric and bifundamental matters, corresponds to the remaining U(1) part of

SU(2) × U(1) isometry. When n = 1, 2, the U(1)M mesonic symmetry is en-

hanced to SU(2)M . This corresponds to the fact that the isometry of S4/Z2 or

(S4/Z2)/Z2 is SU(2)× SU(2).

The gravity duals of other global symmetries – U(1)nI+nA−1
B baryonic sym-

metries, U(1)I instanton symmetries for every gauge nodes, and flavor symme-

tries acting on the fundamental matters – are also well understood [47,48,50,51].

In particular, when n = 1, U(1)I ×SO(2Nf ) is enhanced to ENf+1 [47,48,128–

132] . In the dual gravity, the states charged under ENf+1 are localized at D8-

O8, the boundary of S4/Z2 [49,50]. The SO(2Nf ) part comes from perturbative

open strings on O8-D8. The U(1)I charge at n = 1 is carried by D0-branes in

the gravity dual [49,50]. Since the inverse-dilaton field diverges at the boundary

of S4/Z2 (i.e. at the 8-brane), the D0-branes are attracted to the 8-branes and

nonperturbatively render ENf+1 enhancement.

When n ≥ 2, there can be more U(1)I instanton symmetries if there are more

than one gauge nodes, and there are U(1)B baryonic symmetries as well [50,51].

The bulk duals of these symmetries are given as follows [50]. These symmetries
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basically come from the Zn orbifold. Zn acts freely on the S3 base of S4/Z2,

yielding the Lens space S3/Zn. The full compact internal space (S4/Z2)/Zn

has an An−1 singularity at the pole. There are n − 1 vanishing 2-cycles at the

pole, and also n − 1 dual finite 2-cycles since the internal space is compact.

These cycles should be identified pairwise by the O8-orientifold. When n is

odd, the O8 action leaves n−1
2 vanishing 2-cycles and n−1

2 finite 2-cycles. When

n is even, we should be careful about the n
2 -th unpaired 2-cycles. If the Zn

orbifold is without vector structure, n
2 -th vanishing 2-cycle is projected out,

while n
2 -th finite 2-cycle is mapped to itself. So there are n−2

2 vanishing 2-cycles

and n
2 finite 2-cycles after the O8 projection. On the contrary, when Zn is the

orbifold with vector structure, n2 -th vanishing 2-cycle is mapped to itself, while

n
2 -th finite cycle is projected out, leaving n

2 vanishing 2-cycles and n−2
2 finite

2-cycles after O8-projection. Baryons are described by D2-branes wrapping the

finite 2-cycles. Instantons are dual to D0-brane and D2-branes wrapping the

vanishing 2-cycles, i.e. fractional D0-branes. These explain all the symmetries

listed in Table 4.1.

4.2.1 Sp(N) theories

In this subsection, we study the large N index for the 5d N = 1 gauge theories

with Sp(N) gauge group, one rank 2 antisymmetric hypermultiplet, and Nf ≤ 7

fundamental hypermultiplets [124]. We shall consider the radially quantized

theory on S4 × R. We choose a supercharge Q to define the index, so that

we count 1
8 -BPS states annihilated by the supercharge Q and its conjugate

conformal supercharge S = Q†. We will denote by j1, j2 the Cartan generators

of SU(2)1×SU(2)2 ⊂ Sp(2) ∼= SO(5) rotation symmetry, and by R the Cartan

generator of SU(2)R R-symmetry. We introduce the fugacities e−β, x, y for

{Q,S}, j1 +R, j2 in F (4) superconformal symmetry, which commute with the
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supercharges Q and S. Since the antisymmetric representation of Sp(N) group

is real, the antisymmetric hypermultiplet splits into two half-hypermultiplets,

which transform as a doublet under Sp(1)M ∼= SU(2)M global symmetry. We

call its Cartan generator h. This system also has SO(2Nf ) flavor symmetry

rotating the fundamental quarks. We call their Cartan generators Hl, with

l = 1, · · · , Nf . Finally, there is a U(1)I topological symmetry related to the

current jµ ∼ ⋆5tr(F ∧F )µ. The corresponding conserved charge is the instanton

number k. We introduce the fugacities e−m, e−Ml ’s, and q for h,Hl, k. The index

is defined as [70,124]

Z(x, y,m,Ml, q) = Tr
[
(−1)F e−β{Q,S}x2(j1+R)y2j2e−mhe−

∑
lMlHlqk

]
, (4.2.2)

where F is the fermion number operator. The trace is taken over the Hilbert

space of the QFT on S4×R. This index counts BPS states, for which the eigen-

value of {Q,S} is 0. So the index does not depend on β. For the Sp(N) theory

with one rank 2 antisymmetric hypermultiplet and Nf fundamental hypermul-

tiplets, this index is given by [124]

Z(x, y,m,Ml, q) =

∮
[dα] PE

[
fvec(x, y, e

iαa) + fasymmat (x, y, eiαa , em) + ffundmat (x, y, eiαa , eMl)
]

×
∏
±

Zinst(x
±1, y±1, e±iαa , e±m, e±Ml , q±1) , (4.2.3)

where [dα] including the Haar measure is given by

[dα] =
1

2NN !

[
N∏
a=1

dαa
2π

(2 sinαa)
2

]∏
a<b

[
2 sin

(
αa − αb

2

)]2 [
2 sin

(
αa + αb

2

)]2
.

(4.2.4)
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fvec, f
asym
mat , ffundmat are the letter indices for the vector, antisymmetric, and fun-

damental hypermultiplets, given by

fvec = − x(y + 1/y)

(1− xy)(1− x/y)

[
N∑
a<b

ei(±αa±αb) +
N∑
a=1

(
e−2iαa + e2iαa

)
+N

]
,(4.2.5)

fasymmat =
x

(1− xy)(1− x/y)
(em/2 + e−m/2)

[
N∑
a<b

ei(±αa±αb) +N

]
,

ffundmat =
x

(1− xy)(1− x/y)

N∑
a=1

Nf∑
l=1

(
e−iαa−Ml + eiαa−Ml + e−iαa+Ml + eiαa+Ml

)
.

Our notation is that the terms with ± are all summed over: for instance,

ei(±αa±αb) ≡ e−iαa−iαb + e−iαa+iαb + eiαa−iαb + eiαa+iαb . Zinst is the Coulomb

branch instanton partition function [125], taking the form of

Zinst =
∞∑
k=0

qkZk(x, y, e
iαa , em, eMl) , Zk=0 = 1 , (4.2.6)

where Zk is the k-instanton contribution. Zk can be computed using the meth-

ods of [132–134]. PE in (4.2.3) is the Plethystic exponential defined as

PE [f({t})] = exp

[ ∞∑
n=1

1

n
f({tn})

]
, (4.2.7)

where {t} collectively denotes all fugacities for gauge and global symmetries

appearing in f .

For later convenience, we redefine the fugacities as e−ω1 , e−ω2 for the angular

momenta J1 ≡ j1+ j2, J2 ≡ j1− j2, which act on the orthogonal 2-planes of R5

which contains S4. We also define e−∆̃ ≡ e−(∆−2πi) for R. They are related to

the original fugacities as

e−ω1 = xy, e−ω2 = x/y, e−∆̃ = x2 . (4.2.8)

The new chemical potentials satisfy ∆−ω1−ω2 = 2πi (mod 4πi). Since R, J1, J2

are normalized to be half-integers, all chemical potentials have 4πi periods. This
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is the reason for the mod 4πi in the last equation. Below, we shall always take

∆− ω1 − ω2 = 2πi . (4.2.9)

The Haar measure can be rewritten as

[dα] =
1

2NN !

N∏
a=1

dαa
2π

PE

[
−

N∑
a<b

ei(±αa±αb) −
N∑
a=1

(
e−2iαa + e2iαa

)]
. (4.2.10)

Combining this exponent of PE from the Haar measure to fvec, one obtains

f̃vec = − 1 + x2

(1− xy)(1− x/y)

[
N∑
a<b

ei(±αa±αb) +

N∑
a=1

(
e−2iαa + e2iαa

)]
+

(
1− 1 + x2

(1− xy)(1− x/y)

)
N

=− 1 + e−∆̃

(1− e−ω1)(1− e−ω2)

[
N∑
a<b

ei(±αa±αb) +
N∑
a=1

(
e−2iαa + e2iαa

)]
+

(
1− 1 + e−∆̃

(1− e−ω1)(1− e−ω2)

)
N

=−
2 cosh ∆̃

2

2 sinh ω1
2 · 2 sinh ω2

2

[
N∑
a<b

ei(±αa±αb) +

N∑
a=1

(
e−2iαa + e2iαa

)]
+

(
1−

2 cosh ∆̃
2

2 sinh ω1
2 · 2 sinh ω2

2

)
N .

(4.2.11)

We used (4.2.9) on the last line. Other letter indices are given by

fasymmat =
2 cosh m

2

2 sinh ω1
2 · 2 sinh ω2

2

[
N∑
a<b

ei(±αa±αb) +N

]
, ffundmat =

∑Nf

l=1 2 coshMl

2 sinh ω1
2 · 2 sinh ω2

2

N∑
a=1

(
eiαa + e−iαa

)
.

(4.2.12)

Now we consider a Cardy-like limit |ωi| ≪ 1 [75]. We will keep ωi’s complex

with Re(ωi) > 0. Due to (4.2.9), ∆ will be close to 2πi. Namely, its imaginary

part is O(1) and close to 2πi, while its real part is small at order |ωi|. However,

as in [75], for convenient intermediate manipulations, we shall temporarily take

∆ to be pure imaginary, and continue back to a complex number with small

real part later. The other chemical potentials m, Ml’s are kept purely imaginary

(which may be continued back to suitable complex numbers later, if one wishes).

Then following the similar procedures used in [75], ignoring the Cartan parts

of Sp(N) at large N , the PE of the letter indices are approximated as

PE
[
f̃vec

]
∼ exp

[
− 1

ω1ω2

∞∑
n=1

e
n(∆−2πi)

2 + e−
n(∆−2πi)

2

n3

(
N∑
a=1

(
e−2inαa + e2inαa

)
+

N∑
a<b

ei(±αa±αb)

)]
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= exp

[
− 1

ω1ω2

∞∑
n=1

(−e
∆
2 )n + (−e−

∆
2 )n

n3

(
N∑
a=1

(
e−2inαa + e2inαa

)
+

N∑
a<b

ei(±αa±αb)

)]

= exp

[
− 1

ω1ω2

(
N∑
a=1

Li3(−e±
∆
2
±2iαa) +

N∑
a<b

Li3(−e±
∆
2
±iαa±iαb)

)]
≡ exp

[
−Fvec(αa, ∆)

ω1ω2

]
,

(4.2.13)

PE [fasymmat ] ∼ exp

[
1

ω1ω2

∞∑
n=1

1

n3
(e

nm
2 + e−

nm
2 )

N∑
a<b

ei(±αa±αb)

]

= exp

[
1

ω1ω2

N∑
a<b

Li3(e
±m

2
±iαa±iαb)

]
≡ exp

[
−Fasym

mat (αa, m)

ω1ω2

]
, (4.2.14)

PE
[
ffundmat

]
∼ exp

[
1

ω1ω2

∞∑
n=1

1

n3

Nf∑
l=1

(enMl + e−nMl)
N∑
a=1

(
einαa + e−inαa

) ]

= exp

[
1

ω1ω2

Nf∑
l=1

N∑
a=1

∑
±

(
Li3(e

±Ml+iαa) + Li3(e
±Ml−iαa)

)]
≡ exp

[
−Ffund

mat (αa, Ml)

ω1ω2

]
.

(4.2.15)

Here, we used the power series definition of the trilogarithm function in ap-

pendix A. ∆ here can be taken back to be the one satisfying (4.2.9). It is

important to remember that the imaginary parts of chemical potentials may be

kept nonzero and O(1), to obstruct boson/fermion cancelations as in [74, 75].

(Especially, those of ∆ and m will play important roles later.) On the other

hand, the real parts in the Cardy limit are either kept small (for ∆) or just set

to 0 (for m,Ml, since we are uninterested in such continuations). The integral

contours for the variables eiαa ’s are all along the unit circle, |eiαa | = 1.

The instanton part Zinst is subtler, and needs a more careful study. So far,

Zinst is understood only as a series expansion in certain fugacity. Canonically,

the fugacity q for the U(1)I flavor symmetry is the expansion parameter of Zinst.

As we shall consider dual AdS6 black holes which do not carry flavor charges, we

set q = 1 (or to a generic order 1 value so that it does not provide an expansion
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parameter). This qualitatively corresponds to taking the 5d gauge coupling to

infinity. So apparently, the series which sums over the instanton number k is

unsuppressed. The proper way of understanding (4.2.2), (4.2.3) was explained

in [124], as a series expansion in the fugacity x. However, in our Cardy limit,

we take |x| → 1−, so that it is unclear how to understand Zinst part. Here,

we quote an idea explored in [67], which is to focus on a particular large N

saddle point of N integral variables. The integral variables of [67] are N real

scalars ϕ, while the analogous N variables in our problem will be analytically

continued αa’s in their imaginary directions. (Namely, −iαa > 0 with purely

imaginary αa’s will play the role of ϕ of [67].) [67] considered a saddle point in

which the N scalars are spread with a wide width N
1
2 (which is assumed to be

the dominant one), and self-consistently showed that the instanton parts can

be approximated to Zinst ≈ 1. A simple argument for ignoring the instanton

part was presented in [67], based on the renormalized gauge coupling in the

Coulomb branch of 5d SCFT. In the next paragraph and in appendix B of [78],

we shall correct some naive 1-loop arguments in [67] made for this conclusion.

However, this will not spoil their final conclusion that Zinst ≈ 1.

The idea of [67] is that, if the scalar VEV ϕ is nonzero, there is a nonzero 1-

loop contribution to the 5d gauge coupling in the Coulomb branch. The 1-loop

effective coupling which depends on the scalar schematically takes the form of

1

g2eff(ϕ)
∼ (8−Nf )|ϕ| (4.2.16)

at infinite bare coupling (corresponding to q = 1 in our setting). This expression

is in fact slightly imprecise. This is because 1
g2eff(ϕ)

is the coefficient of the kinetic

term of the Coulomb branch fields, so should be an N×N matrix in our Sp(N)

theory. The above expression should be understood as a schematic expression

for the eigenvalues, where ϕ denotes a component of the N Coulomb VEVs.
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The key argument of [67] is that the mass of instantons is basically the inverse-

square of the gauge coupling, so in the Coulomb branch it should also acquire a

contribution of the form (4.2.16). If this is the case, and if the saddle point values

of ϕ’s are large, the k instanton correction would come with a suppression factor

of ∼ e−k(8−Nf )|ϕ|, with |ϕ| ∼ N
1
2 . This was the argument for self-consistently

approximating Zinst ≈ 1. However, we find that such a 1-loop argument is

incomplete, for the following reason. In the brane setting, 1
g2eff(ϕ)

is given by

the running dilaton field sourced by O8-D8, where ϕ is the coordinate for the

transverse direction to the 8-branes. If a D4-brane is at the location ϕ, the

D0-brane (∼ instanton) bound to it will find 1
g2eff(ϕ)

is its mass. However, if one

studies the detailed structures of Zinst for this system, D0-branes can be stuck

not only to N separated D4-branes. They can also be bound to the O8-plane

at ϕ = 0, still contributing to the 5d QFT spectrum. Details are explained

in appendix B of [78]. Therefore, the 1-loop argument of regarding 1
g2eff(ϕ)

as

the instanton mass and the suppression factor is incorrect. Had such a claim

been true, one would have expected the suppression factor of e−k(8−Nf )|ϕ| at k

instanton sector, with real ϕ ≡ −iα ∼ N
1
2 . However, as explained in appendix

B of [78], the D0-branes bound to O8 turns out to have lighter quantum masses,

so that the true suppression factor for k instantons turns out to be

Nf ̸= 0 : ∼ e−k|ϕ| (4.2.17)

Nf = 0 : ∼ e−2k|ϕ| .

For most values of Nf , this is larger than the naively estimated suppression

factors.1 In any case, although the detailed estimates in the literature are in-

correct, the final conclusion Zinst ≈ 1 will not change. Among the N eigenvalues

1More fundamentally, such exotic masses are allowed since the instanton masses cannot
be determined just from the 5d effective action in the Coulomb branch. For instance, the
argument above for D0-D4 bounds uses string theory.
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αa, most of them will take large imaginary values ∝ N
1
2 , so that the above sup-

pression factors are indeed small. αa will not be large for some eigenvalues, but

their number is much smaller than N so that the leading large N free energy

will not be affected [67].

In our problem, we shall consider the large N and Cardy limit ω1,2 → 0

together, seeking for a similar saddle point. Our large N saddle point will com-

plexify the angle variables αa, into cylinders. The complexified αa’s will be

spread at order O(
√
N) in their imaginary directions. This is very similar to

the studies made with the 5d topological indices [126]. Therefore, with such

spreadings of eigenvalues assumed (to be shown later in this section), the in-

stanton contribution to the free energy is exponentially suppressed at large N .

So we shall ignore the instanton contribution to logZ from now. More comments

on these large N saddle point, and the subtle roles of Zinst, will be postponed

to section 2.4. With these understood, approximately setting Zinst ≈ 1, one

obtains the following expression for the large N Cardy index at |ωi| ≪ 1:

Z(ω1, ω2, ∆, m, Ml) ∼
1

2NN !

∮ N∏
a=1

dαa
2π

exp

[
−Fpert(αa, ∆, m, Ml)

ω1ω2

]

≡ 1

2NN !

∮ N∏
a=1

dαa
2π

exp

[
−Fvec + Fasym

mat + Ffund
mat

ω1ω2

]
,

(4.2.18)

where Fpert is the perturbative part of the effective action.

At |ω1,2| → 0 and N ≫ 1, one can evaluate (4.2.18) by a saddle point

method. We assume that the eigenvalues are spread at order O(Nα), with 0 <

α < 1, in the imaginary direction at large N [67, 126]. The ansatz for the

eigenvalue distribution is given by

αa = iNαxa (0 < xa < x∗) . (4.2.19)

Here, xa’s are of order O(N0), and the value of α will be determined later.
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We restricted Im(αa) > 0 and also ordered xa’s to be increasing, using the

Weyl symmetry of Sp(N), setting 0 < x1 < x2 < · · · < xN . Since we assume

0 < α < 1, the N eigenvalues will be densely distributed on an interval of length

∼ Nα. The range (0, x∗) will be determined later. We take the continuum limit

by defining the continuous variable x ∈ (0, x∗) and introducing the density

function of eigenvalues ρ(x) = 1
N
da
dx normalized as

∫
ρ(x)dx = 1. Then we

replace the sum over a by an integral of the form

N∑
a=1

→ N

∫ x∗

0
dxρ(x) , (4.2.20)

in the N → ∞ continuum limit.

Before proceeding, we note again that the chemical potentials m,Ml all

have 4πi periodicity. We shall assume that all parameters m,Ml are purely

imaginary, and put them in the ‘canonical chamber’ (0, 4πi). The expressions

of the free energy in different chambers can be found by periodic shifts of the

variables. Applying the ansatz (4.2.19) and taking the continuum limit (4.2.20),

the contribution of the antisymmetric hypermultiplet is given by

Fasym
mat = −N2

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)

∑
±

[
Li3(e

−Nα(x+x′)±m
2 ) + Li3(e

−Nα(−x+x′)±m
2 )(4.2.21)

+Li3(e
Nα(x+x′)±m

2 ) + Li3(e
Nα(−x+x′)±m

2 )
]

∼ 2

3
N2+α

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)

[(
3
m

2

(m
2

− 2πi
)
− 2π2

)
x′ +N2α(x′3 + 3x2x′)

]
,

where m is in the range (0, 4πi), as explained above. Here, we used the trilog-

arithm formulae in appendix A at N → ∞. Similarly, the fundamental hyper-

multiplet contribution is given by

Ffund
mat = −N

Nf∑
l=1

∫ x∗

0
dxρ(x)

∑
±

[
Li3(e

−Nαx±Ml) + Li3(e
Nαx±Ml)

]
∼ 1

3
N1+3α

Nf∑
l=1

∫ x∗

0
dxρ(x)x3 =

Nf

3
N1+3α

∫ x∗

0
dxρ(x)x3 .(4.2.22)
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Finally, the vector multiplet contribution is given by

Fvec = N

∫ x∗

0
dxρ(x)

∑
±

[
Li3(−e−2Nαx±∆

2 ) + Li3(−e2N
αx±∆

2 )
]

(4.2.23)

+N2

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)

∑
±

[
Li3(−e−N

α(x+x′)±∆
2 ) + Li3(−e−N

α(−x+x′)±∆
2 )

+Li3(−eN
α(x+x′)±∆

2 ) + Li3(−eN
α(−x+x′)±∆

2 )
]

∼ −8

3
N1+3α

∫ x∗

0
dxρ(x)x3

+N2

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)

∑
±

[
Li3(e

Nα(x+x′)±ω1+ω2
2 ) + Li3(e

Nα(−x+x′)±ω1+ω2
2 )

]
∼ −8

3
N1+3α

∫ x∗

0
dxρ(x)x3

−2

3
N2+α

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)

[(
3

(
∆

2
+ πi

)(
∆

2
− πi

)
−2π2

)
x′ +N2α(x′3+3x2x′)

]
,

where ∆ ≈ 2πi, and we also used (4.2.9).2 Note that in the final expressions of

Fasum
mat , Fvec, the last terms ∼ N2α(x′3+3x2x′) in the integrand look more dom-

inant than the remaining terms. We keep the apparently subdominant terms

in foresight, as they will be dominant after a partial cancelation at the saddle

point.

Collecting all, one obtains

Fpert ∼ −
8−Nf

3
N1+3α

∫ x∗

0
dxρ(x)x3 + 2γN2+α

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)x′ , (4.2.24)

γ ≡ m

2

(m
2

− 2πi
)
−
(
∆

2
+ πi

)(
∆

2
− πi

)
> 0 with 0 < −im < 4π , ∆ ≈ 2πi .

For later convenience, we will use the following alternative expression for the

2Here we applied a trilogarithm formula in appendix A valid for −2π < −i∆ < 2π. The
value ∆ ≈ 2πi constrained by (4.2.9) is actually close to the edge of this interval, so one might
wonder if using this formula is valid. We performed a similar calculus for 2π < −i∆ < 6π and
confirmed the continuity of Fvec at ∆ = 2πi, so that using (4.2.23) near ∆ = 2πi is fine.
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last integral:∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)x′ =

∫ x∗

0
dx′
∫ x′

0
dx ρ(x)ρ(x′)x′ =

∫ x∗

0
dx

∫ x

0
dx′ ρ(x′)ρ(x)x

=
1

2

[∫ x∗

0
dx

∫ x

0
dx′ ρ(x)ρ(x′)x+

∫ x∗

0
dx

∫ x∗

x
dx′ ρ(x)ρ(x′)x′

]
=

1

2

∫ x∗

0

∫ x∗

0
dx dx′ρ(x)ρ(x′)

x+ x′ + |x− x′|
2

. (4.2.25)

We extremize (4.2.24) in ρ(x), where ρ(x) is nonzero only in 0 < x < x∗,

and satisfies
∫ x∗
0 ρ(x)dx = 1, ρ(x) ≥ 0. To find a nontrivial saddle point at

N → ∞, all terms should be of the same order in N . So we set

N1+3α = N2+α → α =
1

2
, (4.2.26)

which implies F ∝ N
5
2 . Also note that this setting justifies ignoring the instan-

ton corrections, as explained earlier in this section. Introducing the Lagrange

multiplier λ for the constraint
∫ x∗
0 ρ(x)dx = 1, one should extremize

F = N
5
2

[
−λ

(∫ x∗

0
ρ(x)dx− 1

)
−
8−Nf

3

∫ x∗

0
dxρ(x)x3+γ

∫ x∗

0

∫ x∗

0
dx dx′ρ(x)ρ(x′)

x+ x′ + |x− x′|
2

]
.

(4.2.27)

The other constraint ρ(x) ≥ 0 is to be confirmed later, after obtaining the

extremal solution. Extremizing this functional with ρ(x), one obtains

λ+
8−Nf

3
x3 = γ

∫ x∗

0
dx′ρ(x′)

(
x+ x′ + |x− x′|

)
= 2γ

[
x

∫ x

0
dx′ρ(x′) +

∫ x∗

x
dx′ρ(x′)x′

]
.

(4.2.28)

Differentiating this equation with x, one obtains

(8−Nf )x
2 = 2γ

[∫ x

0
dx′ρ(x′) + xρ(x)− ρ(x)x

]
= 2γ

∫ x

0
dx′ρ(x′) . (4.2.29)

Differentiating once more with x, one obtains

ρ(x) =
8−Nf

γ
x ≥ 0 (x ∈ [0, x∗]) . (4.2.30)
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ρ(x) is always positive for x > 0, since γ > 0 and Nf ≤ 7. From
∫ x∗
0 ρ(x)dx = 1,

one obtains

x∗ =

√
2γ

8−Nf
. (4.2.31)

λ is determined by (4.2.28), whose solution is λ =
2(8−Nf )

3 x3∗. Inserting these

solutions (4.2.30), (4.2.31) into (4.2.27), one obtains

F ∼ 8
√
2

15

N
5
2√

8−Nf

γ
3
2 . (4.2.32)

So the large N and Cardy free energy is given by

logZ ∼ −8
√
2

15

N
5
2√

8−Nf

γ
3
2

ω1ω2
, (4.2.33)

where

γ =
m

2

(m
2

− 2πi
)
−
(
∆

2
+ πi

)(
∆

2
− πi

)
= −(∆ + m̂)(∆− m̂)

4
> 0 ,

(4.2.34)

where we defined m̂ = m− 2πi.

To summarize, the large N and Cardy free energy of the index (4.2.33) is

given by

logZ ∼ −i

√
2

15

N
5
2√

8−Nf

[(∆ + m̂)(∆− m̂)]
3
2

ω1ω2
, (4.2.35)

subject to the constraint

∆− ω1 − ω2 = 2πi , (4.2.36)

in the Cardy-like limit |ωi| ≪ 1. ∆2−m̂2 appearing in the square-root is negative

in our canonical chamber. The expression (4.2.35) and similar expressions at

the end of section 2.2 are obtained with the convention (−1)
3
2 = −i. In section

2.3, we shall explain that this free energy counts the dual BPS black holes in

the background of warped AdS6 × S4/Z2 product. Here we simply note that
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the leading large N free energy ∝ N
5
2 does not see the flavor symmetries, e.g.

Ml’s and q for SO(2Nf ) × U(1)I ⊂ ENf+1. This is natural in the bulk dual

because the states charged under ENf+1 are localized on a codimension 1 wall,

S3 ∼ ∂(S4/Z2), so that the leading large N bulk physics does not see them.

However, the value of Nf itself is visible in the leading free energy. This is

because the number of D8-branes affects the bulk dilaton field.

4.2.2 SU(2N) theories

Similar to the studies of section 4.2.1, we analyze the large N and Cardy free

energy of the index for 5d N = 1 gauge theory with SU(2N) gauge group, two

rank 2 antisymmetric hypermultiplets, and Nf fundamental hypermultiplets.

The related geometric settings are explained at the beginning of this section.

The index is defined as [124]

Z(ω1, ω2,∆,m,M, q) = Tr
[
(−1)F e−β{Q,S}e−ω1J1e−ω2J2e−(∆−2πi)Re−mhM−bhBe−

∑
lMlHlqk

]
.

(4.2.37)

We introduced the fugacities e−m, e−b for the Cartans hM , hB of SU(2)M ×

U(1)B ∼= U(2) acting on two antisymmetric matters, and the fugacities e−Ml

for the Cartans Hl of U(Nf ) acting on fundamental matters. As before, the

parameters should meet the constraint ∆−ω1−ω2 = 2πi for Z to be an index.

Again, the index is given by [51,124]

Z(ω1,2,∆,m, b,Ml, q) =

∮
[dα]PE

[
fvec(ω1,2,∆, αa) + fasymmat (ω1,2,m, b, αa) + ffundmat (ω1,2,Ml, αa)

]
×
∏
±

Zinst(±ω1,±ω2,±∆,±m,±b,±Ml,±αa, q
±1) . (4.2.38)

The Haar measure is given by [dα] = 1
(2N)!

[∏
a
dαa
2π

]∏
a<b

[
2 sin

(
αa−αb

2

)]2
, with∑2N

a=1 αa = 0. Sum of all αa’s vanishes because the gauge group is SU(2N). The
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letter indices are given by

f̃vec = −
2 cosh ∆̃

2

2 sinh ω1
2 · 2 sinh ω2

2

[
2N∑
a<b

(
e−iαa+iαb + eiαa−iαb

)]
+

(
1−

2 cosh ∆̃
2

2 sinh ω1
2 · 2 sinh ω1

2

)
(2N−1) ,

fasymmat =
2 cosh m

2

2 sinh ω1
2 · 2 sinh ω2

2

2N∑
a<b

(
e

b
2
+iαa+iαb + e−

b
2
−iαa−iαb

)
,

ffundmat =
1

2 sinh ω1
2 · 2 sinh ω2

2

Nf∑
l=1

2N∑
a=1

(
eMl+iαa + e−Ml−iαa

)
, (4.2.39)

where ∆̃ = ∆ − 2πi. As in section 2.1, the Haar measure contribution is ab-

sorbed into f̃vec. The instanton part Zinst can be computed from the ADHM

construction of multi-instantons [132]. We assume Zinst ≈ 1 at the large N sad-

dle point that we shall present below. We believe this can be shown using the

methods of [132]. With this assumed, and following the steps similar to section

4.2.1, PE of the letter indices in the Cardy limit |ωi| ≪ 1 are given by

PE
[
f̃vec

]
∼ exp

[
− 1

ω1ω2

2N∑
a<b

∑
±,±

Li3(−e±
∆
2
±i(αa−αb))

]
≡ exp

[
−Fvec(αa, ∆)

ω1ω2

]
,

PE [fasymmat ] ∼ exp

[
1

ω1ω2

2N∑
a<b

∑
±,±

Li3(e
±m

2
±( b

2
+iαa+iαb))

]
≡ exp

[
−Fasym

mat (αa, m, b)

ω1ω2

]
,

PE
[
ffundmat

]
∼ exp

[
1

ω1ω2

Nf∑
l=1

2N∑
a=1

∑
±

Li3(e
±(Ml+iαa))

]
≡exp

[
−Ffund

mat (αa, Ml)

ω1ω2

]
.(4.2.40)

The index is then given by the following expression,

Z(ω1, ω2, ∆, m, b, Ml) ∼
1

(2N)!

∮ 2N∏
a=1

dαa
2π

exp

[
−Fpert(αa, ∆, m, b, Ml)

ω1ω2

]

≡ 1

(2N)!

∮ 2N∏
a=1

dαa
2π

exp

[
−Fvec + Fasym

mat + Ffund
mat

ω1ω2

]
.

(4.2.41)

We study the saddle point in the large N and Cardy limit. We again take
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the following ansatz for the eigenvalue distribution:

αa = iNαx̃a ,
2N∑
a=1

x̃a = 0 , (4.2.42)

where x̃a’s are of order O(N0), and 0 < α < 1. We order x̃a’s to be increasing

using the Weyl symmetry of SU(2N), i.e. x̃1 < x̃2 < · · · < x̃2N . With the

ansatz (4.2.42), Fasym
mat is given by

Fasym
mat = −

2N∑
a<b

∑
±

[
Li3(e

−Nα(x̃a+x̃b)±m
2
+ b

2 ) + Li3(e
Nα(x̃a+x̃b)±m

2
− b

2 )
]

∼ 1

3
Nα

2N∑
a<b

[{
3

2

m+ b

2

(
m+ b

2
− 2πi

)
+

3

2

m− b

2

(
m− b

2
− 2πi

)
− 2π2

}
|x̃a + x̃b|

−3

2
Nαb sgn(x̃a + x̃b)|x̃a + x̃b|2 +N2α|x̃a + x̃b|3

]
, (4.2.43)

where m ± b are understood to be in the range (0, 4πi). Here, we used the

trilogarithm formulae in appendix A at N → ∞. Similarly, Ffund
mat , Fvec are

given by

Ffund
mat = −

Nf∑
l=1

2N∑
a=1

[
Li3(e

−Nαx̃a+Ml) + Li3(e
Nαx̃a−Ml)

]
∼ 1

6
N3α

Nf∑
l=1

2N∑
a=1

|x̃a|3 =
Nf

6
N3α

2N∑
a=1

|x̃a|3

(4.2.44)

and

Fvec =

2N∑
a<b

∑
±

[
Li3(−e−N

α(−x̃a+x̃b)±∆
2 ) + Li3(−eN

α(−x̃a+x̃b)±∆
2 )
]

∼
2N∑
a<b

∑
±

Li3(e
Nα(−x̃a+x̃b)±

ω1+ω2
2 ) (4.2.45)

∼ −1

3
Nα

2N∑
a<b

[(
3

(
∆

2
+ πi

)(
∆

2
− πi

)
− 2π2

)
(x̃b − x̃a) +N2α(x̃b − x̃a)

3

]
,

where ∆ ≈ 2πi, and we used ∆−ω1−ω2 = 2πi. Again, we have shown apparently

subleading terms in N−1 in foresight, which will turn out to be dominant after
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extremization and cancelations. Collecting all, Fpert = Fvec + Fasym
mat + Ffund

mat

is given by

Fpert ∼
Nf

6
N3α

2N∑
a=1

|x̃a|3 +
1

2
Nα

2N∑
a̸=b

(γm|x̃b + x̃a|−γ∆|x̃b − x̃a|)−
π2

3
Nα

2N∑
a̸=b

(|x̃b + x̃a| − |x̃b − x̃a|)

−1

4
N2αb

2N∑
a̸=b

sgn(x̃a + x̃b)|x̃a + x̃b|2 +
1

6
N3α

2N∑
a̸=b

(
|x̃b + x̃a|3 − |x̃b − x̃a|3

)
,

γm ≡ 1

2

∑
±

m± b

2

(
m± b

2
− 2πi

)
, γ∆ ≡

(
∆

2
+ πi

)(
∆

2
− πi

)
. (4.2.46)

At this moment, the leading contribution to (4.2.46) at large N comes from

the last term which is of order O(N2+3α). So we extremize the last term. The

analysis is similar to [67]. To find a saddle point of the last term, we define

xN+1−a ≡
x̃2N+1−a − x̃a

2
, yN+1−a ≡

x̃2N+1−a + x̃a
2

(1 ≤ a ≤ N) .

(4.2.47)

Let us first consider the extremization with yN+1−a’s. Differentiating the last

term of (4.2.46), one obtains

0 =
∂

∂yN+1−i

2N∑
a̸=b

(
|x̃b + x̃a|3 − |x̃b − x̃a|3

)
=

(
∂

∂x̃2N+1−i
+

∂

∂x̃i

) 2N∑
a̸=b

(
|x̃b + x̃a|3 − |x̃b − x̃a|3

)
= 6

2N∑
a̸=i

(
sgn(x̃i + x̃a)(x̃i + x̃a)

2 − sgn(x̃i − x̃a)(x̃i − x̃a)
2
)

(4.2.48)

+6

2N∑
a̸=2N+1−i

(
sgn(x̃2N+1−i + x̃a)(x̃2N+1−i + x̃a)

2 − sgn(x̃2N+1−i − x̃a)(x̃2N+1−i − x̃a)
2
)
,

where 1 ≤ i ≤ N . One can find that a solution is given by [67]

− x̃a = x̃2N+1−a = xN+1−a (1 ≤ a ≤ N) . (4.2.49)

So on this solution, we can take N variables xa’s as the remaining variables to

extremize with. They are ordered as 0 ≤ x1 < x2 < · · · < xN . Note that this
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solution satisfies the condition
∑2N

a=1 x̃a = 0. As in [67], we assume that this

solution for δyN+1−a variation is the relevant one for our problem. Then, the

remaining problem is to extremize with xa’s. Inserting the saddle point solution

for ya’s (4.2.49) to the last term of (4.2.46), one finds

N3α

6

2N∑
a̸=b

(
|x̃b + x̃a|3 − |x̃b − x̃a|3

)∣∣∣∣∣∣
−x̃a=x̃2N+1−a

= −8N3α

3

N∑
a=1

x3a = O(N1+3α) .

(4.2.50)

This is of the same order as the first term of (4.2.46). So from now on, one should

also consider all other terms in (4.2.46) at the same order. The possible leading

terms in (4.2.46) are of order O(N1+3α) and O(N2+2α) at large N . However,

imposing (4.2.49), one can easily check that the terms at order O(N2+2α) vanish

because of the sgn(x̃a + x̃b) factor in those terms. Then we are finally left with

terms at O(N1+3α) and O(N2+α) orders. These two terms will be balanced and

provide leading terms. Note that there are also subleading terms at O(N1+α)

order after inserting (4.2.49) into (4.2.46), which we ignore.

So inserting (4.2.49) into (4.2.46), one obtains

Fpert ∼ −
8−Nf

3
N3α

N∑
a=1

x3a +
γ

2
Nα

2N∑
a̸=b

|x̃b + x̃a| (4.2.51)

∼ −
8−Nf

3
N3α

N∑
a=1

x3a + γNα
N∑
a<b

(2(xb + xa) + 2(xb − xa)) = −
8−Nf

3
N3α

N∑
a=1

x3a + 4γNα
N∑
a<b

xb

∼ −
8−Nf

3
N1+3α

∫ x∗

0
dxρ(x)x3 + 4γN2+α

∫ x∗

0
dxρ(x)

∫ x∗

x
dx′ρ(x′)x′ ,

where

γ ≡ γm − γ∆ =
1

2

∑
±

m± b

2

(
m± b

2
− 2πi

)
−
(
∆

2
+ πi

)(
∆

2
− πi

)
> 0

(4.2.52)

if we take ∆ ≈ 2πi and m ± b purely imaginary within the canonical range

(0, 4πi). The above effective action is essentially the same as that for the Sp(N)
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gauge theory, (4.2.24). The only difference is that double integral part for the

SU(2N) gauge theory is twice that of Sp(N) gauge theory. Thus, the remaining

extremization procedures are the same as those presented in section 2.1. The

resulting free energy is given by

logZ ∼ −i

√
2

15

N
5
2√

8−Nf

[(∆ + (m̂+ b))(∆− (m̂+ b)) + (∆ + (m̂− b))(∆− (m̂− b))]
3
2

ω1ω2
,

(4.2.53)

where ∆− ω1 − ω2 = 2πi, m̂ ≡ m− 2πi.

It is straightforward to generalize this result to the quivers for the general

Zn orbifold [50, 51]. Assuming Zinst ≈ 1, we simply present the final result for

the large N and Cardy free energy:

logZ ∼ −i

√
2

15

N
5
2√

8−Nf

[
∑

A(∆+(m̂+bA))(∆−(m̂+bA)) + 2
∑

I(∆+(m̂+bI))(∆−(m̂+bI))]
3
2

ω1ω2
,

Nf ≡
∑
q

N
(q)
f ≤ 7 , m̂ ≡ m− 2πi ,

∑
A

bA + 2
∑
I

bI = 0 , ∆− ω1 − ω2 = 2πi .(4.2.54)

4.2.3 AdS6 black holes

In this subsection, we explain that the large N Cardy free energies derived in

sections 2.1 and 2.2 account for the BPS black holes in the dual AdS6 back-

grounds. A crucial ingredient is the universal entropy function of such black

holes found in [74].

In principle, general black holes in AdS6 can carry various electric charges

dual to the R-charge, mesonic charge, and baryonic charges. However, BPS

black hole solution in AdS6 known to date was found in 6d N = (1, 0) SU(2)

gauged supergravity [87]. For instance, this 6d theory can be obtained by a

consistent Kaluza-Klein truncation of massive type IIA supergravity on S4/Z2

[106]. This black hole solution has only one electric charge, corresponding to

the SU(2) R-charge R. So to compare our field theory results with known
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AdS6 black holes of [87], we should perform Legendre transformations of the

free energies (4.2.35), (4.2.53), (4.2.54) at zero mesonic and baryonic charges.

Firstly, at generic n ≥ 2, one should extremize the following entropy function,

S(∆,m, bA,I , ωi; R,QM , QBA,I
, Ji) = logZ+∆R+mQM+

∑
A,I

bA,IQBA,I
+ω1J1+ω2J2 ,

(4.2.55)

subject to the constraints

∑
A

bA + 2
∑
I

bI = 0 , ∆− ω1 − ω2 = 2πi . (4.2.56)

logZ is given by either (4.2.53) or (4.2.54). To compare with known black holes,

we set

QM = 0 , QBA
= 0 , QBI

= 0 . (4.2.57)

Let us first consider the baryonic chemical potentials. For SU(2N) gauge theory

at n = 2, one should extremize

−i

√
2

15

N
5
2√

8−Nf

[(∆ + (m̂+ b))(∆− (m̂+ b)) + (∆ + (m̂− b))(∆− (m̂− b))]
3
2

ω1ω2
+bQB

(4.2.58)

with b at QB = 0. The extremal solutions are given by b = 0, ±
√
∆2 − m̂2.

However, for the latter two solutions, one finds that logZ = 0 after inserting

these values of b. Making further Legendre transformation of logZ = 0 in ω1,2’s

and m̂ would yield zero entropy, which means that b = ±
√
∆2 − m̂2 will not

yield the dominant saddle point. So we take the solution b = 0. Similarly, for

the most general case with n ≥ 2, one can easily show that the dominant saddle

point at zero baryon charges is given by

bA = 0 , bI = 0 . (4.2.59)
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Inserting this solution (4.2.59) to (4.2.55), one obtains

S(∆,m, ωi;R,QM , Ji) = −i

√
2

15

n
3
2N

5
2√

8−Nf

[(∆ + m̂)(∆− m̂)]
3
2

ω1ω2
+∆R+mQM+ω1J1+ω2J2 ,

(4.2.60)

where m̂ = m− 2πi. Here, note that for the Sp(N) gauge theory at n = 1, the

free energy (4.2.35) of section 2.1 agrees with the above formula at n = 1. So

one can use this entropy function for ∆,m, ω1,2 as universally describing the 5d

SCFTs labelled by n ≥ 1 at zero baryon charges.

We then Legendre transform in m, at QM = 0. The saddle points for m̂

variation at QM = 0 are given by

m̂ = 0 , ±∆ . (4.2.61)

Again, the latter two solutions have logZ = 0, so that further Legendre trans-

formation with ω1,2 will yield zero. So the dominant saddle point is given by

m̂ = 0 → m = 2πi . (4.2.62)

Inserting this solution for m, we finally obtain the following entropy function:

S = −i

√
2

15

n
3
2N

5
2√

8−Nf

∆3

ω1ω2
+∆R+ ω1J1 + ω2J2 , (4.2.63)

subject to the constraint ∆−ω1−ω2 = 2πi. This form of entropy function was

shown in [74] to precisely account for the entropy and chemical potentials of

BPS black holes in AdS6. However, the entropy function there was expressed

universally, in terms of the Newton constant G of 6d gauged supergravity in-

stead of the microscopic parameters n,N,Nf of our models. In the remaining

part of this subsection, we explain the conversion of these parameters to estab-

lish the microscopic account for the BPS black holes.

To find the relation between G and N , Nf , n, we need the explicit metric of

AdS6× (S4/Z2)/Zn in massive type IIA supergravity. It is a warped product of
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AdS6 with radius ℓ and half of S4/Zn with radius 2ℓ
3 . The 10d metric in string

frame is given by [49]

ds210 =
1

(sinα)
1
3

[
ℓ2ds2(AdS6) +

4ℓ2

9

(
dα2 + cos2 αds2(S3/Zn)

)]
, (4.2.64)

where ds2(AdS6) is the metric of AdS6 with unit radius, and ds2(S3/Zn) is the

metric for S3/Zn, whose volume is vol(S3/Zn) = 2π2

n . The range of α is given

by
(
0, π2

]
. The gauge coupling constant g in 6d gauged supergravity is related

to the radius ℓ of AdS6 by g = ℓ−1 [87,106]. Also, from the quantization of the

4-form flux, ℓ is related to N by [50,67]

ℓ4

ℓ4s
=

18π2nN

8−Nf
, (4.2.65)

where ℓs is the string scale. We will also need the dilaton field, given by [67]

e−2Φ =
3(8−Nf )

3
2

√
nN

2
√
2π

(sinα)
5
3 . (4.2.66)

The 10d Newton constant is given by 2κ210 = 16πG10 = (2π)7ℓ8s [67]. The

6d Newton constant is obtained by reducing the 10d Einstein-Hilbert action on

(S4/Z2)/Zn, down to 6d Einstein-Hilbert action. During this reduction, the 6d

metric gµν is embedded into the 10d metric GMN as

ds210 = GMNdx
MdxN =

1

(sinα)
1
3

[
gµνdx

µdxν +
4ℓ2

9

(
dα2 + cos2 α ds2(S3/Zn)

)]
.

(4.2.67)

The 10d Einstein-Hilbert action reduces to 6d as

1

G10

∫
d10x

√
−Ge−2ΦGMNRMN (G) −→ 1

G

∫
d6x

√
−ggµνRµν(g) . (4.2.68)
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This leads to the following relation:

1

G
=

1

G10

∫
(S4/Z2)/Zn

d4x
√

G/g e−2Φ × (sinα)
1
3

=
1

23π6ℓ8s

∫ π
2

0
dα

√(
4ℓ2

9

)4

(cos2 α)3 · vol(S3/Zn) ·
3(8−Nf )

3
2

√
nN

2
√
2π

(sinα)
5
3 · (sinα)−

4
3

=

√
2ℓ4

33π5ℓ8s
(8−Nf )

3
2

√
N

n

9

20
=

27
√
2

5πℓ4
n

3
2N

5
2√

8−Nf

. (4.2.69)

Here the factor (sinα)
1
3 on the first line comes from the relative factor between

GMN and gµν appearing in (4.2.68). Using (4.2.69), (4.2.63) can be rewritten

as

S = −i
π

81g4G

∆3

ω1ω2
+∆R+ ω1J1 + ω2J2 , (4.2.70)

subject to the constraint ∆−ω1−ω2 = 2πi. This in fact is the universal formula

found in [74] and discussed in chapter 2 for any R-charged BPS black holes in

AdS6, irrespective of its string theory embedding. In [74], it has been shown that

extremizing the above entropy function, and imposing the characteristic charge

relation [87] satisfied by these black holes, one obtains the Bekenstein-Hawking

entropy and chemical potentials of such black holes.

Before briefly summarizing the key results of [74], let us comment on the

intrinsic studies that can be made from the index. Since ∆ = 2πi+ ω1 + ω2, S

takes the form of

S = − πi

81g4G

(2πi+ ω1 + ω2)
3

ω1ω2
+ ω1(R+ J1) + ω2(R+ J2) + 2πiR . (4.2.71)

Therefore, only the two combinations R + J1, R + J2 of charges appear non-

trivially in the Legendre transformation, which is natural since this is the free

energy of the index. The saddle point value S∗(R, J1,2) after the extremiza-

tion would be complex. One should really consider the degeneracy rather than
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entropy, so we study eS∗ . This takes the following form:

eS∗(R,J1,J2) = e2πiR+iImf(R+J1,R+J2) · eRef(R+J1,R+J2) . (4.2.72)

Here, f is a complex function of R+J1, R+J2 that one obtains after extremizing

the first three terms of (4.2.71). The first factor is a phase factor which depends

on the macroscopic charges R, J1, J2, which rapidly oscillates as one changes

these charges. For instance, let us first consider the factor e2πiR. Although R

is macroscopic, we know that R is quantized to be a half-integer. Then by

changing R by its minimal quantized unit, e2πiR will hop between +1 and

−1. However, it looks highly unclear in general whether the whole phase factor

ei(2πR+Imf) is real and hops between ±1 as the charges are changed by quantized

units. At the dominant saddle with largest eRef , one may change the logic

here and demand that the unitarity of QFT guarantees this phase factor to

be either ±1. It appears meaningless to try to check this with the results at

hand. This is because we have made a macroscopic saddle point approximation

at large charges, and such quantized properties are generally expected to be

visible only after including subleading corrections. Anyway, in this strategy,

Ref(R+J1, R+J2) would be the macroscopic entropy that one can extract out

intrinsically from the index, dressed by the ±1 factor which is represented by a

phase in our macroscopic calculus. This has been often the attitudes assumed

in [75,76].

Now to summarize some key results of [74], we first note that the known BPS

black holes of [87] carry two independent parameters. So the charges R, J1, J2

satisfy a relation upon the known solutions. [74] imposed this relation, and

showed that Ref agrees with the Bekenstein-Hawking entropy SBH of these
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black holes.3 The resulting SBH = Ref is given by [74]

S3
BH − 2π2

3g4G
S2
BH − 12π2R2SBH +

8π4

3g4G
J1J2 = 0

RS2
BH +

2π2

9g4G
(J1 + J2)SBH − 4π2

3
R3 = 0 . (4.2.73)

This is a result derived from QFT by imposing extra charge relation by hand.

Solving these two equations, SBH acquires two apparently different expressions

in terms of R, J1, J2. The compatibility of the two expressions is the charge

relation imposed. It was shown in [74] that the Bekenstein-Hawking entropy of

the black holes of [87] satisfies precisely the same equations. This establishes

the QFT account for the BPS black holes in AdS6.

Since we have derived logZ of the dual SCFTs in the Cardy limit |ω1,2| ≪ 1,

we have microscopically derived the thermodynamics of corresponding large

BPS black holes in AdS6. The Cardy limit |ω1,2| ≪ 1 on the known black hole

solutions demands J1, J2 ≫ R ≫ N5/2. Similar to the AdS5/CFT4 models

studied in the literature [75, 76], we generally expect that there could be more

complicated and yet unknown black hole saddle points beyond the Cardy limit.

However, as shown by [135] in AdS5/CFT4, the known black holes should still

represent local large N saddle points, irrespective of whether they are most

dominant or not. Here, we note that the entropy function (4.2.70) was shown

to describe known black holes even beyond the Cardy limit [74]. If the instanton

corrections Zinst can still be ignored to ≈ 1 in the large N non-Cardy regime,

it may be technically doable to search for such saddle points. This is beyond

the scope of this chapter.

3Technically, one finds ImS∗ = 2πR+ Imf = 0 after imposing the charge relation, so that
f on these solutions is actually real and equals SBH. We lack an intrinsic QFT understanding,
if any, of this phenomenon.
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4.2.4 Comments on instantons and 5d deconfinement

While making the saddle point approximations in sections 2.1 and 2.2, we used

the perturbative parts of the index only. Here, one might feel confused about

the following point. From large N perturbative Yang-Mills theory, one would

not expect more than N2 degrees of freedom. One expects to capture some

interesting SCFT physics from formulae like [124] through the instanton part

Zinst in the integrand. But in all the large N analyses in the literature for 5d

SCFTs, it naively appears that only the perturbative integrand contributes to

the large N free energy, with Zinst ≈ 1 suppressed. So one may wonder if there

are any roles played by Zinst at all. We would like to comment that it plays a

subtle role in ‘disallowing’ the N2 scaling of the free energy.

Let us first ask the following question. Had the integrand for the index only

consisted of the perturbative part,

Zpert(x, y, {m}) =
∮
[dα]PE

[
fvec(x, y, e

iαa) +
∑
R

fR
mat(x, y, e

iαa , emR)

]
(4.2.74)

without factors like Zinst, what would have been the expected Cardy free energy

in the limit |ω1,2| ≪ 1? (Here, R runs over representations of the gauge group

G for hypermultiplets.) The natural answer is already presented in [75,136,137]

for 4d N = 4 gauge theory, and is extended to 4d N = 1 theories in [138].

Namely, in 4d SUSY gauge theories whose indices take the form of (4.2.74),

the Cardy saddle point for the gauge holonomies αa is such that G is unbroken

at the saddle point. In other words, all eiαa appearing in fvec and fR
mat can be

effectively set to eiαa = 1, so that the system is maximally deconfining in the

Cardy limit.4

4In 4d Yang-Mills theories, this has been naturally assumed in the literature, e.g. in [57]
inspired by the high temperature limit of the Gross-Witten-Wadia model [58, 139].
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Had the 5d index been just (4.2.74), we would naturally expect the same

holonomy saddle structure because the letter indices basically take the same

forms. Most importantly, the letter indices take the form of 1
(1−xy)(1−x/y) =

1
(1−e−ω1 )(1−e−ω2 )

times finite polynomials of fugacities, both in 4d and 5d. So

it is natural to expect the same large N and Cardy saddle point structures

for these integrals. At these saddle points, the free energy of the index (4.2.74)

would be proportional to N2, naturally agreeing with the combinatoric interpre-

tation of this formula which counts gauge invariant operators of the free theory.

Therefore, although Zinst can be ignored at the final stage of our saddle point

analyses in sections 2.1 and 2.2, Zinst should somehow play subtle intermediate

roles to disfavor the saddle point eiαa ∼ 1, rather preferring the complexified

saddle point with −iαa ∼ N
1
2 ≫ 1.

In fact, one can see that the possibility of the saddle point eiαa ∼ 1 becomes

highly unclear with the presence of Zinst, for the following reason. For instance,

the 1 instanton part of Zinst in our Sp(N) theory is given by [124,132]

Z1 =
1

2

[ ∏Nf

l=1 2 sinh
Ml
2

∏N
a=1 2 sinh

m±iαa
2

2 sinh
ω1,2

2 · 2 sinh m±ω+

2

∏N
a=1 2 sinh

ω+±iαa

2

+

∏Nf

l=1 2 cosh
Ml
2

∏N
a=1 2 cosh

m±iαa
2

2 sinh
ω1,2

2 · 2 sinh m±ω+

2

∏N
a=1 2 cosh

ω+±iαa

2

]

−1

2

∏Nf

l=1 2 sinh
Ml
2 +

∏Nf

l=1 2 cosh
Ml
2

2 sinh
ω1,2

2 · 2 sinh m±ω+

2

, (4.2.75)

where ω+ ≡ ω1+ω2
2 . In the Cardy limit |ω1,2| ≪ 1, this becomes

Z1 ∼
1

2ω1ω2

[∏Nf

l=1 2 sinh
Ml
2

2 sinh m
2

(
N∏
a=1

2 sinh m±iαa
2

2 sinh ±iαa
2

− 1

)
+

∏Nf

l=1 2 cosh
Ml
2

2 sinh m
2

(
N∏
a=1

2 cosh m±iαa
2

2 cosh ±iαa
2

− 1

)]
.

(4.2.76)

This diverges at αa = 0 (and also at αa = π). From the physics of instantons,

this divergence is due to the non-compact zero mode of instanton size becom-

ing massless. More physically, if one expands Z1 in the fugacities eiαa ’s in the

Coulomb branch, at Im(αa) > 0, one finds infinite towers of BPS bound states
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with increasing U(1)N ⊂ Sp(N) electric charges, since 2 sinh( iαa
2 ) factors ap-

pear in the denominator. So the divergence at αa = 0 comes from these infinite

towers of non-perturbative charged states in the Coulomb branch, if one ceases

to weight them by fugacity factors eiαa . Since this divergence is caused by re-

placing sinh ω+±iαa

2 by sinh ±iαa
2 , the divergence actually represents an extra

factor of 1
(2 sinh

ω+
2

)2N
∼ 1

ω2N
+

in the naive Cardy limit. As one goes to higher

instanton numbers k > 1, there appear more infinite towers of charged fields.

The extra divergent factor becomes 1
ω2Nk . An easy way to see this is to note

that there are 2c2k = 2(N + 1)k complex zero modes in the k instanton back-

ground, where c2 = N +1 is the dual Coxeter number of Sp(N). Among these,

2k comes from the position zero modes of k instantons, so that it only causes

1
ω1ω2

divergence in the free energy. The remaining 2Nk complex zero modes

come from the internal degrees of freedom, yielding extra 1
ω2Nk factor.

Had this been the true saddle point, the Cardy free energy is not behaving

like the one for a reasonable 5d CFT, which we expect to be proportional to

1
ω1ω2

times a coefficient representing the number of degrees of freedom in this

CFT (which is ∼ N
5
2 in our problem). It is not even clear whether the sum over

k would make sense.5 So collecting all, we find that it is highly unclear whether

eiαa ∼ 1 is a legitimate saddle point in the presence of the Zinst factor.

On the other hand, as we have seen in sections 2.1 and appendix B of [78],

the saddle point with −iαa ∼ O(N
1
2 ) has suppressed Zinst ≈ 1, and one can self-

consistently show that only the ‘perturbative integrand’ needs to be considered.6

As a result of such spreading of eigenvalues, it apparently seems that N2 ·
5There is even a signal that this is a divergent series [140]. We thank Antonio Sciarappa

for telling this to us.
6It may be misleading to simply call it ‘perturbative’ part, which often refers to the per-

turbative non-Abelian gauge theory. It should be more precisely stated as the 1-loop Coulomb
branch contribution, with both massive instantons andW-bosons integrated out (whose masses
are proportional to large Coulomb VEV).
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N
1
2 ∼ N

5
2 enhancement happened, if we just consider it in the context of the

partition function (4.2.74). However, with Zinst factor in mind, we think this

interpretation is misleading. This is because the instanton part of the free energy

at eiαa ∼ 1 rapidly grows as ∼ ω−2Nk in k, possibly reflecting an inconsistency

of the (grand) canonical ensemble due to the rapid growth of density of states as

k is increased. Compared to this, the saddle point with −iαa ∼ O(N
1
2 ) exhibits

a sensible growth of free energy in ω−1. The former is perhaps analogous to

the Hagedorn-like growth of density of states in the confining phase of 4d free

QFT [57], which is made much more extreme in 5d by the additional infinite

towers of instanton bound states.

Deconfinement in AdS5/CFT4 implies that the growth of density of states is

slowed down after the transition. This is made possible by breaking the infinite

towers of ‘hadrons’ into deconfined quark-gluon partons. It is also associated

with absorbing latent heat during the transition, after which extensive quan-

tities show the enhancement N0 → N2 in large N . From the gauge theory

side, this is achieved by setting eiαa ’s closer to 1. In AdS6/CFT5, it seems that

there should be more ingredients to achieve the exotic deconfinement in 5d

SCFTs. Taking eiαa ∼ 1 partly liberates quarks and gluons, from the view-

point of non-renormalizable perturbative gauge theories. However, the system

still has infinite towers of bound states made with instanton solitons. A wild

speculation that has been made in the literature is that these instantons are

also made of certain partons [141, 142]. The non-compact internal zero modes

were interpreted as the position moduli of such hypothetical partons. If such a

conjecture is true, liberating the instanton partons should make N2 → N
5
2 en-

hancement possible, while the rapidly growing density of states in the ‘energy’

k will be tamed after this deconfinement. From the gauge theory viewpoint, un-

derstanding the distinctions between the 4d saddles eiαa ∼ 1 and our 5d saddles
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−iαa ∼ N
1
2 should encode some details of such hypothetical deconfinement. In

a sense, one can regard the real iαa’s as the ‘inverse-temperature’ variables for

the electric charges. The saddle point iαa = 0 of the 4d Cardy free energy can

be understood as such ‘temperatures’ sent to infinity, to maximally liberate the

quark-gluon partons. In our 5d gauge theory analysis, the true saddle point with

iαa < 0 may be understood as going beyond this infinite temperature point.

This looks like a natural direction in which the remaining instanton-partons can

be liberated. We would very much like to make such speculations more precise

in the future.

Supplementing the thoughts in the previous paragraph, we finish this sub-

section by contrasting the differences between apparently similar 4d and 5d

indices. Namely, with the nonperturbative completion of (4.2.74) by Zinst, we

argued that the saddle point with eiαa ∼ 1 is obstructed (or at least its exis-

tence is made non-obvious) by nontrivial Zinst. For certain 5d gauge theories,

we instead explored alternative large N saddle points in which −iαa ∼ N
1
2 .

To make the speculations of previous paragraph more sensible, one would like

to make an obvious sanity check that similar saddle points with analytically

continued αa do not exist in 4d indices, which also take the form of (4.2.74). In

particular, dimensionally reducing our main 5d examples given by Sp(N) gauge

theories, one obtains 4d N = 2 gauge theories. Since the 4d system makes sense

as long as Nf ≤ 4 with very similar field contents, one may technically wonder

if similar analytically continued saddle points can exist in its 4d version. How-

ever, we have explicitly checked that such analytically continued saddle points

do not exist in the 4d N = 2 index, even for precisely the same gauge theories

reduced to 4d. Therefore, the analytically continued saddle point which is in

charge of N
5
2 scaling is indeed a 5d phenomenon.
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4.3 Conclusions

In this chapter, we studied the index of a class of 5d SCFTs on S4 × R, by

taking the large N and Cardy limit. Our large N Cardy free energy precisely

accounts for the thermodynamic properties of large BPS black holes in global

AdS6.

The basic calculus is very similar to those made in different supersymmetric

partition functions [67,126]. In our context, like [126], the gauge holonomies eiαa

have to be analytically continued away from the unit circle to reach the relevant

saddle point. At the final stage of calculus, the so-called instanton correction

to the partition function is suppressed to Zinst ≈ 1 at our saddle point. We

have discussed the physical meanings of such a calculus, pointing out the subtle

roles of the instanton part and contrasting it to the indices of 4d QFTs. This

has close relations to the mysterious deconfinements in 5d SCFTs. Our results

should shed concrete lights on getting a better physical picture of such novel

deconfinements, and hopefully a better quantitative picture on the instanton

partons.

We have focussed on a very small subset of 5d SCFTs, engineered on D4-

branes in massive type IIA string theory. Recently, a much broader class of

5d SCFTs have been discovered: e.g. see [143, 144] for geometric engineering,

and [145–147] for brane engineering. Also, there have been explorations on the

large N AdS6 duals of 5d SCFTs, engineered by the 5-brane webs [101–105]. In

the generic setting in which the numbers of external (p, q) 5-branes are at similar

order ∼ N , various physical quantities are known to scale like N4 [101–103].

Although we find these examples more difficult to study in our framework,

perhaps numerical studies similar to those of [148,149] could be made.
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Chapter 5

Quantum vortices, M2-branes and
AdS4 black holes

In this chapter, we study the partition functions of BPS vortices and magnetic

monopole operators, in gauge theories describing N M2-branes. In particular,

we explore two closely related methods to study the Cardy limit of the in-

dex on S2 × R. The first method uses the factorization of this index to vortex

partition functions, while the second one uses a continuum approximation for

the monopole charge sums. Monopole condensation confines most of the N2

degrees of freedom except N
3
2 of them, even in the high temperature decon-

fined phase. The resulting large N free energy statistically accounts for the

Bekenstein-Hawking entropy of large BPS black holes in AdS4×S7. Our Cardy

free energy also suggests a finite N version of the N
3
2 degrees of freedom.

111



5.1 Introduction

M2/M5-branes provide valuable insights to quantum field theories at strong

coupling. An intriguing feature is that N M2/M5-branes exhibit N
3
2 and N3

degrees of freedom, respectively. These behaviors were first discovered from

their black brane solutions [64]. Recent studies from field theory shed more

lights on it, e.g. from the partition function on S3 [65,66] or S5 [150–155]. How-

ever, these studies on N
3
2 , N3 have been on vacuum properties, such as vac-

uum entanglement entropy or vacuum energy. For M5-branes, more interesting

quantities could be studied using anomalies [156], which see N3. For instance,

certain higher derivative terms proportional to N3 are studied in [157], and

the N3 scaling of the D0-D4 system at high temperature was studied in [158],

which are all related to 6d anomalies. More recently, these anomalies are used

to count the microstates of BPS black holes in AdS7 [75, 159]. For M2-branes,

3d QFTs deformed by topological twisting were studied, in which one finds a

macroscopic number of ground states [160]. The entropy of these ground states

scales like N
3
2 , which accounts for the magnetic/dyonic black holes in the AdS4

dual [160,161].

In this chapter, we study N
3
2 degrees of freedom of the radially quantized

SCFT on M2-branes. We shall find the N
3
2 scaling of an entropic free energy,

by counting excited states of this CFT. This free energy will account for the

thermodynamic properties of the electrically charged rotating BPS black holes

in AdS4 × S7 [82, 97]. From the field theory side, we find the deconfined N
3
2

degrees of freedom at high ‘temperature’ (meaning a suitable inverse chemical

potential). The physics of magnetic monopoles or vortices makes the structures

much richer and subtler than 4d deconfinement, whose details we explore in

this chapter.
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As an intermediate observable, we first study an index for vortices in the M2-

brane QFT deformed by massive parameters. Our QFT lives on N D2-branes

and 1 D6-brane. This is a 3d N = 4 Yang-Mills theory with one adjoint and

one fundamental hypermultiplet, which flows in IR to the N = 8 SCFT on M2-

branes. It has been a useful setting to study M2-branes [162,163]. We shall study

its vortices in the Higgs branch, after a deformation by the Fayet-Iliopoulos (FI)

parameter. This index is related to our main observable, the index on S2 × R

[70,164,165], in two closely related ways. One is by the factorization of the latter

into various vortex partition functions. Another relation is obtained by taking

the large angular momentum limit on S2, which we call the Cardy limit. In this

limit, we make a continuum approximation of the magnetic monopole’s charge

sum, finding another asymptotic factorization to vortex partition functions.

Using these relations, we compute the asymptotic free energy of the index on

S2 × R at large temperature-like parameter, also in the large N limit. This

free energy is proportional to N
3
2 , and precisely accounts for the Bekenstein-

Hawking entropies of large BPS black holes in AdS4×S7 [82,97]. A crucial role

is played by the so-called entropy function of BPS AdS4 black holes, recently

discovered in [74].

The structures of our Cardy and large N saddle points are intriguing. In

4d Cardy formulae studied recently, the Cardy saddle point (or high temper-

ature saddle point) is ‘maximally deconfining’ in that the gauge symmetry is

unbroken by the Polyakov loop operator. This makes the N2 degrees of freedom

fully visible. In 3d gauge theories, one also has to sum over the GNO charges of

magnetic monopoles. We argue that this GNO charge sum will forbid the anal-

ogous maximally deconfining saddle point for the M2-brane system, following

the ideas of [166, 167] for the vector-Chern-Simons model. On the other hand,

magnetic monopole operators condense at the physical saddle point. The con-
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densation effectively breaks the gauge symmetry of the QFTs, confining most

of the N2 degrees of freedom even at high temperature. The number of the

remaining light degrees of freedom scales like N
3
2 .

Our Cardy approximation is applicable to the Chern-Simons-matter theories

[44, 168–170] such as the ABJM theory, which we explore. Also, one can study

the Cardy asymptotic free energy at finite N . We find a finite N version of N
3
2

in this set-up.

The rest of this chapter is organized as follows. In section 2, we study

semi-classical vortices in the Higgs branch, and study their index. We also

explain how the index on S2 × R factorizes into vortex partition functions. In

section 3, we explain a Cardy approximation of the index on S2 ×R, based on

approximating the GNO charge sum by an integral. We compare it with the

vortex factorization formula of section 2. In section 4, we study the large N

and Cardy limit of the index on S2 × R, which accounts for the entropies of

the dual AdS4 black holes. We also comment on the monopole condensation,

partial confinement and the behaviors of the Wilson-Polyakov loops. We then

study the Cardy limit at finite N , suggesting a finite N version of N
3
2 . Section

5 concludes with remarks.

5.2 Vortices on M2-branes and their indices

We first explain the 3d QFTs that describes M2-branes. Among others, there

are Chern-Simons-matter type theories at level 1 [44, 168–170]. We find this

approach somewhat tricky for various reasons. The subtle aspects will be com-

mented on below, but we shall also use these QFT approaches in section 4.3.

The gauge theory description that we shall mainly use is a Yang-Mills-

matter theory engineered on N D2-branes on top of one D6-brane. The UV
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theory has 3d N = 4 SUSY and U(N) gauge symmetry. It consists of the

following fields:

vector multiplet : Aµ , Φi , fermions (5.2.1)

adjoint hypermultiplet : ϕA = (ϕ, ϕ̃†) , fermions

fundamental hypermultiplet : qA = (q, q̃†) , fermions

where i = 1, 2, 3 is an SU(2)r triplet index, and A = 1, 2 is an SU(2)R doublet

index. The N = 4 SUSY is associated with SO(4) ∼ SU(2)r × SU(2)R R-

symmetry. The adjoint hypermultiplet can be decomposed to two half-hypermultiplets,

ϕA → ϕAa, with a = 1, 2 being a doublet index of SU(2)L flavor symmetry. The

SU(2)L × SU(2)R ∼ SO(4) acts on R4 along the D6-brane, transverse to D2’s.

SU(2)r acts on R3 transverse to the D6-brane. Finally, there is a topologi-

cal U(1)T symmetry coming from the current jµ ∼ tr(⋆Fµ). In string theory,

this corresponds to the D0-brane charge, or the momentum charge along the

M-theory circle. Here, note that the D6-brane (with transverse direction R3

spanned by Φi) uplifts to a single-centered Taub-NUT (TN) space in M-theory.

So the QFT describes N M2-branes probing the transverse space R4 × TN . In

the asymptotic R3×S1 region of Taub-NUT, U(1)T acts as the translation along

the circle. The circle is fibered over R3 to form R4 near the Taub-NUT center.

Near the center, U(1)T × SU(2)r enhances to SO(4) rotation symmetry of R4.

In particular, U(1)T becomes a Cartan of the rotation symmetry of SO(8) act-

ing on R8. The strong-coupling limit of 3d QFT corresponds to the large circle

limit of M-theory, so the Taub-NUT effectively decompactifies to R4. So this

QFT is expected to flow to the N = 8 SCFT describing N M2-branes on flat

spacetime. In particular, SU(2)L×SU(2)R×U(1)T ×SU(2)r symmetry of our

gauge theory is expected to enhance to SO(8).

We are interested in the Higgs branch of this system, and the vortex solitons
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in this branch. We study the system with nonzero Fayet-Iliopoulos (FI) param-

eter. One can turn on three FI parameters ζI , where I = 1, 2, 3 is a triplet index

of SU(2)R. We shall only turn on ζ ≡ ζ3 > 0, which breaks SU(2)R to U(1).

The Higgs branch vacuum condition is given by the following triplet of D-term

conditions:

qq† − q̃†q̃ + [ϕ, ϕ†] + [ϕ̃, ϕ̃
†
] = ζ , qq̃ + [ϕ, ϕ̃] = 0 . (5.2.2)

q is an N × 1 matrix, q̃ is a 1×N matrix, and ϕ, ϕ̃ are N ×N matrices. These

equations describe the moduli space of N U(1) instantons, which is real 4N

dimensional after modding out by the U(N) gauge orbit. The instanton moduli

space appears since the Higgs branch describes N D2-branes dissolved into the

R4 part of D6 world-volume. ζI come from NS-NS B-fields on R4.

We study the vortex solitons on a subspace of the Higgs branch. With ζ > 0,

we shall consider the subspace q̃ = 0 with nonzero q. The vortex partition

functions appearing in the factorization formulae in section 2.2 will all assume

q̃ = 0. Adjoint scalars ϕ, ϕ̃ may have very rich possibilities which allow vortices.

In most of our discussions in this chapter, we shall consider a simple subspace

in which only q, ϕ are nonzero, with q̃ = 0, ϕ̃ = 0. Only in section 2.2, we shall

briefly comment on branches with nonzero q, ϕ, ϕ̃, and the vortex partition

functions in these branches. Setting q̃ = 0, ϕ̃ = 0, the vacuum condition is

qq† + [ϕ, ϕ†] = ζ1N×N . (5.2.3)

q satisfies q†q = Nζ. We can set q† = (
√
Nζ, 0, · · · , 0) using U(N) rotation.

Then one obtains

[ϕ, ϕ†] = ζ diag(−(N − 1), 1, · · · , 1) . (5.2.4)
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A particular solution to this equation takes the following form:

ϕ =
√
ζ



0 · · ·
√
N−1 0 · · ·

0
√
N−2 0 · · ·

...
. . .

0 · · ·
√
2 0 0

0 · · · 0 1 0


. (5.2.5)

This vacuum breaks U(N) gauge symmetry. There are more general solutions

labeled by 2N real parameters. Below, we discuss the classical vortex solitons

only at the point (5.2.5), which will provide enough intuitions to understand

our partition function.

In the above vacuum, vortex solitons are semi-classically described as fol-

lows. Each U(1) of the spontaneously broken U(1)N ⊂ U(N) can host its own

vortex charges, i.e. a U(1) flux. On the other hand, vorticities are given by

space-dependent VEV’s of the N nonzero elements of q and ϕ above, with

winding numbers at asymptotic infinity of R2. Consider the following energy

density, involving ϕ1 ≡ q1, ϕi ≡ ϕi,i−1 (i = 2, · · · , N), Aµ, where µ = 1, 2:

E = |(∂µ − iA1
µ)ϕ1|2 +

N∑
i=2

|(∂µ − i(Aiµ −Ai−1µ ))ϕi|2 +
1

2g2YM

N∑
i=1

(F i
12)

2(5.2.6)

+
g2YM
2

[
diag(|ϕ1|2 − |ϕ2|2 − ζ, |ϕ2|2 − |ϕ3|2 − ζ, · · · , |ϕN |2 − ζ)

]2
=

N∑
i=1

|(D1 + iD2)ϕi|2 +
N−1∑
i=1

1

2g2YM

[
F i
12 + g2YM (|ϕi|2 − |ϕi+1|2 − ζ)

]2
+

1

2g2YM

[
FN
12 + g2YM (|ϕN |2 − ζ)

]2
+ ζ

N∑
i=1

F i
12 − iϵµν

N∑
i=1

∂µ (ϕ
∗
iDνϕi) .

HereDµ’s are covariantized with A1, A2−A1, · · · , AN−AN−1 for ϕ1, ϕ2, · · · , ϕN ,

respectively. The last surface term can be ignored if Dνϕi falls off sufficiently
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fast at infinity. One thus obtains the following BPS equations for vortices in

this Higgs vacuum:

(D1 + iD2)ϕi = 0 , F i
12 = g2YM (ζ − |ϕi|2 + |ϕi+1|2) , FN

12 = g2YM (ζ − |ϕN |2) .

(5.2.7)

The vorticities ni ≥ 0 for ϕi are defined by the number of phase rotations made

by ϕi at spatial infinity. This is related to the fluxes ki carried by Aiµ by

n1 = k1 , n2 = k2 − k1 , · · · , nN = kN − kN−1 , (5.2.8)

from the ways in which Aiµ appear in the covariant derivatives. Therefore, from

the second term of the last line of (5.2.6), one finds the multi-vortex mass given

by

M = 2πζ
N∑
i=1

ki , k1 ≤ k2 ≤ · · · ≤ kN . (5.2.9)

The vortex masses are proportional to ζ. The masses for elementary particles

in the Higgs phase are proportional to gYM · (VEV) ∼ gYMζ
1
2 . Therefore, at

‘weak coupling’ gYM ≪ ζ
1
2 , vortex solitons are non-perturbative and much

heavier than elementary particles. At ‘strong coupling’ gYM ≫ ζ
1
2 , vortices are

lighter than elementary particles. We stress that the N vortices are constrained

as k1 ≤ k2 ≤ · · · ≤ kN . This is an important aspect which will enable the

partition function to have a smooth large N limit. These vorticities are natu-

rally parametrized by Young diagrams with N or less rows, whose lengths are

kN , kN−1, · · · , k1, respectively.

5.2.1 Indices on D2 × S1 and R2 × S1

We study an index which counts the BPS vortices discussed so far. This is a

partition function on R2 ×S1, where S1 is for the Euclidean time, in the Higgs
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branch. The index is defined by

Z(q, t, z,Q) = Tr
[
(−1)F qR+r+2jtR−rz2LQT

]
, (5.2.10)

with suitable boundary conditions for fields assumed at infinity of R2, to be

explained below. r, R, L are the Cartans of SU(2)r × SU(2)R × SU(2)L, T is

the U(1)T charge (the vorticity), and j is the SO(2) angular momentum on R2.

The factors in the trace are chosen so that they commute with a supercharge

within theN = 4 SUSY. More concretely, theN = 4 supercharges take the form

of QȦB
α , where Ȧ, B and α are doublet indices of SU(2)r, SU(2)R, SO(2, 1),

respectively. The supercharge Q+̇+
− has charges r = R = 1

2 , j = −1
2 , L = 0,

T = 0, so it commutes with the whole factor inside the trace. This supercharge

and its Hermitian conjugate Q−̇−
+ annihilate the BPS states captured by this

index. The supercharges Q+̇+
α and their conjugates Q−̇−

α define a 3d N = 2

supersymmetry. So the index will be computed below using various techniques

developed for 3d N = 2 theories. From the N = 2 viewpoint, R + r is the

SO(2) ∼ U(1) R-charge, while R−r is a flavor charge. The index on R2×S1 can

also be regarded as the index on D2×S1, where D2 is a disk. One should impose

suitable boundary conditions at the edge of D2, which should be chosen to allow

the nonzero Higgs VEV for the partition function on R2 × S1. The alternative

formulation of this partition function onD2×S1 will have a technical advantage,

when one studies the grand partition function summing over all vortex particles.

The integral form of the N = 2 gauge theory index on D2 × S1 was derived

in [171]. We summarize the results of [171], focussing on our model. See [171]

for more details on SUSY QFTs on D2 × S1.

We first explain the boundary conditions on D2. To realize the boundary

conditions which admit nonzero VEV for q and ϕ, we impose Neumann bound-

ary conditions for them: see eqn.(2.18) of [171] for the full boundary conditions
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for the corresponding chiral multiplets. As for the N = 4 vector multiplet,

we decompose it into N = 2 vector multiplet (containing Aµ, Φ
3) and an ad-

joint chiral multiplet (containing Φ1+ iΦ2). We impose the boundary condition

given by eqn.(2.10) of [171] for the N = 2 vector multiplet. We further need to

specify the boundary conditions for: the anti-fundamental chiral multiplet con-

taining q̃, the adjoint chiral multiplet containing ϕ̃, and another chiral multiplet

containing Φ1 + iΦ2 which originates from the N = 4 vector multiplet. Once

the boundary conditions are given for q, ϕ and the N = 2 vector as above, the

boundary conditions for the remaining fields can be naturally fixed as in section

6.4 of [171]. Namely, we give Dirichlet boundary conditions for the chiral multi-

plets q̃, ϕ̃, and Neumann boundary condition for the chiral multiplet Φ1 + iΦ2.

This choice naturally guarantees the cancelation of boundary gauge anomaly.

We shall assume these boundary conditions below. The partition function with

these boundary conditions will also naturally appear as a holomorphic block of

the factorized index on S2 × R.1

The contour integral form of our index on D2 × S1 is given by [171]

Z =
1

N !

∮ N∏
a=1

[
dsa
2πisa

s−2πrζ
a

] N∏
a=1

(sat
− 1

2 q
3
2 ; q2)∞

(sat
1
2 q

1
2 ; q2)∞

·
∏
a̸=b(sas

−1
b ; q2)∞∏N

a,b=1(sas
−1
b t−1q; q2)∞

·
N∏

a,b=1

(sas
−1
b zt−

1
2 q

3
2 ; q2)∞

(sas
−1
b zt

1
2 q

1
2 ; q2)∞

(5.2.11)

where

(a; q)∞ ≡
∞∏
n=0

(1− aqn) (5.2.12)

is the q-Pochhammer symbol. The second/third/fourth product in the integrand

come from the fundamental hypermultiplet, N = 4 vector multiplet, adjoint hy-

permultiplet, respectively. All q-Pochhammer symbols in the denominator come

1We also tried to define the D2 × S1 function of the ABJM theory [44]. However, we were
not sure about the natural and simple anomaly-free boundary conditions. However, see section
4.3 for related discussions.
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from scalars assuming Neumann boundary conditions, while those in the numer-

ator come from fermions whose superpartner bosons assume Dirichlet boundary

conditions. (The argument t−1q in the factor (sas
−1
b t−1q; q2)∞ corrects a typo

in [171].) sa are N holonomy variables of the vector multiplet on S1. Their

integration contours are given by unit circles, |sa| = 1. Here, we note a subtle

phenomenon that the FI parameter on D2 × S1 is quantized, 2πrζ ∈ Z, where

r is the radius of the hemisphere D2. This is because the standard FI term is

accompanied by a r−1 curvature correction given by a 1d Chern-Simons term

along the time direction [171], which demands the quantization of ζ. Clearly, the

factor s−2πrζ
a in (5.2.11) makes sense only with this quantization.2 The extra pa-

rameter 2πrζ > 0 still admits one to introduce another fugacity-like parameter

Q ≡ q4πrζ , which will be the fugacity for the vortex number. The quantization

of ζ is an artificial constraint as we regulate our problem on R2×S1 to that on

D2 × S1. After all the computation is done for the integral, we can continue ζ

back to an arbitrary parameter.

If Q is small enough, one can write the integral as a residue sum by evalu-

ating sa integrals one by one. For 2πrζ > 0, since the factors from s−2πrζ
a damp

to zero at sa = ∞, there is no pole at sa = ∞. We take residues from poles

outside the unit circle. We assume |tq| < 1, |t−1q| < 1, |zt
1
2 q

1
2 | < 1, |q| < 1,

for convenience. The poles contributing to the residue sum take the following

form, up to N ! permutations which cancel the overall 1
N ! factor of (5.2.11):

s1 = t−
1
2 q−

1
2
−2n1 (n1 ≥ 0) , (5.2.13)

sa = sa−1z
−1t−

1
2 q−

1
2
−2na (a = 2, · · · , N ;na ≥ 0) .

2More precisely, the chemical potential t induces a mixed anomaly with the U(1) ⊂ U(N)
gauge symmetry. To make the system free of gauge anomaly including this effect, one has to
quantize ζ after shifting it suitably by the chemical potentials. ζ appearing in (5.2.11) is the
shifted FI parameter.
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The value of s1 is determined by the poles from the fundamental hypermulti-

plet, while other sa’s are determined by the adjoint hypermultiplet. If poles are

chosen from other denominators than the above, one can show that the numer-

ator vanishes so that they are actually not poles. Iterating the second line of

(5.2.13) to decide sa’s, and defining ka ≡
∑a

i=1 ni, one finds

sa = u−1v−a+1q−2ka (5.2.14)

for a = 1, · · · , N , where u ≡ (tq)
1
2 , v ≡ z(tq)

1
2 , and k1 ≤ k2 ≤ · · · ≤ kN .

ka’s labeling the poles will turn out to be the U(1)N vortex charges k1, · · · , kN

that we introduced in the context of classical solitons. This correspondence can

be understood by noting that na in the pole (5.2.13) originates from a factor

1
(a;q2)∞

∼ 1
1−aq2na , which comes from the mode of a bosonic field with winding

number na. Residue of this pole corresponds to a partition function with vortex

defect inserted [172], confirming the vortex interpretation. The residue sum for

(5.2.11) is given by

Z =
1

(q2; q2) N∞

∞∑
0≤k1≤···≤kN

N∏
a=1

(
uaa−1q2ka

)2πrζ (u−2v−a+1q2−2ka ; q2)∞
(v−a+1q−2ka ; q2)′∞

×
N∏

a,b=1

(v−a+bq−2ka+2kb ; q2)′∞
(u−2v−a+bq2−2ka+2kb ; q2)∞

(u−2v1−a+bq2−2ka+2kb ; q2)∞
(v1−a+bq−2ka+2kb ; q2)′∞

,(5.2.15)

where (a; q2)′∞ means (a; q2)∞ if a ̸= q−2n with any non-negative integer n, and

(q−2n; q2)′∞ = lim
a→q−2n

(a; q2)∞
(1− aq2n)

. (5.2.16)

Using

(a; q)n =
(a; q)∞
(aqn; q)∞

(5.2.17)

for n ≥ 0 and

(a; q)−n ≡ 1

(aq−n; q)n
=

(a; q)∞
(aq−n; q)∞

(5.2.18)
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for −n < 0, one finds that (5.2.17) is true for any integer n. Using this, the

second line of (5.2.15) can be rearranged as

N∏
a,b=1

(v−a+bq−2ka+2kb ; q2)′∞
(u−2v−a+bq2−2ka+2kb ; q2)∞

(u−2v1−a+bq2−2ka+2kb ; q2)∞
(v1−a+bq−2ka+2kb ; q2)′∞

(5.2.19)

=
N∏

a,b=1

(v−a+b; q2)′∞
(u−2v−a+bq2; q2)∞

(u−2v1−a+bq2; q2)∞
(v1−a+b; q2)′∞

· (u
−2vb−aq2; q2)kb−ka
(vb−a; q2)kb−ka

· (v1−a+b; q2)kb−ka
(u−2v1−a+bq2; q2)kb−ka

=

N∏
a,b=1

(u−2vb−aq2; q2)kb−ka
(vb−a; q2)kb−ka

· (v1−a+b; q2)kb−ka
(u−2v1−a+bq2; q2)kb−ka

·
N∏
a=1

(v−a+1; q2)′∞
(v−a+N+1; q2)∞

· (u
−2v−a+N+1q2; q2)∞
(u−2v−a+1q2; q2)∞

.

The product over a = 1, · · · , N on the first line of (5.2.15) and that on the last

line of (5.2.19) combine and get rearranged as

N∏
a=1

(
uaa−1q2ka

)2πrζ (u−2v−a+1q2−2ka ; q2)∞
(v−a+1q−2ka ; q2)′∞

(v−a+1; q2)′∞
(v−a+N+1; q2)∞

· (u
−2v−a+N+1q2; q2)∞
(u−2v−a+1q2; q2)∞

=
[
uNv

N(N−1)
2

]2πrζ
Qk1+···+kN

N∏
a=1

(v−a+1; q2)−ka
(u−2v−a+1q2; q2)−ka

· (u
−2vaq2; q2)∞
(va; q2)∞

, (5.2.20)

where Q ≡ q4πrζ . So one obtains

Z =
(uNv

N(N−1)
2 )2πrζ

(q2; q2) N∞

N∏
a=1

(u−2vaq2; q2)∞
(va; q2)∞

∑
0≤k1≤···≤kN

Qk1+···+kN
N∏
a=1

(v−a+1; q2)−ka
(u−2v−a+1; q2)−ka

·
N∏

a,b=1

(v−a+b+1; q2)−ka+kb(u
−2v−a+bq2; q2)−ka+kb

(v−a+b; q2)−ka+kb(u
−2v−a+b+1q2; q2)−ka+kb

. (5.2.21)

In the last expression, one can relax the condition 2πrζ ∈ Z+, so we can now

regard Q as an independent continuous parameter. Here, let us decompose

Z into three factors, Z = ZprefactorZpertZvortex, where each factor is given as
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follows:

Zprefactor =
(uNv

N(N−1)
2 )2πrζ

(q2; q2) N∞
, Zpert =

N∏
a=1

(u−2vaq2; q2)∞
(va; q2)∞

Zvortex =
∑

0≤k1≤···≤kN

Qk1+···+kNZk1,··· ,kN (5.2.22)

Zk1,··· ,kN ≡
N∏
a=1

(v−a+1; q2)−ka
(u−2v−a+1; q2)−ka

·
N∏

a,b=1

(v−a+b+1; q2)−ka+kb(u
−2v−a+bq2; q2)−ka+kb

(v−a+b; q2)−ka+kb(u
−2v−a+b+1q2; q2)−ka+kb

.

Here, Z0,··· ,0 = 1 by definition. In the rational function Zk1,··· ,kN appearing in

(5.2.22), one finds further cancelations between denominator and numerator. In

fact, since k1 ≤ · · · ≤ kN define a Young diagram with k boxes, Zk1,··· ,kN admits

a simple expression in terms of this Young diagram Y = (kN , kN−1, · · · , k1) after

cancelation. To explain the final result after the cancelation, let us introduce

the following ‘distance functions’ on the Young diagram:

a(s) : arm (horizontal) length = number of boxes to the right of s

l(s) : leg (vertical) length = number of the boxes below s

x(s) : horizontal position = number of boxes to the left of s

y(s) : vertical position = number of the boxes above s

(5.2.23)

Here, s labels the boxes of the Young diagram. For instance, for the two boxes

s1, s2 of Y = (6, 5, 3, 2) below, they are given by

s2

s1

−→
a(s1) = 4, l(s1) = 3, x(s1) = 1, y(s1) = 0

a(s2) = 2, l(s2) = 1, x(s1) = 2, y(s1) = 1
.

(5.2.24)

Using these notations, Zvortex is given by

Zvortex =
∑
Y

Q|Y |
∏
s∈Y

(1− u−2q−2a(s)v−l(s))(1− u−2vq2q2a(s)vl(s))(1− vNq2x(s)v−y(s))

(1− q−2q−2a(s)v−l(s))(1− vq2a(s)vl(s))(1− u−2q2vNq2x(s)v−y(s))
.

(5.2.25)
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We checked this expression up to Q11 order, till N ≤ 10. One can also prove

(5.2.25) analytically, which is explained in appendix B of [79].

We also explain other factors, Zprefactor and Zpert. The factor (u
Nv

N(N−1)
2 )2πrζ

in Zprefactor is the ‘zero-point energy’ factor, weighting the ‘ground state’ if one

expands Z in fugacities. The factor (q2, q2) −N
∞ of Zprefactor comes from N chi-

ral multiplets containing the N complex scalars, which form the Higgs branch

moduli. These scalars are the massless fluctuations from the reference point

(5.2.5). This part will not play any important role in the rest of our works.

For instance, Zprefactor will not appear in the factorization formula on S2 × S1

later. (More precisely, one can regard it as the two Zprefactor’s canceling in the

factorization formula.) So Zprefactor will be mostly neglected. Zpert comes from

‘perturbative’ massive particles’ contribution in the Higgs branch, which will

be important later. Normally, the Higgs branch partition function on R2 × S1

refers to ZR2×S1 = ZpertZvortex.

Now we have two alternative expressions for the index, the integral form

(5.2.11) and the residue sum (5.2.21), (5.2.25). The latter expression is a series

which is useful for sufficiently small |Q|, but (5.2.11) can be used more generally.

Before closing this subsection, we study the case with N = 1, for single M2-

brane. In this case, the index given by the residue sum becomes simplified. This

is because the CFT on one M2-brane is expected to be a free QFT, consisting

of four free N = 2 chiral multiplets. In fact, studying (5.2.25) to certain high

orders in Q, we find that (5.2.21) can be written as

ZN=1 =
(tq)πrζ

(q2; q2)∞
·(zt

− 1
2 q

3
2 ; q2)∞

(zt
1
2 q

1
2 ; q2)∞

· (q2Q; q2)∞
(t−1qQ; q2)∞

=
(tq)πrζ

(q2; q2)∞
·(zt

− 1
2 q

3
2 ; q2)∞

(zt
1
2 q

1
2 ; q2)∞

· (q
3
2 t

1
2 Q̂; q2)∞

(t−
1
2 q

1
2 Q̂; q2)∞

(5.2.26)

at N = 1. This can also be shown analytically by using the infinite q-binomial

theorem. Here we defined Q̂ ≡ q
1
2 t−

1
2Q. The first factor of (5.2.26) is sim-
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ply Zprefactor, which we ignore. The second factor Zpert = (zt−
1
2 q

3
2 ;q2)∞

(zt
1
2 q

1
2 ;q2)∞

comes

from the adjoint hypermultiplet of the N = 4 theory, which is free at N = 1.

The factors in the denominator/numerator come from the chiral multiplets with

Neumann/Dirichlet boundary conditions, respectively. The last factor Zvortex =

(Q̂t
1
2 q

3
2 ;q2)∞

(Q̂t−
1
2 q

1
2 ;q2)∞

makes the contribution from another free hypermultiplet, where

two chiral multiplets in it are given Neumann/Dirichlet boundary conditions,

respectively. In fact it is well known that the ‘vortex field’ makes a free hyper-

multiplet in this case. To see this, first note that with the adjoint hypermultiplet

decoupled at N = 1, this theory is simply an N = 4 SQED with Nf = 1 flavor.

In [173], N = 4 U(N) SQCD with Nf = 2N − 1 flavors was studied. It was

argued that a monopole operator becomes free and decouples in IR. The re-

maining system in IR was argued to be the U(N −1) SQCD with same number

Nf = 2N − 1 of U(N − 1) fundamental flavors. Since the last theory is void at

N = 1, SQED at Nf = 1 in IR is dual to the free hypermultiplet. Indeed, the

vortex partition function of this SQED was shown to be precisely that of a free

hypermultiplet [174]. Defining tI (I = 1, 2, 3, 4) as

(t1, t2, t3, t4) ≡ (t
1
2 z, t

1
2 z−1, t−

1
2 Q̂, t−

1
2 Q̂−1) , (5.2.27)

satisfying t1t2t3t4 = 1, the Abelian index can be written as

ZpertZvortex

∣∣∣
N=1

=
(t−1

2 q
3
2 ; q2)∞(t−1

4 q
3
2 ; q2)∞

(t1q
1
2 ; q2)∞(t3q

1
2 ; q2)∞

. (5.2.28)

In section 4, we shall be interested in the large N free energy of the index,

in the limit β → 0+ where q ≡ e−β. Here, we make such a study at N = 1 as

a warming up. We shall first study the limit β → 0 from the exact expression

(5.2.26), and then discuss how to recover the same result from the saddle point

analysis of the contour integral expression (5.2.11).
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To perform the β → 0 approximation, one should understand the β → 0

limit of (a; e−2β)∞. We are interested in taking β → 0 while keeping it complex,

with Re(β) > 0. Also, other fugacities tI are kept as pure phases: |tI | = 1, while

satisfying t1t2t3t4 = 1. It is important that these phases can be substantially

away from 1. This defines our ‘Cardy limit’ of the index. The importance of

these phases was noticed in [75,76], which will be seen again in our later sections.

In this set-up, one obtains

(a; q2)∞ =
∞∏
n=0

(1−aq2n) = exp

[
−

∞∑
n=1

1

n

an

1− q2n

]
β→0−→ exp

[
− 1

2β

∞∑
n=1

an

n2

]
= exp

[
−Li2(a)

2β

]
(5.2.29)

when a is a phase, |a| = 1. Therefore, in our Cardy limit, the index (5.2.26) is

given by

logZN=1 ∼
1

2β

[
Li2(Q̂t−

1
2 )− Li2(Q̂t

1
2 ) + Li2(zt

1
2 )− Li2(zt

− 1
2 ) + Li2(1)

]
+πrζ log t .

(5.2.30)

Here, we define ξ by 2πrζ ≡ ξ
2β (Q ≡ e−ξ), and keep ξ fixed as one takes β → 0.

Then, defining F by

logZ ∼ − F
2β

(5.2.31)

in the β → 0 limit, one obtains

FN=1 = Li2(zt
− 1

2 )−Li2(zt
1
2 )+Li2(Q̂t

1
2 )−Li2(Q̂t−

1
2 )−Li2(1)−

ξ

2
log t . (5.2.32)

Now we make the saddle point analysis of the integral expression (5.2.11),

at N = 1 and in the limit β → 0. (5.2.11) in this setting becomes

ZN=1 ∼
∫

ds

2πis
exp

[
− ξ

2β
log s+

1

2β

(
Li2(zt

1
2 )− Li2(zt

− 1
2 ) + Li2(t

−1) + Li2(t
1
2 s)− Li2(t

− 1
2 s)
)]

(5.2.33)

where the contour is over the unit circle |s| = 1. In the Cardy limit, we can

ignore the quantization condition of ζ and keep general complex ξ. Taking ξ to
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be purely imaginary, and t, z to be phases, we try to find the saddle point for

s at |β| ≪ 1. One needs to extremize

ξ log s+ Li2(st
− 1

2 )− Li2(st
1
2 ) . (5.2.34)

The saddle point should satisfy

0 = ξ + Li1(st
− 1

2 )− Li1(st
1
2 ) = ξ − log

1− st−
1
2

1− st
1
2

. (5.2.35)

The solution is given by

s0 =
eξ − 1

eξt
1
2 − t−

1
2

=
sinh ξ

2

sinh ξ+T
2

(5.2.36)

with t ≡ eT . s0 is real for purely imaginary ξ, T . Plugging in this value to the

integrand of (5.2.33), s0 = t−
1
2

1−t
1
2 Q̂

1−t−
1
2 Q̂

, one obtains precisely the same F as

(5.2.32). The last statement can be shown analytically by using the identity

Li2(xy)−Li2(x)−Li2(y)+Li2(1) = Li2

(
1− x

1− xy

)
−Li2

(
y
1− x

1− xy

)
+log(x) log

(
1− x

1− xy

)
.

(5.2.37)

5.2.2 Factorization on S2 × S1

So far, we examined the vortex partition function Zvortex that is captured as

a part of the R2 × S1 index, or equivalently the D2 × S1 index with a certain

boundary condition at the edge. In the literature, it was discussed that the

vortex partition function can be a building block of many other supersymmetric

partition functions on compact 3d manifolds such as S2×S1 and S3
b [175–182].

We shall develop a similar factorization formula along the line of [183]. More

precisely, once we consider an S1 fibration on S2 where the angular momentum

fugacity is turned on, the fields are effectively localized at the poles of S2 and

probe local R2 geometry. Thus, the supersymmetric partition functions on those
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manifolds are written in terms of the vortex partition function as the following

universal form:

Z =
∑

Higgs vacua

ZpertZvortexZvortex. (5.2.38)

Only differences are the perturbative contribution Zpert and how to glue two

pieces of the vortex partition functions, i.e., how to define Zvortex, which has

the same functional form as Zvortex up to redefinitions of variables depending

on the background geometry. For our example, the index on S2 × S1 will take

the form of

ZS2×S1(Q̂, t, z, q) =
∑

Y∈Higgs

ZY
pert(t, z, q)Z

Y
vortex(Q̂, t, z, q)ZY

vortex(Q̂
−1, t−1, z−1, q−1) ,

(5.2.39)

where the points Y in the Higgs branch will be specified below.

Our theory of interest includes one fundamental and one adjoint hypermul-

tiplets. Since a 3d N = 4 vector multiplet contains an N = 2 chiral multiplet

as well, we have in total three N = 2 chirals in the adjoint representation. In

the previous section, we showed that the chiral from the N = 4 vector does not

yield any contributing pole. Thus, the factorization of our partition function

mimics that of a theory with two adjoints. The factorization of a 3d N = 2

theory with two adjoints is recently discussed in [183]. It was shown that the

D-term equations of the N = 2 theory restrict its Higgs vacua such that they

are represented by 2-dimensional box diagrams; e.g., see figure 5.1. Further-

more, if the theory has a superpotential, there will be extra conditions from the

F-term equations. In our case, we have the following F-term condition:

qq̃ + [ϕ, ϕ̃] = 0, (5.2.40)

which is a part of the N = 4 D-term conditions. As we have shown in the pre-

vious section, the vacuum solutions have vanishing q̃ and accordingly vanishing
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Figure 5.1: The Higgs vacua of the (massive) N = 2 U(3) theory with one
fundamental and two adjoint chirals are represented by 2-dimensional box di-
agrams due to the D-term conditions. If there is a superpotential, they are
further restricted.

[ϕ, ϕ̃]. The condition [ϕ, ϕ̃] = 0 demands that only the first, third and fifth di-

agrams in figure 5.1 are allowed; in general, only the Young diagram types are

allowed.

To establish the factorization formula with the structures outlined in the

previous paragraph, we start from the known expression for the index on S2×S1

[70, 164], which is [163,165,184]:

ZS2×S1(Q̂, z, t, q) = (5.2.41)

∞∑
{m}=−∞

1

Weyl({m})

∮ ( N∏
a=1

dsa
2πisa

Q̂mat−|ma|/2q|ma|/2

)
×

 ∏
1≤a̸=b≤N

(
1− sas

−1
b q|ma−mb|

)( N∏
a=1

(s−1
a t−

1
2 q

3
2
+|ma|; q2)

(sat
1
2 q

1
2
+|ma|; q2)

(sat
− 1

2 q
3
2
+|ma|; q2)

(s−1
a t

1
2 q

1
2
+|ma|; q2)

)
×

 N∏
a,b=1

(s−1
a sbtq

1+|−ma+mb|; q2)(s−1
a sbz

−1t−
1
2 q

3
2
+|−ma+mb|; q2)(s−1

a sbzt
− 1

2 q
3
2
+|−ma+mb|; q2)

(sas
−1
b t−1q1+|ma−mb|; q2)(sas

−1
b zt

1
2 q

1
2
+|ma−mb|; q2)(sas

−1
b z−1t

1
2 q

1
2
+|ma−mb|; q2)

 .

Here the integration contour for each sa is taken to be the unit circle. Weyl({m})

is the order of the Weyl group remaining unbroken for given magnetic flux

{m} ∈ ZN/SN . In the following computation, however, it will be more conve-

nient to distinguish the permutations in {m} and to take the symmetry factor
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N ! instead of Weyl({m}). In other words, we replace the flux summation by

∞∑
{m}=−∞

1

Weyl({m})
→ 1

N !

∑
{m}∈ZN

. (5.2.42)

From here, we also use a shorthand expression (a; q) ≡ (a; q)∞ in the rest of

this chapter.

We are aiming to evaluate this integral using the residue theorem. Assuming

|q| < 1 and |t| = |z| = 1, we take the poles outside the unit circle, which are

given by the intersections of the following hyperplanes:

sa = t−
1
2 q−

1
2 q−|ma|−2ka ,

sa = sbz
−1t−

1
2 q−

1
2 q−|ma−mb|−2ka ,

sa = sbzt
− 1

2 q−
1
2 q−|ma−mb|−2ka ,

sa = sbtq
−1q−|ma−mb|−2ka

(5.2.43)

where ka ≥ 0. However, poles sitting at the hyperplanes of the fourth type have

vanishing residues. In the set-up of the previous paragraph, this implies that

there are no poles from the adjoint chiral in the N = 4 vector multiplet. The

relevant poles are only determined by hyperplanes of the other types. Thus, as

we noted already, the residue evaluation of our theory resembles that of the

two adjoint theory. While a pole is typically determined by N hyperplanes, for

a general two adjoint theory, it may happen that a set of hyperplanes degen-

erate such that more than N hyperplanes meet at the point. In such cases,

one encounters a double or higher order pole when the N -dimensional integral

is evaluated iteratively. Nevertheless, a particular choice of the superpotential

sometimes yield extra zeros by imposing conditions on the fugacities so that

the higher order poles become simple. Indeed, our N = 4 SYM example turns

out to be such a case.
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At first let us forget about the issue of higher order poles and just focus

on how we organize N linearly independent hyperplanes. Once we pick up N

hyperplanes intersecting at a pole, they can be represented by a binary tree

graph ofN nodes where each node is accompanied by a label of three parameters

(a, za, ka). While the meanings of the tree and the labels (a, za, ka) are rather

clear from (5.2.43), let us explain them briefly. The first parameter a, which is

an integer in the range 1 ≤ a ≤ N without repetition, can be used to label the

nodes. Namely, we will refer to the node with (a, za, ka) as the ath node. Then

one can represent a tree graph using a map p : {1, . . . , N} → {0, . . . , N}. p is

defined such that p(a) = b if the bth node is the parent node of the ath node.

If the ath node is the root node, which doesn’t have a parent node, p(a) = 0.

The other two parameters are chosen such that

za =

 1, p(a) = 0,

z, z−1, p(a) ̸= 0,
ka ≥ 0. (5.2.44)

Note that za distinguishes whether the ath node is the left child or the right

child of the parent node, which are two available choices in a binary tree. Once

a tree p and (a, ka, za) for each node are given, they specify the hyperplanes as

follows:

sa =

 t−
1
2 q−

1
2 q−|ma|−2ka , p(a) = 0,

sp(a)z
−1
a t−

1
2 q−

1
2 q−|ma−mp(a)|−2ka , p(a) ̸= 0.

(5.2.45)

Consequently, each sa at the pole is given by

sa =

(
la−1∏
n=0

z−1
pn(a)

)
(tq)−

la
2 q

−
∑la−1

n=0 |mpn(a)−mpn+1(a)|−2
∑la−1

n=0 kpn(a) (5.2.46)

where la is the integer satisfying pla(a) = 0. For example, the root note has

la = 1. We also define m0 = 0.
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Now let us evaluate the residue at the pole (5.2.46). First we consider N < 4,

in which case, the pole (5.2.46) is always simple. We have to sum the residues

for all possible p and (a, za, ka). Combined with the flux summation, they give

rise to the expression for the index factorized into the perturbative part and

the vortex parts sketched earlier. In particular, the perturbative part can be

extracted out by evaluating the residue for ma = ka = 0, which is given by

Zppert(z, t, q) =

 ∏
1≤a̸=b≤N

(
1− v−1

a vb
)( N∏

a=1

(vaq
2; q2)

(v−1
a ; q2)′

(v−1
a u−2q2; q2)

(vau2; q2)

)

×

 N∏
a,b=1

(vav
−1
b u2; q2)(vav

−1
b v−1q2; q2)(vav

−1
b u−2vq2; q2)

(v−1
a vbu−2q2; q2)(v−1

a vbv; q2)′(v
−1
a vbu2v−1; q2)′


(5.2.47)

where

va =

(
la−1∏
n=0

zpn(a)

)
(tq)

la−1
2 ,

u = t
1
2 q

1
2 , v = zt

1
2 q

1
2 .

(5.2.48)

Note that va reduces to v
la−1 if zb = z for all b. (a; q2)′ is defined around (5.2.16).

Namely, it is defined as an ordinary q-Pochhammer symbol up to the vanishing

factors discarded. Note that there are N such vanishing factors, which arise due

to the pole we have taken.

The expression (5.2.47) is specified by a binary tree p. Note that a binary

tree of N < 4 nodes can be represented by a 2-dimensional box diagram; e.g.,

see figure 5.1 for N = 3. The left child node is placed on top of the parent

node and the right child node is placed at the right side of the parent node.

Among the box diagrams in figure 5.1, the second and the fourth diagrams

have vanishing residues due to the factor
∏N
a,b=1(vav

−1
b u2; q2) in (5.2.47). This

factor gives an extra zero whenever we have diagonally adjacent boxes along
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Figure 5.2: For our N = 4 SYM example, the contributing poles are labeled
by Young diagrams. For N = 4 there are five diagrams, among which the
third diagram corresponds to a degenerate singularity where five hyperplanes
intersect rather than four.

the top-right direction. Thus, for N = 3, only the first, third and fifth diagrams

contribute.

Such box diagrams can label the residues for higher N as well. One may

worry that the correspondence between the binary trees and the 2-dimensional

box diagrams is not one-to-one for N ≥ 4. Indeed, there are two such cases.

First, there exist tree graphs that do not have box diagram counterparts. That

happens only if two nodes of the binary tree are overlapped when they are

represented in the 2-dimensional box diagram. However, such a tree with over-

lapping nodes has the vanishing residue due to the first factor
∏
a̸=b

(
1− v−1

a vb
)

of (5.2.47). Thus, one can always find the corresponding box diagram unless

the tree graph has the vanishing residue.

Second, there can be multiple tree graphs that are mapped to the same

box diagram. This is related to the possibility of higher order poles, which

will demand us to modify the formula (5.2.47). In that case, more than N

vanishing factors appear in the denominator of (5.2.47) if we forget about the ′

symbol for a moment. Such a case, for instance, happens for the third diagram

in figure 5.2. One can associate two different tree graphs to this box diagram

because the top-right box can be either the right child of the top-left node or

the left child node of the bottom-right node. This is exactly due to the fact
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that the five hyperplanes intersect at this pole rather than four. Although the

singularity is unique, there are two ways of picking up four linearly independent

hyperplanes defining this singularity. Therefore, (5.2.47) is wrong if p does not

uniquely label the poles. Instead, we should seek for a formula in which the box

diagrams rather than p label the residues.

Now recall that if there are diagonally adjacent boxes along the top-right

direction, they yield an extra zero. For the third diagram in figure 5.2, this extra

zero cancels out the extra pole from the degenerate hyperplanes such that the

singularity becomes a simple pole. Thus, a simple modification of (5.2.47) will

give the right residue formula if we discard the extra vanishing factors in the

numerator and the denominator simultaneously. In our N = 4 SYM example,

for arbitrary box diagrams, an extra vanishing factor in the denominator is

always accompanied by an extra zero in the numerator. Furthermore, a pole

corresponding to a non-Young diagram has the vanishing residue as we have

demonstrated for N = 3. Thus, the contributing poles are all simple and labeled

by Young diagrams.

Collecting all, we write down a modification of (5.2.47) in terms of the

Young diagrams. For a Young diagram Y, the perturbative part is written as

follows:

ZY
pert(z, t, q) =

 ∏
a ̸=b∈Y

(
1− v−1

a vb
)(∏

a∈Y

(vaq
2; q2)

(v−1
a ; q2)′

(v−1
a u−2q2; q2)

(vau2; q2)

)

×

 ∏
a,b∈Y

(vav
−1
b u2; q2)′(vav

−1
b v−1q2; q2)(vav

−1
b u−2vq2; q2)

(v−1
a vbu−2q2; q2)(v−1

a vbv; q2)′(v
−1
a vbu2v−1; q2)′

 .

(5.2.49)

va is now given by

va = zi(a)−j(a)(tq)
1
2
(i(a)+j(a)−2) (5.2.50)
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where (i(a), j(a)) is the position of box a in the Young diagram Y. Again ′ denotes

that the vanishing factors are discarded. Note that the label a = 1, · · · , N of

each node that we began with is now irrelevant. It will turn out that this is

also true for the vortex parts, so we have N ! identical contributions, which are

canceled by the symmetry factor 1/N !.

Now we move on to the vortex parts. After evaluating the integral by taking

the non-vanishing residues, we are left with the summation over Young diagrams

as well as the two summations over ma and ka. The latter sums over ma, ka can

be reorganized into the sums over the vorticity and the anti-vorticity, which are

completely factorized for given Young diagram Y. The detailed computation of

the vortex parts is similar to what is done in [183]. It turns out that the result is

simply given by making the following replacements in Zvortex in (5.2.22), which

we obtained from the D2 × S1 index in the previous section:

N∏
a=1

→
∏
a∈Y

, va−1 → va = zi(a)−j(a)(tq)
1
2
(i(a)+j(a)−2) , ka → ka , Q → Q̂t

1
2 q−

1
2 .

(5.2.51)

ka is a non-negative integer assigned to each a∈Y such that those integers are

non-decreasing in each row and column of Y. This resembles the standard Young

tableau, in which the associated integers are strictly increasing rather than

non-decreasing. Taking into account those modifications, we have the following

expression of ZY
vortex for the Young diagram Y:

ZY
vortex(Q̂, z, t, q) =

∑
ka

(Q̂t
1
2 q−

1
2 )

∑
a∈Y ka

(∏
a∈Y

(v−1
a ; q2)−ka

(u−2v−1
a q2; q2)−ka

)
(5.2.52)

×

 ∏
a ̸=b∈Y

(vv−1
a vb; q

2)−ka+kb(u
−2v−1

a vbq
2; q2)−ka+kb

(v−1
a vb; q2)−ka+kb(u

−2vv−1
a vbq2; q2)−ka+kb

 .

If we take Y = (1N ), (5.2.52) reduces to Zvort in the previous section.

In the end, combining the perturbative part and the vortex parts, (5.2.41)
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is written in the following factorized form

ZS2×S1(Q̂, z, t, q) =
∑

|Y|=N

ZY
pert(z, t, q)Z

Y
vortex(Q̂, z, t, q)ZY

vortex(Q̂
−1, z−1, t−1, q−1) .

(5.2.53)

The expression (5.2.53) is also checked numerically up to N = 3 as a series

expansion in q up to q3, and also at N = 4 up to q2.

5.3 Cardy limit of the index on S2 × S1: set-up

In this section, we set up a direct framework of making the Cardy limit ap-

proximation of the index on S2 ×R. The result will be connected to the vortex

partition function that we studied in the previous section. Although we focus on

the N = 4 Yang-Mills theory for M2-branes introduced in the previous section,

the framework applies to other 3d QFTs. We shall provide similar analysis for

the ABJM theory in section 4.3.

The index of ourN = 4 gauge theories on S2×S1 is given by (e−ξ̂ ≡ Q̂) [163]

Z =
∞∑

{m}=−∞

1

Weyl({m})

∮
dαa
2π

e−ξ̂
∑N

a=1ma

N∏
a=1

(qt−1)
|ma|

2
(e−iαaq|ma|t−

1
2 q

3
2 ; q2)(eiαaq|ma|t−

1
2 q

3
2 ; q2)

(eiαaq|ma|t
1
2 q

1
2 ; q2)(e−iαaq|ma|t

1
2 q

1
2 ; q2)

×
∏
a̸=b

q−
|mab|

2 (1− eiαabq|mab|)
N∏

a,b=1

t
|mab|

2
(eiαabtq1+|mab|; q2)

(eiαabt−1q1+|mab|; q2)
(5.3.1)

×
N∏

a,b=1

(qt−1)
|mab|

2
(eiαabq|mab|z−1t−

1
2 q

3
2 ; q2)(eiαabq|mab|zt−

1
2 q

3
2 ; q2)

(eiαabq|mab|zt
1
2 q

1
2 ; q2)(eiαabq|mab|z−1t

1
2 q

1
2 ; q2)

Here, the factor
∏
a̸=b(1 − eiαabq|mab|) coming from the Haar measure and the

N = 2 vector multiplet may be written as∏
a̸=b

(1− eiαabq|mab|) =
∏
a̸=b

(eiαabq|mab|; q2)

(eiαabq2+|mab|; q2)
, (5.3.2)

which was relevant in section 2 when we discussed the factorization of this index

into vortex partition functions.

137



We would first like to rewrite the index in the following way. Each chiral

multiplet contributes the following factor to the contour integrand:(
e−iρ(α)q1−Ry−1

) |ρ(m)|
2 (e−iρ(α)q2−R+|ρ(m)|y−1; q2)

(eiρ(α)qR+|ρ(m)|y; q2)
. (5.3.3)

For the chiral multiplets in our N = 4 theory, R = 1
2 and y is given by a suitable

combination of t and z. For the adjoint chiral multiplet in the N = 4 vector

multiplet, this formula applies with R = 1 and y = t−1. Even for the N = 2

vector multiplet, inverse of this expression applies at R = 0 and y = 1 if one

uses the decomposition (5.3.2). One can show that [185](
e−iρ(α)q1−Ry−1

) |ρ(m)|
2 (e−iρ(α)q2−R+|ρ(m)|y−1; q2)

(eiρ(α)qR+|ρ(m)|y; q2)
=
(
e−iρ(α)q1−Ry−1

)− ρ(m)
2 (e−iρ(α)q2−R−ρ(m)y−1; q2)

(eiρ(α)qR−ρ(m)y; q2)
.

(5.3.4)

This identity states that one can replace all |ρ(m)|’s by −ρ(m). (Of course one

can have a similar identity replacing |ρ(m)| → +ρ(m).) One also finds(
eiρ(α)q1−Rỹ−1

) |ρ(m)|
2 (eiρ(α)q2−R+|ρ(m)|ỹ−1; q2)

(e−iρ(α)qR+|ρ(m)|ỹ; q2)
=
(
eiρ(α)q1−Rỹ−1

)− ρ(m)
2 (eiρ(α)q2−R−ρ(m)ỹ−1; q2)

(e−iρ(α)qR−ρ(m)ỹ; q2)
.

(5.3.5)

In our N = 4 theory, one obtains a product of the two left hand sides of (5.3.4)

and (5.3.5) for each hypermultiplet. The above identities state that this factor

can be replaced by(
q1−Ry−

1
2 ỹ−

1
2

)−ρ(m) (eρ(ū)q2−Ry−1; q2)(eρ(u)q2−Rỹ−1; q2)

(eρ(u)qRy; q2)(eρ(ū)qRỹ; q2)
(5.3.6)

where q = e−β and u ≡ βm + iα. We shall apply this formula for all weights

ρ in a representation R, so that there is a product
∏
ρ∈R which comes with

holomorphic ρ(u), while
∏

−ρ∈R comes with anti-holomorphic ρ(ū). In other

words, one obtains the following factorization of the integrand into ‘holomophic’

and ‘anti-holomorphic’ parts:

N∏
a=1

(t/q)
ua
4β

(euat−
1
2 q

3
2 ; q2)

(euat
1
2 q

1
2 ; q2)

N∏
a,b=1

(euabzt−
1
2 q

3
2 ; q2)

(euabzt
1
2 q

1
2 ; q2)

·
N∏
a=1

(t/q)
ūa
4β

(eūat−
1
2 q

3
2 ; q2)

(eūat
1
2 q

1
2 ; q2)

N∏
a,b=1

(eūabz−1t−
1
2 q

3
2 ; q2)

(eūabz−1t
1
2 q

1
2 ; q2)

.

(5.3.7)
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Here, we inserted R = 1
2 for all hypermultiplet fields, y = ỹ = t

1
2 for funda-

mental hyper, and y = t
1
2 z, ỹ = t

1
2 z−1 for adjoint hyper. The ‘holomorphic’

part depending on ua is part of the integrand appearing in the D2 × S1 index

(5.2.11) after setting eua = sa, except the factor (t/q)
ua
4β that will be accounted

for shortly. The ‘anti-holomorphic part’ will also have a similar interpretation

on D2 × S1. As for the integrand coming from the N = 4 vector multiplet,

∏
a̸=b

(e−iαabq)−
|mab|

2 (1− eiαabq|mab|)
N∏

a,b=1

(e−iαabt)
|mab|

2
(e−iαabtq1+|mab|; q2)

(eiαabt−1q1+|mab|; q2)
(5.3.8)

=
∏
a̸=b

(e−iαabq)−
|mab|

2
(eiαabq|mab|; q2)

(e−iαabq2+|mab|; q2)

N∏
a,b=1

(e−iαabt)
|mab|

2
(e−iαabtq1+|mab|; q2)

(eiαabt−1q1+|mab|; q2)
,

the first factor comes from the N = 2 vector multiplet, and the second factor

from the N = 2 adjoint chiral multiplet within the N = 4 vector multiplet.

Applying (5.3.4), one obtains

∏
a̸=b

(e−iαabq)
mab
2

(euab ; q2)

(eūabq2; q2)

N∏
a,b=1

(e−iαabt)−
mab
2

(eūabtq; q2)

(euabt−1q; q2)
=

∏
a̸=b(e

uab ; q2)∏
a,b(e

uabt−1q; q2)
·
∏
a,b(e

ūabtq; q2)∏
a̸=b(e

ūabq2; q2)
.

(5.3.9)

The holomorphic part is again part of the integrand appearing in the D2 × S1

index (5.2.11).

Finally, the fugacity factor e−ξ̂
∑

ama for the topological U(1)T can be writ-

ten as

e−ξ̂
∑

ama = e
− ξ̂

2β

∑
a uae

− ξ̂
2β

∑
a ūa , (5.3.10)

which again factorizes to holomorphic and anti-holomorphic part. Combined

with the factor (t/q)
∑

a
ua
4β from hypermultiplets, one obtains

e
− ξ

2β

∑
a uae

− ξ
2β

∑
a ūa (5.3.11)

where

e−ξ ≡ e−ξ̂(t/q)
1
2 (5.3.12)
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is the FI parameter that appeared in theD2×S1 index. (Recall that 2πrζ = ξ
2β .)

So one obtains a ‘formal factorization’ of the integrand of the index on S2×S1.

This is not a true factorization yet, because ua, ūa have to be partly integrated

(imaginary part) while partly summed over discretely (real part).

Before proceeding, with the formula for the index with all absolute values of

ρ(m) removed as above, we identify the periods of the chemical potentials and

present a natural basis. This will be useful later for understanding the precise

structures of the saddle point free energy. From the integrand including the flux-

dependent zero point energy factor, one identifies the following periodicities:

ξ̂ ∼ ξ̂ + 2πi (5.3.13)

(T, β) ∼ (T ± 2πi, β + 2πi)

f ∼ f + 2πi

(ξ̂, f, β;αa) ∼ (ξ̂ ± πi, f ± πi, β + 2πi;αa + π) (5.3.14)

(T, ξ̂, f ;αa) ∼ (T + 2πi, ξ̂ ± πi, f ± πi;αa + π)

where t = eT , z = ef . The ± signs appearing on the right hand sides are inde-

pendent. Note that the shift αa → αa+π of the integral variables is sometimes

required to see that the integrand is invariant. Now let us define the variables,

∆1 ≡ −ξ̂+
T

2
+

β

2
, ∆2 ≡ ξ̂+

T

2
+

β

2
, ∆3 ≡ f − T

2
+

β

2
, ∆4 ≡ −f − T

2
+

β

2
.

(5.3.15)

Note that these four variables can be regarded as four independent chemical

potentials of the index. They are related to β as ∆1 +∆2 +∆3 +∆4 − 2β = 0,

so that the sum over them is approximately zero in the Cardy limit β → 0. In

terms of these variables, the 12 periodicities identified above can be rephrased

as

(∆I ,∆J) ∼ (∆I + 2πi,∆J ± 2πi) (5.3.16)
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shifts for 6 possible pairs ∆I ,∆J among ∆1,2,3,4. These are the basic periodici-

ties expected for the SO(8) chemical potentials, coupling to vector, spinors or

their product representations. In terms of ∆I ’s, the index can be written as

ZS2×S1(∆I) = Tr
[
(−1)F e−

∑4
I=1 ∆I(QI+J)

]
(5.3.17)

where QI ’s are the U(1)4 ⊂ SO(8) Cartans, and J is the angular momentum

on S2. ∆I should satisfy

Re(∆I) > 0 ,
4∑
I=1

∆I = 2β , (5.3.18)

as they are conjugate the charges QI + J which are non-negative in the BPS

sector and furthermore can grow to +∞.

Let us now take the β → 0 Cardy limit of the index, keeping small complex

β with Re(β) > 0. The idea [186] is to now regard ua = βma + iαa as a

continuum complex variable, and replace the sum overma by integration. TheN

dimensional integral over αa and sum over ma are replaced by a 2N dimensional

integral over ua, ūa. One obtains

Z ∼
∫ N∏
a=1

duae
− ξ

2β

∑N
a=1 ua

N∏
a=1

(euat−
1
2 q

3
2 ; q2)

(euat
1
2 q

1
2 ; q2)

N∏
a,b=1

(euabzt−
1
2 q

3
2 ; q2)

(euabzt
1
2 q

1
2 ; q2)

∏
a̸=b(e

uab ; q2)∏
a,b(e

uabt−1q; q2)
(5.3.19)

×
∫ N∏

a=1

dūae
− ξ

2β

∑N
a=1 ūa

N∏
a=1

(eūat−
1
2 q

3
2 ; q2)

(eūat
1
2 q

1
2 ; q2)

N∏
a,b=1

(eūabz−1t−
1
2 q

3
2 ; q2)

(eūabz−1t
1
2 q

1
2 ; q2)

∏
a,b(e

ūabtq; q2)∏
a̸=b(e

ūabq2; q2)
.

Here, we have formally separated the integrands into u dependent parts and

ū dependent parts. Note that, with complex β (which will play crucial roles

later in this chapter), ua and ūa are not complex conjugate to each other. As

we took β → 0 limit to make the continuum approximation for the summation

of ma, the q-Pochhammer symbols appearing in the integrand should also be

approximated to dilogarithm functions as follows:

(xqa; q2)
β→0−→ exp

[
−Li2(x)

2β

]
. (5.3.20)
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We shall seek for the saddle points of ua, ūa which will approximate the integral

in the β → 0 limit. While seeking for the saddle points, one can separately con-

sider the saddle points for ua, ūa independently, since the integrand factorizes.

During this course, whenever any of the x variables appearing in Li2 functions

are larger than 1, i.e. |x| > 1, analytic continuations are made for those Li2(x)

functions. Whenever |x| is greater than 1, one would have to worry about the

branch cut issues of Li2(x) after making the analytic continuations. This is-

sue will be treated later when we discuss concrete problems. (However, ‘branch

cuts’ here should always be understood as singularities of the Cardy free energy

rather than signaling multi-valued functions.)

Here, note that the first line of (5.3.19) is the β → 0 limit of the vortex par-

tition function on D2×S1, considered in section 2, corresponding to the vertical

Young diagram (1N ). The holomorphic integrand is given by the exponential of

1

2β

[
−ξ
∑
a

ua +
∑
a

(
Li2(e

uat
1
2 )− Li2(e

uat−
1
2 )
)

(5.3.21)

+
∑
a,b

(
Li2(e

uabzt
1
2 )− Li2(e

uabzt−
1
2 ) + Li2(e

uabt−1)
)
−
∑
a̸=b

Li2(e
uab)

 .

On the other hand, the β → 0 limit of the integrand on the second line of

(5.3.19) can be obtained from (5.3.21) by flipping (β, ξ) → (−β,−ξ) and (t, z) →

(t−1, z−1). This is the same as the Cardy limit of the anti-vortex partition

function of section 2. Therefore, at least in the Cardy limit, the two factors in

(5.3.19) can be interpreted as the vortex-anti-vortex factorization which refers

to a particular point in the Higgs branch (corresponding to the vertical Young

diagram). In particular, we have shown that the particular vortex partition

function chosen in section 2.1 will provide the Cardy saddle point of the index

on S2 × S1, which is not clear at all in the factorization formula of section 2.2.

Note that, after the factorization, the periodicities (5.3.16) of the four chem-
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ical potentials ∆I are not manifest in each integrand. Therefore, when we study

the Cardy (and large N) limits in the next section, we shall first make a suitable

period shifts of ∆I ’s to bring them into a canonical chamber, and then factorize

using the setup of this section.

5.4 Cardy limit: results

In this section, we study the Cardy limit of our index on S2 × S1. We shall

discuss in sections 4.1 and 4.3 the large N and Cardy limits for our N = 4

Yang-Mills theory and the ABJM theory, respectively. In section 4.2, we study

the finite N Cardy limit. The Cardy limit is defined as β → 0 with other

chemical potentials (e.g. ∆I ’s) imaginary and finite [75].

5.4.1 Large N Cardy free energy and black holes

In this subsection, we study the large N free energy of the index on S2 × S1

in the Cardy limit. In section 3, we have seen its connection to the partition

function ZD2×S1 on D2 × S1 ∼ R2 × S1 at a particular point on the Higgs

branch.

The holomorphic factorization of section 3 obscures the periodicities of

chemical potentials if one pays attention to the holomorphic factor only. So be-

fore performing the factorization of section 3, we should first specify the ranges

of the imaginary parts of ξ, T, f . (Recall that t = eT , z = ef , 2πrζ = ξ
2β .) Note

that these three variables are in the natural convention of the vortex partition

function of section 2. Especially, ξ is related to the fugacity of the topological

charge (on S2 × S1) by Q̂ ≡ e−ξ̂ = q1/2t−1/2Q = e−ξ−T/2−β/2. Without losing
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generality, we take

2πp1 < Im(ξ) < 2π(p1 + 1) , 2πp2 < Im(T ) < 2π(p2 + 1) (5.4.1)

2πp3 < Im

(
f − T

2

)
< 2π(p3 + 1) , 2πp4 < Im

(
−f − T

2

)
< 2π(p4 + 1)

for certain integers p1, · · · , p4. (It will be convenient later to set ranges as above.)

Although we gave ranges to the imaginary parts of chemical potentials, they

are (approximately) pure imaginary in the Cardy limit. This is because, as we

take β → 0 with Re(β) > 0, (5.3.18) demands Re(∆I) → 0+ for all I’s. Adding

the last three inequalities of (5.4.1), one obtains

2π(p1+p2+p3) < 0 < 2π(p2+p3+p4+3) → p2+p3+p4 = −1,−2 . (5.4.2)

We also recall the periodicities of these variables that we explained in section

3. Since we are now taking the Cardy limit β → 0, we collect the periodic shifts

which leave small β invariant:

(ξ, T, f) ∼ (ξ + 2πi, T, f) ∼ (ξ, T, f + 2πi) ∼ (ξ, T + 2πi, f ± πi) . (5.4.3)

In terms of the variables ξ, T, f − T
2 ,−f − T

2 , the four shifts above are rewritten

as(
ξ, T, f − T

2
,−f − T

2

)
∼
(
ξ + 2πi, T, f − T

2
,−f − T

2

)
∼
(
ξ, T + 2πi, f − T

2
− 2πi,−f − T

2

)
∼
(
ξ, T + 2πi, f − T

2
,−f − T

2
− 2πi

)
∼
(
ξ, T, f − T

2
+ 2πi,−f − T

2
− 2πi

)
. (5.4.4)

Using these four period shifts, one can set p1, p2, p3, p4 to be one of the two

cases:

region I : p1 = −1 , p2 = −1 , p3 = 0 , p4 = 0

region II : p1 = 0 , p2 = 0 , p3 = −1 , p3 = −1 . (5.4.5)
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Notice that, each of the last three shifts in (5.4.4) picks a pair in p2, p3, p4, and

shifts this pair by (+1,−1). So the case I is for p2 + p3 + p4 = −1 in (5.4.2),

while the case II is for p2 + p3 + p4 = −2. ξ has its own shift symmetry in

(5.4.4), which we have suitably set as (5.4.5) for later convenience. Collecting

all, it suffices to consider the two cases of (5.4.5) only.

Here, recall that the index on S2 × S1 is related to that on D2 × S1 as

follows:

lim
β→0

ZS2×S1(β, ξ̂, f, T ) ∼ lim
β→0

ZD2×S1(β, ξ, f, T )ZD2×S1(−β,−ξ,−f,−T ) .

(5.4.6)

From (5.4.6), we (formally) find the following expression

ZS2×S1(β, ξ̂, f, T ) ∼ ZS2×S1(−β,−ξ̂,−f,−T ) , (5.4.7)

for the free energy in the Cardy limit. Thus, from the Cardy index in the region

I of (5.4.5), one can easily generate that in the region II, since the two regions

I : −2π < Im(ξ) < 0, −2π < Im(T ) < 0, 0 < Im

(
f − T

2

)
< 2π, 0 < Im

(
−f − T

2

)
< 2π

II : 0 < Im(ξ) < 2π, 0 < Im(T ) < 2π, −2π < Im

(
f − T

2

)
< 0, −2π < Im

(
−f − T

2

)
< 0

(5.4.8)

are related to each other by the sign flips of (β, ξ, f, T ). So from now on, we focus

on the calculations in region I. Then, from (5.4.6), in order to obtain the Cardy

index on S2×S1 in region I, one should compute two Cardy indices on D2×S1.

However, we need not compute them independently. To see this, first note that

the Cardy limit of the latter index takes the form of logZD2×S1 ∼ −F(ξ,f,T )
2β .

Now consider the complex conjugation of this free energy. By definition of this

index, which traces over the Hilbert space with integer coefficients and real

charges, the complex conjugated free energy can be obtained by simply complex
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conjugating the chemical potentials. So one obtains

logZD2×S1(β, ξ, f, T ) ∼ −F(ξ̄, f̄ , T̄ )

2β̄
∼ logZD2×S1(β̄,−ξ,−f,−T ) . (5.4.9)

At the last step, we used the fact that ξ, f, T are all imaginary in our Cardy

limit. Therefore, the nontrivial part F(−ξ,−f,−T ) of ZD2×S1(−β,−ξ,−f,−T )

in (5.4.6) can be obtained once we compute F(ξ, f, T ) in region I.

We compute the large N and Cardy limit of logZD2×S1(β, ξ, f, T ) in region

I. The Cardy limit β → 0+ of ZD2×S1 can be evaluated by the saddle point

method as

ZD2×S1 ∼ exp

(
− 1

2β
W∗
)

, (5.4.10)

with W given by

W =N
(
Li2(zt

−1/2q1/2)− Li2(zt
1/2q−1/2)− Li2(t

−1)
)
+

N∑
a=1

(
ξ log sa + Li2(sat

−1/2q1/2)− Li2(sat
1/2q−1/2)

)
+

∑
1≤a̸=b≤N

(
Li2(sasb

−1q−1)− Li2(sasb
−1t−1) + Li2(sasb

−1zt−1/2q1/2)− Li2(sasb
−1zt1/2q−1/2)

)
.

(5.4.11)

Here, we used the asymptotic formula of the q-Pochhammer symbol in appendix

A. W∗ denotes the saddle point value of W. Saddle point equations are given

by (no summation for a):

sa∂saW = ξ + Li1(sat
−1/2q1/2)− Li1(sat

1/2q−1/2) +
∑
b̸=a

[
Li1(sasb

−1q−1)− Li1(sbsa
−1q−1)

− Li1(sasb
−1t−1) + Li1(sbsa

−1t−1) + Li1(sasb
−1zt−1/2q1/2)

− Li1(sbsa
−1zt−1/2q1/2)− Li1(sasb

−1zt1/2q−1/2) + Li1(sbsa
−1zt1/2q−1/2)

]
= 0.

(5.4.12)

Note that sa = 0 is a fake solution since the original equations ∂saW = 0 have

1/sa factors. By redefining parameters and exponentiating both sides, one can

see that the above saddle point equations (5.4.12) take the form of the Bethe
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ansatz equations [171].3 Finally, combining (5.4.6), (5.4.9), (5.4.10), one obtains

logZS2×S1(β, ξ̂, f, T ) ∼ −
W∗(ξ, f, T )−W∗(ξ, f, T )|(ξ̄,f̄ ,T̄ )=(−ξ,−f,−T )

2β

= −
2i Im [W∗(ξ, f, T )] |(ξ̄,f̄ ,T̄ )=(−ξ,−f,−T )

2β
,

(5.4.13)

where ξ, f, T are taken to be pure imaginary while taking complex conjugations.

We now analytically find the relevant solution of (5.4.12). We will basically

follow the procedures used in [66]. Based on the discussions made so far, we

consider the region I of (5.4.5),

−2π < Im(ξ) < 0, −2π < Im(T ) < 0, 0 < Im

(
f − T

2

)
< 2π, 0 < Im

(
−f − T

2

)
< 2π ,

(5.4.14)

where ξ, T, f are imaginary. Our ansatz for the eigenvalue distribution is given

by

sa = s0e
Nαx(a)+iy(x(a)) (x1 ≤ x(a) ≤ x2) , (5.4.15)

where s0 > 0 is a positive real constant. Here x(a) and y(x) are real, which

we take to be at O(N0). We introduced a factor Nα with 0 < α < 1. The

constant α will be determined later. Also, we assumed that the eigenvalues are

distributed in [x1, x2] for some x1 < x2. Then, we introduce the continuum

variable x(a) → x assuming that we ordered the eigenvalues to make x to

be an increasing function of a. This particular ordering cancels out the Weyl

factor N !. In addition, we introduce the density function of the eigenvalues as

ρ(x) = 1
N
da
dx . Here, we further assume a connected distribution of eigenvalues

where ρ is always positive in (x1, x2).

3In (5.4.11) and (5.4.12), we have no essential need to keep q → 1− in our Cardy limit. In
fact we shall insert q = 1 in these formulae shortly, except that we temporarily need q−1 factors
for the terms Li2(sas

−1
b q−1) and Li1(sas

−1
b q−1), as natural regulators to keep the saddle point

slightly away from the branch cuts.
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In this setting, we first take the continuum limit of W. We will only consider

the leading contribution at small β, plugging in q = 1 in (5.4.11) and (5.4.12).W

can be divided into two parts, W = Wext+Wint. Wext denotes the contribution

from the external potential:

Wext = N

∫ x2

x1

dxρ(x)
(
ξ log s(x) + Li2(s(x)t

−1/2)− Li2(s(x)t
1/2)

)
.

(5.4.16)

Wint comes from the interactions of eigenvalue pairs:

Wint =N2

∫ x2

x1

dxρ(x)

∫ x2

x
dx′ρ(x′)

(
Li2(s(x)s(x

′)
−1

) + Li2(s(x
′)s(x)−1)

− Li2(s(x)s(x
′)
−1

t−1)− Li2(s(x
′)s(x)−1t−1) + Li2(s(x)s(x

′)
−1

zt−1/2)

+ Li2(s(x
′)s(x)−1zt−1/2)− Li2(s(x)s(x

′)
−1

zt1/2)− Li2(s(x
′)s(x)−1zt1/2)

)
.

(5.4.17)

The main strategy to extract the leading order contribution at in large N is to

use the following integral formula [160]:∫ x>0

0
dxρ(x)Lis(e

−Nαx+iy(x)) =

∫ x

0
dxρ(x)

∞∑
n=1

en(−N
αx+iy(x))

ns

=

∞∑
n=0

1

ns

[
−ρ(x)einy(x)

e−nN
αx

nNα

∣∣∣∣x
0

+

∫ x

0
dx(ρ(x)einy(x))′

e−nN
αx

nNα

]
= N−αρ(0)Lis+1(e

iy(0)) +O(N−2α) ,

(5.4.18)

where we used the power series definition of the polylogarithm function on the

first line. One can see that the integral on the second line is suppressed by a

factor of 1/Nα compared to the boundary term, by performing integration by

parts repeatedly. Note that we assumed dρ/dx, |dy/dx| < Nα.
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Applying

Lin(a) + (−1)nLin(a
−1) = −(2πi)n

n!
Bn

(
log a

2πi
− p

)
(2πp < Im(log a) < 2π(p+ 1), a /∈ (0, 1))

B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x , · · · , (5.4.19)

Wext is approximated at large N as

Wext = N1+α

[
ξ

∫ x2

x1

dxρ(x)x

+

(
T − 2πi

(⌊
2y(x) + Im(T )

4π

⌋
−
⌊
2y(x)− Im(T )

4π

⌋))∫ max(x2,0)

max(0,x1)
dxρ(x)x

]
+O(N1)

≡ N1+α

[
ξ

∫ x2

x1

dxρ(x)x+
(
T − 2πip′2

) ∫ max(x2,0)

max(0,x1)
dxρ(x)x

]
+O(N1) .

(5.4.20)

Here, ⌊a⌋ means the unique integer n satisfying n ≤ a < n + 1. The last step

is the definition of the integer p′2, whose values will be specified in a moment.

One can see that the specific form of y(x) does not affect to the leading order.

Only the range of y(x) contributes because it appears in the ⌊. . .⌋ symbols. (Its

specific form may affect the sub-leading order in 1/N , which is not of our interest

here.) As part of our extremization problem, one should extremize W with

respect to y(x). However, it seems hard to make a fully general extremization

of the functional containing a discrete function ⌊. . .⌋. To further manipulate,

we assume that y(x) does not pass across the branch cuts which cause the

discrete jumps. One can regard it as part of our ansatz. There are two branch

cuts from two ⌊. . .⌋’s. Hence, we should demand y(x) to be within a specific

region bounded by the two branch cuts. There are two possible regions, with

the following values of p′2:

(i)
Im(T )

2
< y(x) < − Im(T )

2
(mod 2π) : p′2 = −1 ,

(ii) − Im(T )

2
< y(x) < 2π +

Im(T )

2
(mod 2π) : p′2 = 0 . (5.4.21)
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Later, we will determine which case yields nontrivial large N solutions.

We then consider the large N approximation of Wint. Again to simplify the

manipulations after using (5.4.19), (5.4.18), we assume that y(x′)−y(x) at x′ >

x does not pass across the branch cuts. In particular, during this manipulation,

one apparently encounters terms at order O(N2+α) whose coefficient is nonzero

unless ⌊
y(x′)− y(x) + Im(β)

2π

⌋
= −1 (x′ > x) . (5.4.22)

(Here, we restored the subleading O(β) correction by not strictly plugging in

q = 1 in (5.4.11), which is a convenient and natural regularization.) As we just

started from a QFT with N2 degrees of freedom, There will not be physical

saddle points whose free energies scale like N2+α. So we impose the condition

above on y(x). There are other conditions for y(x) so that no branch cuts

are crossed at all. Collecting them all, one obtains the following conditions for

x′ > x:

−2π < y(x′)− y(x) + Im(β) < 0 (5.4.23)

0 < y(x′)− y(x)− Im(T ) < 2π

0 < y(x′)− y(x) + Im(f − T/2) < 2π

−2π < y(x′)− y(x) + Im(f + T/2) < 0 .

Here we quote a result that it we shall eventually pay attention to small β

satisfying Im(β) < 0. This is because, once we compute the free energy and

go back to the microcanonical ensemble by the Legendre transformation, the

dominant saddle point of our interest will always satisfy Im(β) < 0. This is

basically the result of [74], which we shall briefly review later in this subsection.

With this assumed in foresight, the right inequality of the first line of (5.4.23)

says that y(x) is a non-increasing function, i.e. y(x′) − y(x) ≤ 0 at x′ > x.
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Here, the equality in ≤ is allowed because of the regularization with Im(β) < 0.

With this non-increasing property assumed, all the right inequalities of the

second, third, fourth lines of (5.4.23) are automatically satisfied. Also, the left

inequality on the first line of (5.4.23) is a consequence of the left inequality on

the fourth line. Finally, the left inequalities of the second, third, fourth lines

take the form of y(x′)−y(x) > A with negative real numbers A. With y(x) being

a non-increasing function in the interval (x1, x2), such a condition is equivalent

to y(x2) − y(x1) > A, since y(x2) − y(x1) is the minimum of y(x′) − y(x). So

collecting all, (5.4.23) can be rephrased as

y(x′)− y(x) ≤ 0 (for x′ > x) , y(x2)− y(x1)− Im(T ) > 0 , (5.4.24)

y(x2)− y(x1) + Im(f − T/2) > 0 , y(x2)− y(x1) + Im(f + T/2) > −2π .

A particularly important possibility for y(x) would be

y(x) = constant . (5.4.25)

Indeed, in the next subsection, we will numerically see that the Cardy saddle

point solutions satisfy y(x) = 0 at arbitrary finite N . With the conditions

(5.4.24), one obtains the following result for Wint after some calculations:

Wint = −N2

2
(T+2πi)

(
−f −T

2

)
−N2−α

2
(T+2πi)

(
f − T

2

)(
−f − T

2

)∫ x2

x1

dxρ(x)2 +O(N2−2α) .

(5.4.26)

Here, we used
∫ x2
x1

ρ(x)dx = 1. Wint in (5.4.26) shows short-ranged interactions

only between nearby eigenvalues. One can see again that the specific form of

y(x) does not matter at the leading order. Since we are only interested in the

leading free energy in N , we will not care about y(x) below.

As a side remark before proceeding, we comment on the first term of (5.4.26)

proportional to N2, which does not depend on the eigenvalue distribution ρ(x).
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The terms in Wext, Wint which depend on ρ(x) will be soon extremized below at

α = 1
2 , with the expected N

3
2 scaling for M2-branes. However, the first term of

(5.4.26) proportional toN2 might apparently look contradictory to the expected

M2-brane behaviors. Here, we note that there is a very natural interpretation

of such a term in the context of of the partition function on D2 × S1. Namely,

if one considers a 3d QFT on D2 × R or D2 × S1, boundary chiral anomalies

may be induced on S1×R or T 2. We chose the boundary conditions so that the

U(N) gauge anomaly is canceled. But there are boundary ’t Hooft anomalies for

the global symmetries which are probed by the chemical potentials T, f . Since

these boundary anomalies are proportional to N2, the spectrum on D2 × R

should contain such light degrees of freedom at the boundary. So even if the

bulk physics would only see N
3
2 degrees of freedom, logZD2×S1 will see certain

terms at N2 order. This is our interpretation of the first term of (5.4.26). If one

combines two vortex partition functions to make an index on S2 × S1 without

any boundary using (5.4.13), the two terms proportional to N2 indeed cancel,

− N2

2
(T + 2πi)

(
−f − T

2

)
− (complex conjugate) = 0 . (5.4.27)

This is consistent with our interpretation. Also, note that we have no terms

scaling like N2 in (5.4.26) which depend on the dynamical gauge holonomy x

(and accordingly not ρ(x)). This is because our QFT in section 2 has no bound-

ary gauge anomaly. On the other hand, as commented briefly in footnote 2, p.7,

we found it quite tricky (if not impossible) to provide simple boundary condi-

tions for the ABJM theory without gauge anomaly. This will make the large N

calculus very difficult. In section 4.3, we will introduce a rather ugly factoriza-

tion for the ABJM index which breaks the U(N) × U(N) gauge symmetry, to

circumvent this problem.
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Collecting (5.4.20) and (5.4.26), one obtains

W ∼N1+α

[
ξ

∫ x2

x1

dxρ(x)x+
(
T − 2πip′2

) ∫ max(x2,0)

max(0,x1)
dxρ(x)x

]

− N2−α

2
(T + 2πi)

(
f − T

2

)(
−f − T

2

)∫ x2

x1

dxρ(x)2 +W0

(5.4.28)

with W0 ≡ −N2

2 (T + 2πi)
(
−f − T

2

)
, where p′2 is either −1 or 0, as shown in

(5.4.21). W0 can be ignored during our extremization problem. We extremize W

with ρ(x) in the set C =
{
ρ|
∫ x2
x1

ρ(x)dx = 1; ρ(x) ≥ 0 pointwise
}
. As N → ∞,

in order to get nontrivial solutions, Wext and Wint−W0 should be at the same

order in N . So we will now set α = 1
2 . Introducing the Lagrange multiplier λ,

we extremize the following functional, where Ŵ ≡ W −W0:

Ŵ
N

3
2

= ξ

∫ min(0,x2)

min(x1,0)
dxρ(x)x+

(
ξ + T − 2πip′2

) ∫ max(x2,0)

max(0,x1)
dxρ(x)x (5.4.29)

−1

2
(T + 2πi)

(
f − T

2

)(
−f − T

2

)∫ x2

x1

dxρ(x)2 + λ

(∫ x2

x1

dxρ(x)− 1

)
.

When x1 ≤ x2 ≤ 0 or 0 ≤ x1 ≤ x2, one can see that there are no solutions

for x1, x2 extremizing Ŵ. Thus, a nontrivial saddle point only exists when

x1 ≤ 0 ≤ x2. In the last case, the extremal ρ(x) is given by

ρ(x) =


4λ+4ξx

(T+2πi)(2f−T )(−2f−T ) , x1 ≤ x ≤ 0

4λ+4(ξ+T−2πip′2)x
(T+2πi)(2f−T )(−2f−T ) , 0 ≤ x ≤ x2

. (5.4.30)

From the normalization condition
∫ x2
x1

ρ(x)dx = 1, the Lagrange multiplier λ is

given by

λ =
(T + 2πi) (2f − T ) (−2f − T )− 2(ξ + T − 2πip′2)x

2
2 + 2ξx21

4(x2 − x1)
. (5.4.31)

With pure imaginary ξ, f, T , ρ(x) is automatically a real function. Inserting the

above ρ(x) and λ back to Ŵ, one obtains

Ŵ = N
3
2
−12γ2 + 12γ(T ′x22 − ξx21) + ξ2x41 + T ′2x42 − 4x1x2(ξ

2x21 + T ′2x22) + 6ξT ′x21x
2
2

24γ(x2 − x1)
,

(5.4.32)
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where T ′ ≡ ξ+T−2πip′2, γ ≡ (T+2πi)
(
f − T

2

) (
−f − T

2

)
. Then, differentiating

the above Ŵ with x1, x2, the extremal x1, x2 satisfies

x1x2 =
(T + 2πi) (2f − T ) (−2f − T )

2(T − 2πip′2)
< 0 (5.4.33)

x21 =
(T + 2πi) (2f − T ) (−2f − T ) (ξ + T − 2πip′2)

2ξ(T − 2πip′2)
> 0,

x22 =
(T + 2πi) (2f − T ) (−2f − T ) ξ

2(ξ + T − 2πip′2)(T − 2πip′2)
> 0 .

The first condition is compatible with the product of last two, and we have been

careful so far not to make any square roots. Here, negativity of x1x2 demands

p′2 = −1, so that one should choose the case (i) of (5.4.21). Also, the positivity

of x21, x
2
2 demands −2π < Im(ξ + T ) < 0. (Its range was originally −4π <

Im(ξ + T ) < 0.) Otherwise, we do not find any large N Cardy saddle point for

sa’s in the region I of (5.4.5). In this set up, non-negativity of ρ(x) is guaranteed

in the whole region (x1, x2). In particular, one finds ρ(x1) = ρ(x2) = 0 at this

saddle point.

Inserting the above saddle point solution, the extremal value of W is given

by

W∗ ∼ −N
3
2
1

3

(T + 2πi) (2f − T ) (−2f − T )

x2 − x1
+W0 . (5.4.34)

We took no square-roots so far to avoid branch ambiguities. We now explain

this final step. One should simply remember that, while taking the square roots

of the expressions for x21, x
2
2 in (5.4.33), one takes the negative root for x1 and

positive root for x2. The final result can be phrased in a simple manner by

recalling the allowed ranges of chemical potentials,

0 < Im(−ξ), Im(ξ + T + 2πi), Im

(
f − T

2

)
, Im

(
−f − T

2

)
< 2π . (5.4.35)

Especially, all expressions appearing in Im above are i times positive numbers.
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After plugging in the values of x1, x2 in (5.4.34), one obtains

W∗ ∼ i
2
√
2N

3
2

3

√
(−ξ)(ξ + T + 2πi)

(
f − T

2

)(
−f − T

2

)
−N2

2
(T + 2πi)

(
−f − T

2

)
.

(5.4.36)

Here, the expression appearing in the square-root is the product of the four num-

bers appearing in (5.4.35), where each of them is i times a positive real number

in the Cardy limit. So the product of them is real and positive. Our convention

for the formulae involving square-roots, starting from (5.4.36), is to take square

roots of positive numbers only, and to take the positive root. This applies to

all our formulae below for the free energies in the Cardy limit. Sometimes our

formulae are used in the non-Cardy regime, e.g. in [74] to discuss dual AdS4

black holes. In this case, one takes the unique root which reduces to the positive

root in the Cardy limit.4 Consequentially, the free energy logZD2×S1 ∼ −W∗

2β

is given by

logZD2×S1 ∼ −i

√
2N

3
2

3β

√
(−ξ)(ξ + T + 2πi)

(
f − T

2

)(
−f − T

2

)
+

N2

4β
(T + 2πi)

(
−f − T

2

)

≡ −i

√
2N

3
2

3β

√(
−ξ̂+

T

2

)(
ξ̂ +

T

2
+ 2πi

)(
f − T

2

)(
−f − T

2

)
+ logZ0 , (5.4.37)

where ξ̂ = ξ + T
2 + β

2 , Z0 ≡ e
−W0

2β .

Based on the studies made on ZD2×S1 , we now compute the large N and

Cardy limit of the index on S2×S1, using (5.4.13). Recall that in this formula,

we consider the imaginary part of W∗ in (5.4.36) at pure imaginary ξ, f, T .

Using (5.4.35), the first term in (5.4.36) is pure imaginary, while the second

term is purely real. So multiplying two ZD2×S1 ’s in (5.4.13), O(N
3
2 ) term is

doubled, while O(N2) term is canceled. In fact at this stage, we can present

4Equivalently but more concretely, the rule for taking the square root
√
z of a complex

number z in the free energy of [74] is to take z in the principal branch −π < Arg(z) < π.
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both results in the two regions I and II as defined in (5.4.5). The large N Cardy

free energies of ZS2×S1 in the two cases are given by

logZS2×S1(β, ξ̂, f, T ) ∼ ∓2i

√
2N

3
2

3β

√(
−ξ̂ +

T

2

)(
ξ̂ +

T

2
± 2πi

)(
f − T

2

)(
−f − T

2

)
,

(5.4.38)

where the upper/lower signs are for the region I/II, respectively. The existence

of two regions will play a rather important physical role below. We summarize

again that in the two regions, the chemical potentials satisfy

region I : 0 < Im

(
−ξ̂ +

T

2

)
, Im

(
ξ̂ +

T

2
+ 2πi

)
, Im

(
f − T

2

)
, Im

(
−f − T

2

)
< 2π ,

region II : −2π < Im

(
−ξren +

T

2

)
, Im

(
ξ̂ +

T

2
− 2πi

)
, Im

(
f − T

2

)
, Im

(
−f − T

2

)
< 0 .

To see the symmetry most transparently, we use the proper SO(8) basis given

by (5.3.15),

∆1 ≡ −ξ̂+
T

2
+
β

2
, ∆2 ≡ ξ̂+

T

2
+
β

2
±2πi , ∆3 ≡ f−T

2
+
β

2
, ∆4 ≡ −f−T

2
+
β

2
,

(5.4.39)

in the case I and II, respectively. This is an expression valid at finite β. Com-

pared to (5.3.15), we have only made a ±2πi shift for ∆2 in the case I/II re-

spectively.5 These chemical potentials satisfy 0 < ±Im(∆I) < 2π in the Cardy

limit, and further satisfy

4∑
I=1

∆I − 2β = ±2πi , (5.4.40)

where upper/lower signs are again for the case I/II, respectively. In the two

cases, the free energy is given by

logZS2×S1 ∼ ∓i
4
√
2N

3
2

3

√
∆1∆2∆3∆4

2β
. (5.4.41)

5Note that the index Tr
[
(−1)F e−∆2Q2 · · ·

]
can be rewritten as Tr

[
e−(∆2±2πi)Q2 · · ·

]
by

absorbing (−1)F by ±2πi shift of ∆2. So the shifted variables are chemical potentials in the
latter convention for the index.
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This finishes the derivation of our large N Cardy free energy on S2 × S1. The

free energy in other chambers of Im∆I can be obtained by the period shifts of

∆I ’s.

One can make a similar Cardy approximation with the ABJM model for

N M2-branes. We reported some difficulties in section 2 to study the vortex

partition function for the ABJM theory on D2 × S1, due to the diverse pos-

sibilities of anomaly-free boundary conditions. This will be closely related the

asymptotic factorization in the Cardy limit in the set-up of section 3. Namely,

we will have to factorize the integrand in a way that the ‘holomorphic’ and

‘anti-holomorphic’ factors separately do not respect the U(N) × U(N) Weyl

symmetry. We will not cover this part in this chapter and simply write down

the result:

logZS2×S1 ∼ ∓2
√
2k

1
2N

3
2

3β
i
√

∆1∆2∆3∆4 , (5.4.42)

where k is the Chern-Simons level of the ABJM theory. The derivation of the

above formula can be found in section 4.3 in [79].

(5.4.41) describes the deconfined phase of our gauge theory as it scales

like N3/2 at large N . Together with (5.4.40), (5.4.41) precisely matches the

entropy function of electrically charged rotating supersymmetric black holes in

AdS4 × S7 [74], which we discussed in chapter 2. Namely, [74] performed the

Legendre transformation, which is extremizing

S(QI , J ; ∆I , β) = logZS2×S1 +
4∑
I=1

QI∆I + 2βJ (5.4.43)

with ∆I , β, subject to (5.4.40). Then it was shown that the resulting micro-

canonical entropy agrees with the Bekenstein-Hawking entropy of the BPS black

holes in AdS4×S7 [82], upon inserting a charge relation satisfied by known an-

alytic black hole solutions. Therefore, we have statistically accounted for the
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microstates of the supersymmetric AdS4 black holes by deriving this free energy.

One important fact which is perhaps not emphasized in [74] is the following.

As one extremizes (5.4.43), the dominant saddle point has complex ∆I , β as well

as complex value S∗ for the extremized ‘entropy.’ Its interpretation is given as

follows (See also [78]). The exponential of the saddle point ‘entropy’ S∗ given

by

eS∗(QI ,J) = eiImS∗(QI ,J)eReS∗(QI ,J) (5.4.44)

should somehow represent the large charge and large N degeneracies of BPS

states. Here we present an interpretation of the charge-dependent phase factor

eiImS∗ , as mimicking rapid oscillations between ±1 as the macroscopic angular

momentum charges QI , J are shifted by their minimal quantized units. If the

macroscopic bosonic and fermionic states are not completely cancelled at a

given charge order, the resulting integer after the partial cancelation can be

either positive or negative, depending on the precise values of charges. Semi-

classical Legendre transformation is not capable of deciding these signs, which

should depend on the precise quantized values of macroscopic charges. Our

interpretation is that, the macroscopic Legendre transformation can at least

imitate the rapid ±1 oscillation by having an imaginary part of the saddle

point entropy S∗ [78]. However, to make this story more precise, one should

recall that the unitarity of the QFT demands the existence of complex conjugate

pairs of saddle points if they are not real. Indeed, the two cases I/II of (5.4.41)

guarantee that such a pair exists for the physical saddle point. Then, adding

the contributions from the pair, one obtains

∼ eReS∗ cos (ImS∗ + · · · ) , (5.4.45)

where now one obtains a real entropy ReS∗ and the cos factor is interpreted as

imitating the rapid oscillation between ±1.
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Let us illustrate that the physical value of complex β that is relevant for the

Legendre transformation satisfies Im(β) < 0, which was assumed during the

computations. The general studies are made in [74], so we illustrate this fact in

the case when all U(1)4 ⊂ SO(8) charges are equal: Q1 = Q2 = Q3 = Q4 ≡ Q.

We therefore set ∆I ≈ πi
2 for all I = 1, · · · , 4 in case I. Then (5.4.41) becomes

logZS2×S1 ∼ −i

√
2π2N

3
2

6
β−1 ≡ −i

c

β
. (5.4.46)

c is a positive number. For any positive number c, the Legendre transformation

will yield Imβ < 0. This can be seen by considering the extremization of (5.4.43),

which is now

S(Q, J ;β) ≈ −i
c

β
+ 4Q∆+ 2βJ ≈ −i

c

β
+ 2Jβ + 2πiQ . (5.4.47)

After extremization, one obtains

S∗ = 2
√
−2icJ + 2πiQ , β∗ =

√
−ic

2J
. (5.4.48)

The square roots are taken so that ReS∗ > 0 and Reβ∗ > 0. In particular, one

obtains

β∗ =

√
c

2J
e−

πi
4 (5.4.49)

which indeed satisfies Imβ∗ < 0. So Imβ < 0 is the region of the chemical po-

tential which is relevant for our microstate counting, justifying this assumption

made earlier in this section. The set-up Imβ < 0 will also be assumed in the rest

of this section even at finite N , which will be justified whenever the effective

value of c in the free energy is positive.

Before concluding this subsection, let us comment on the physics of (de)confinement

and the expectation value of the Wilson-Polyakov loops. These discussions will

shed more lights on the dynamics of this system.
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The reduction of the apparent N2 degrees of freedom down to N
3
2 was

triggered by the condensation of magnetic monopole operators at the saddle

point. Let us discuss the relation in more detail. The condensation is measured

by the eigenvalues ua = βma+ iαa deviating from the unit circle, |sa| = |eua | ≠

1. The large N condensation is macroscopic, max |βma| ∼ N
1
2 . More precisely,

one finds

Mab ≡ |βmab+iαab| ≈ |Re(βmab)| =
√
N |x(a)−x(b)| , a(x) ≡ N

∫ x

x1

ρ(x′)dx′ ,

(5.4.50)

with x and ρ(x) being O(N0). The approximation ≈ is possible because ua are

close to the real axis in our saddle point ansatz. x(a) and x(b) are given by

the inverse function of a(x). Therefore, Mab becomes much larger than 1 when

|x(a)−x(b)| ≫ N− 1
2 . From the fact that x and ρ(x) do not scale with large N ,

one concludes that Mab ≫ 1 if |a− b| ≫
√
N .

Mab is the effective mass of the off-diagonal mode at a’th row and b’th

column of the adjoint fields in our QFT, provided by the magnetic monopole

operator. This mass becomes much larger than 1 if the mode is ‘deeply off-

diagonal’ |a−b| ≫
√
N . Therefore, the light modes which can contribute to the

free energy in this monopole background should satisfy |a − b| ≲
√
N . These

‘near-diagonal’ modes are a small fraction of the N2 matrix elements. Since

the width of the near-diagonal region is
√
N , the number of the near-diagonal

modes scales like N ·N
1
2 = N

3
2 , accounting for the desired scaling. Technically,

the two-body interaction potential Wint for the adjoint fields is approximated

to a short-ranged interaction (5.4.26) after making the large N approximation.

This is because only the near-diagonal modes remain light in the monopole

background. Therefore, we realize that the N
3
2 scaling of the free energy is due

to a partial confinement triggered by the magnetic monopole condensation. This
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partial confinement happens even in the high temperature limit of the CFT.

It is also interesting to consider the saddle point value of the Polyakov loop

in the fundamental representation, given by

P ≡ 1

N

N∑
a=1

eua ∼ e
√
Nx2 (5.4.51)

with x2 > 0 at O(N0). − logP measures the free energy of an external quark

running along the temporal circle, in the grand canonical ensemble [57]. The

fact that − logP ∼ −
√
Nx2 is negative implies that the presence of such a

quark loop is thermodynamically preferred by the system. Here, note that our

N = 4 Yang-Mills theory has dynamical fundamental fields. So at the saddle

point with a large expectation value for the Polyakov loop, the loop amplitude

for the dynamical fundamental fields will be amplified. In fact, this amplification

did happen in our calculus. Namely, while approximating Wext to (5.4.20), we

encountered some Li2(sa · · · ) with |sa| ≫ 1. These terms are the reason why

Wext is amplified as N → N1+α in (5.4.20).

To summarize, the loop amplification factor Nα for the fundamental fields

in Wext is balanced with the partial confinement factor N−α for the adjoint

fields in Wint, to yield the N
3
2 scaling at α = 1

2 . Both phenomena are triggered

by the monopole condensation.

5.4.2 Finite N Cardy free energy

In this subsection, we study logZS2×S1 in the finite N Cardy regime. We have

already discussed in section 2 the Cardy limit at N = 1, on single M2-brane.

Here we focus on the non-Abelian cases with N ≥ 2. The main goal of this

subsection is to explore a finite N version of the N
3
2 degrees of freedom. Namely,
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we have obtained

logZ(0) ∼ −i
2
√
2N

3
2

3β

√
∆1∆2∆3∆4 (5.4.52)

as our large N free energy (in what we called region I). We are interested in the

ratio logZ
logZ(0)

of our finite N free energy logZ and the fiducial one logZ(0), to

see whether the partial confinement due to monopole condensation is stronger

or weaker at finite N . At N = 2, we shall present an analytic solution for the

Cardy semi-classical approximation. At higher N ’s, we shall rely on numerical

methods to find the Cardy saddle points. Apparently, this might look similar to

the numerical studies made on the ‘saddle points’ of the S3 partition functions

or the topological index at finite N [66, 160]. However, in the previous studies

in the literautre, there are no small parameters to admit semi-classical saddle

point approximations at finite N . On the other hand, we do have small |β|,

which makes our finite N results physical. We will always find logZ
logZ(0)

> 1.

For simplicity, we first consider the case with ∆1 = ∆2 = ∆3 = ∆4 = πi
2

(after shifting ∆2 by 2πi as (5.4.39)), which corresponds to the case with equal

U(1)4 ⊂ SO(8) R-charges, Q1 = Q2 = Q3 = Q4. In terms of the variables of

the Yang-Mills theory, this amounts to setting ξ = −πi
2 , f = 0, T = −πi. Then,

the saddle point equations (5.4.12) become

0 = −πi

2
+ Li1(isaq

1
2 )− Li1(−isaq

− 1
2 ) +

∑
b(̸=a)

[
Li1(sas

−1
b q−1)− Li1(sbs

−1
a q−1)− Li1(−sas

−1
b )

+Li1(−sbs
−1
a ) + Li1(isas

−1
b q

1
2 )− Li1(isbs

−1
a q

1
2 )− Li1(−isas

−1
b q−

1
2 ) + Li1(−isbs

−1
a q−

1
2 )
]
.(5.4.53)

Here, we again temporarily included q(≈ 1−) to regularize some variables sitting

on top of the branch cuts, similar to the previous subsection. Exponentiating
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both sides, one obtains

1 + iq−1/2sa

1− iq1/2sa

N∏
b=1
b ̸=a

1− q−1sbs
−1
a

1− q−1sas
−1
b

1 + sas
−1
b

1 + sbs
−1
a

1− iq1/2sbs
−1
a

1− iq1/2sas
−1
b

1 + iq−1/2sas
−1
b

1 + iq−1/2sbs
−1
a

= i ,

(5.4.54)

which are rational equations of sa’s. Some solutions of (5.4.54) do not satisfy

the original equations (5.4.53). We are interested in the solution of (5.4.53).6 So

after solving (5.4.54), one should check whether the solutions satisfy (5.4.53) or

not. Then, one should take β → 0 (or q → 1) limit on the solutions to remove

the branch cut regulator.

Before proceeding, let us comment on a ‘trivial solution’ of (5.4.53), (5.4.54),

which is

s1 = s2 = · · · = sN ≡ s0 ,
1 + iq−

1
2 s0

1− iq
1
2 s0

= i . (5.4.55)

s0 is the Cardy saddle point solution to the Abelian M2-brane index, (5.2.36),

which in (5.4.55) is given by s0 → 1. At N = 1, we have shown in section 2

that this is the one and only saddle point which yields the correct free energy

for single M2-brane. At higher N ≥ 2, there are good reasons to trust that they

are forbidden saddle points, which we sketch now.

We first recall that a similar phenomenon was observed for the 3d vector-

Chern-Simons models [166,167], in which one found an incompressible nature of

the eigenvalue distribution for sa in the high temperature limit. To understand

this, one should first note that partition functions of 4d gauge theories on S3×S1

are also given in terms of the holonomy integrals, over αa (or sa). At high

temperature, the general expectation is that these eigenvalues asymptotically

6We think that extra solutions to (5.4.54) may also be valid saddle points, which apparently
look illegal in the current setting because we have replaced discrete magnetic flux sums into
continuum integrals. More carefully doing the flux sum along the line of [167], we expect to
reveal the relevance of these extra solutions. However, it happens that a natural finite N
version of the saddle points encountered in section 4.1 solves (5.4.53).
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approach the same value, s1 = · · · = sN , so that the underlying gauge symmetry

is asymptotically unbroken. This is the ‘maximally deconfining’ saddle point,

at which quarks and gluons are maximally liberated to a deconfined plasma.

However, in 3d gauge theories, partition functions are given by both integrals

over αa and sums over the GNO charges ma. In particular, [167] discussed

the thermal partition functions of 3d vector-Chern-Simons theories on S2 × S1

at high temperature. They showed that the discrete sums over ma yield the

following factor in the integrand for αa:

N∏
a=1

δ (kαa) , (5.4.56)

where k is the Chern-Simons level for the U(N) gauge symmetry, and δ(x) is

the periodic delta function satisfying δ(x) = δ(x+2π). It has k sharply peaked

solutions for N variables, αa = 2πna
k , where na = 0, 1, · · · , k − 1. Therefore,

if N is larger than k, more than one eigenvalues should assume exactly the

same value. Then [167] argues that the Haar measure
∏
a<b

(
2 sin αa−αb

2

)2
pro-

vides exact 0, forbidding such a saddle point. To summarize, the GNO charge

sums and the Haar measure of 3d gauge theories may impose extra exclusion

principles on αa, forbidding them to assume same values.

Since our naive saddle point (5.4.55) also has coinciding eigenvalues, one can

suspect that similar exclusions may happen. Indeed, by following the procedure

of [167] in our index, we find such exclusions at N ≥ 2. To explain this, one

should go one order beyond our Cardy approximation, which only keeps the

leading β−1 order in the exponent. One starts from (5.3.1), with absolute values

of the fluxes removed. Here, rather than making a continuum approximation of

the flux sum, one keeps the discrete sums (which is a resolution needed to see

the exclusion principle of coincident eigenvalues). Then in the Cardy limit, one
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approximates

(xe−βy; e−2β) ≈ exp

[
−Li2(x)

2β
+

1− y

2
log(1− x) + · · ·

]
, (5.4.57)

keeping the subleading O(β0) term. In (5.3.1), x will contain eiαa . x will also

contain the macroscopic condensation of ma at the saddle point. y contains

the fluctuation la of the monopole flux ma = m∗
a + la around the saddle point

value m∗
a. Following [167], we would like to sum over the discrete la, rather than

making a continuum approximation. Summing over la’s, one obtains

N∏
a=1

2πδ

(
− i

2
log

(1− eβm
∗
a+iαat−

1
2 )(1− eβm

∗
a−iαat−

1
2 )

(1− eβm∗
a+iαat

1
2 )(1− eβm∗

a−iαat
1
2 )

+ iξ̂ − iT

2

)
(5.4.58)

in the integrand of αa integrals. Here we used 2πδ(x) =
∑∞

l=−∞ eilx for the

periodic delta function δ(x) = δ(x+ 2π). The argument of (5.4.58) is real. The

delta function is peaked when αa solves

e−ξ̂+
T
2

[
(1− eβm

∗
a+iαat−

1
2 )(1− eβm

∗
a−iαat−

1
2 )

(1− eβm∗
a+iαat

1
2 )(1− eβm∗

a−iαat
1
2 )

] 1
2

= 1 . (5.4.59)

We are interested in the fate of the saddle point (5.4.55), or more generally

(5.2.36). In particular, plugging in the saddle point value of βm∗
a, there is a

unique solution αa = 0 (mod 2π) for (5.4.59). Therefore, following the argu-

ments of [167], only one eigenvalue can sit at this unique peak: otherwise, the

Haar measure will provide 0. This leads to the conclusion that the naive saddle

point (5.4.55) will be relevant only at N = 1.7

With these understood, let us first consider the case with N = 2. Among

4 solutions of (5.4.54), there are two solutions satisfying (5.4.53). One is given

7However, as commented in [167], this argument relies on the fact that the delta functions
like (5.4.56), (5.4.58) do not spread as one includes further subleading corrections in β. To
the best of our knowledge, this issue is not completely clarified so far. We hope to completely
resolve this issue within the indices in the near future.
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by (5.4.55), which is dismissed as explained. Another solution is given by

s1 =
1

2

(
1− 31/4

√
2 +

√
3
)
≈ 0.435421 , s2(= s−1

1 ) =
1

2

(
1 + 31/4

√
2 +

√
3
)
≈ 2.29663 ,

(5.4.60)

in β → 0 limit with Im(β) < 0, up to permutation. It is important to keep the

regulator β, with the correct sign for Im(β) < 0 as explained in section 4.1, to

get this solution. This is because of the presence of Li1(sas
−1
b ) = − log(1−sas

−1
b )

and Li1(sbs
−1
a ) in the saddle point equations at q = 1, since the solution (5.4.60)

sits precisely at a branch cut. This solution satisfies (5.4.53) only when Im(β) <

0, which is our physical region for complex β. Finally, the Cardy free energy of

logZS2×S1 at this saddle point is given from (5.4.13) by

logZS2×S1

∣∣∣
N=2

∼ i

2β

[
−8G− 2 Im

{
2Li2(ix) + 2Li2

(
i

x

)
+ 2Li2(ix

2) + 2Li2

(
i

x2

)
+ Li2

(
1

x

)}]
≈ −17.4771i

2β
,

(5.4.61)

where x ≡ s1 = s−1
2 = 1

2

(
1− 31/4

√
2 +

√
3
)
≈ 0.435421, and

G ≡
∞∑
n=0

(−1)n

(2n+ 1)2
=

Li2(i)− Li2(−i)

2i
≈ 0.915966 (5.4.62)

is Catalan’s constant.

When N ≥ 3, we cannot solve (5.4.54) analytically since they are sextic

equations even at N = 3. Thus, we numerically solve the saddle point equations

at β = 0. At β = 0, (5.4.54) is simplified as

1 + isa
1− isa

N∏
b=1
b ̸=a

(
1 + isas

−1
b

1− isas
−1
b

)2

= i , (5.4.63)

which is so-called the Bethe ansatz equations. We first find numerical solutions

of (5.4.63) at N = 3. Having set β = 0, there could possibly be some solutions

at finite β that we miss. We assume that the physical solution remains to
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solve (5.4.63) and proceed. (This is obviously true at large N , as we confirm

numerically below.) Note also that, since we solve the exponentiated equation

(5.4.63), nonzero β as a branch-cut regulator is unnecessary. In this set-up, we

found 13 numerical solutions of (5.4.63). Among them, there is only one solution

(except (5.4.55)) satisfying (5.4.53), given by

s1 ≈ 0.230396, s2 ≈ 1, s3 ≈ 4.34035 , (5.4.64)

up to permutations of sa’s. As before, this solution exactly lies on the branch

cut of the vector multiplet part when β = 0. The correct sign of Im(β), which

makes the above solution satisfy (5.4.53), is Im(β) < 0. The Cardy free energy

from (5.4.13) is given by

logZS2×S1

∣∣∣
N=3

≈ −29.8009i

2β
, (5.4.65)

assuming Im(β) < 0.

For N ≥ 4, we will directly solve (5.4.53) numerically, rather than (5.4.54).

Since we have been obtaining solutions with real positive sas
−1
b till N ≤ 3, we

should carefully treat the branch cuts on the real axis of the sas
−1
b planes in the

β → 0 limit. The functions in (5.4.53) to be careful about are Li1(q
−1sas

−1
b )−

Li1(q
−1sbs

−1
a ), as we take q → 1− with Re(β) > 0, Im(β) < 0. In the numerics,

we plugged in very small Im(β) < 0 to get the solutions, resolving the branch

cut ambiguity. (On the other hand, we find no solutions after plugging in very

small Im(β) > 0.)

Now we show the numerical results. We used Newton’s method to find the

roots of (5.4.53).8 For N ≤ 100, we found that all eigenvalues sa are posi-

tive real in our solutions. These eigenvalues can be sorted in ascending order:

8The Newton method may in principle miss some solutions, as it depends on the choice
of initial values. However, even after trying many initial values, we found no more solutions
than those presented below.
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(a) The black solid line is the range of
eigenvalue distribution extrapolated from
large N .
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(b) Black solid lines are the density func-
tions extrapolated from large N .

Figure 5.3: (a) Eigenvalue distributions at N = 25, 50, 75, 100, (b) Densities of
eigenvalues at N = 25 (blue) and N = 100 (yellow)

ya = 0, 0 < s1 < s2 < . . . < sN . We also mention that our finite N numeri-

cal solutions also satisfy all the assumptions (5.4.21), (5.4.24) made in section

4.1 for large N analysis, coming from the eigenvalue distributions not crossing

branch cuts. The N eigenvalues spread out from s0 (→ 1 in the Cardy limit)

with the width roughly proportional to N1/2. The detailed eigenvalue distri-

butions at various N are given by Fig. 5.3. The density of the eigenvalues is

defined as ρ(x) = 1
N
da
dx .

logZS2×S1 at various N are given by Fig. 5.4. One finds that the large N

analytic approximation of section 4.1 is well-fitted with the numerical result at

large enough N . The difference between the numerical result and the fiducial

one in Fig. 5.4(a) increases as N grows, which seems to scale like O(N
1
2 ). In

addition, we find that the finite N Cardy free energy (F = −Re (logZ)) is

always smaller than the fiducial one. Although we do not display the relevant

plot here, we found that the numerical result for Re(W∗) is also well-fitted to

the analytically computed W0 at large enough N .

Our numerical solutions for sa are very simple, staying at the positive real
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Figure 5.4: (a) Imaginary parts of 2β logZ (dots) and 2β logZ(0) (solid line).
(b) Ratio of the finite N free energy logZ and the fiducial free energy logZ(0)

(dots). Solid line is drawn just as a reference line.

axis. One may wonder that such simple distributions are due to the simplified

setting ∆1 = ∆2 = ∆3 = ∆4. However, we found that the eigenvalues are

positive real even at unequal ∆I ’s. As the qualitative behaviors are very similar,

we shall not plot the results for unequal ∆I ’s here.

As long as we are aware of, our results are first quantitatively explored finite

N versions of N
3
2 on M2-branes. Especially, it will be interesting to see if there

are any further implications of the analytic coefficient of (5.4.61), which should

be replacing N
3
2 at N = 2.

5.5 Conclusion and remarks

In this chapter, we explored the Cardy limit of the index for the M2-brane

SCFTs on S2 × R. Our studies are made by analyzing the vortex partition

functions, and also suitably approximating the GNO charge sum for the mag-

netic monopole operators. At large N , we have quantitatively shown that the

deconfined free energy scales like N
3
2 . This free energy statistically accounts for

the Bekenstein-Hawking entropies of large BPS black holes in AdS4×S7. We dis-
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covered the important roles played by the condensation of magnetic monopole

operators, which provides a mechanism for partial confinement of N2 degrees

of freedom. We have also found finite N versions of N
3
2 degrees of freedom by

studying the Cardy limit of the index.

We believe that these discoveries will shed very concrete lights on the

strongly interacting dynamics of 3d (S)CFTs, including the M2-brane CFTs.

One important issue that has been treated rather briefly in this chapter is

the exclusion behavior of eigenvalues in our index. This phenomenon has been

first explored in the 3d vector-Chern-Simons theories, either using semi-classical

arguments [166] or based on path integral approach [167]. We employed the

strategy of [167] and studied the index of our M2-brane QFT. The key result

is that the GNO charge sum forbids eigenvalues to assume same values, not

even asymptotically in the high temperature limit. In the vector-Chern-Simons

model, this phenomenon played important roles to make certain dualities to

hold. In our M2-brane QFT, similar exclusion principle forbids the naive saddle

point whose free energy is proportional to N2. Both in the study of [167] and

this chapter, there are further issues to clarify concerning the small spreading

of the delta functions of αa’s, as explained in the conclusion of [167].

As a technical remark, we mainly used the N = 4 Yang-Mills-matter theory

engineered on the D2-D6-brane system, rather than the ABJM theory. When

we first started our project, this was because we were aiming to use the vor-

tex partition function in the Higgs branch and the factorization of ZS2×S1 . In

Chern-Simons-matter theories, studies of vortex partition functions are more

difficult. Apparently, this seems to be due to the difficulty in finding natural

anomaly-free boundary condition on D2 × S1. More physically, with Chern-

Simons terms, there may be so-called non-topological vortices in the symmetric
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phase, apart from the topological vortices in the Higgs phase. This is because

once we have electrically charged configurations in the symmetric phase, mag-

netic flux is induced due to the Gauss’ law of Chern-Simons-matter theory. It is

natural that these non-topological vortices may play roles in the factorization

formulae of the ABJM theory, if there is one at all. However, our alternative

asymptotic factorization of section 3 (in the Cardy limit) can be applied to the

ABJM theory, as we explained in section 4.3 of [79].
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Chapter 6

Universal 3d Cardy block and
various AdS4 black holes

In this chapter, we discuss the Cardy limit of 3d supersymmetric partition func-

tions which allow the factorization into the hemisphere indices: the generalized

superconformal index, the refined topologically twisted index and the squashed

sphere partition function. In the Cardy limit, the hemisphere index can be eval-

uated by the saddle point approximation where there exists a dominant saddle

point contribution, which we call the Cardy block. The Cardy block turns out

to be a simple but powerful object as it is a building block of other partition

functions in the Cardy limit. The factorization to the Cardy block allows us

to find universal relations among the partition functions, which we formulate

as index theorems. Furthermore, if we consider a holographic 3d SCFT and its

large N limit, those partition functions relate to various entropic quantities of

the dual gravity theory in AdS4. As a result, our result provides the micro-

scopic derivation of the universal relations among those entropic quantities of
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the gravity theory. We also discuss explicit examples, which confirm our general

index theorems.

6.1 Introduction and summary

Last few years, the localization has played an important role in understanding

supersymmetric theories on compact manifolds. Thanks to this technique, one

can compute various exact BPS observables such as partition functions and Wil-

son loops, which turn out very useful to test the non-perturbative phenomena

in strongly coupled systems.

One of those observables is the holomorphic block, which can be defined as a

partition function on D2×S1 in 3d [176] and as that on D2×S2 in 4d [187]. The

holomorphic block is of particular interest because it is a basic building block of

various other supersymmetric partition functions. A partition function defined

on a circle fibered, either trivially or nontrivially, over a sphere is written in

terms of holomorphic blocks as follows:

ZM =
∑
α

||Bα||2M (6.1.1)

where the fusion rule || · · · ||2 depends on the manifoldM. α specifies the bound-

ary condition defining the holomorphic block, and one can obtain a new super-

symmetric partition function ZM by summing the square of the holomorphic

block over those boundary conditions. The holomorphic block also relates to

the open topological string amplitude and the vortex partition function on Ω-

deformed R2×S1 [175–178]. The holomorphic block appears in various contexts

such as the AGT-like correspondence [188] and supersymmetric dualities. See,

e.g., [189,190] and [174,176,177,182,183,191].
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While the holomorphic block turns out to be a useful quantity in various

contexts, its matrix integral expression needs some care as one should specify

the integration contour depending on the boundary condition α. See [176] for

explicit examples. On the other hand, if one is interested in the Cardy limit,

which is usually called the semi-classical limit, of the blocks and especially the

dominant contribution, one may perform a saddle point approximation of the

integral and pay particular attention only to the leading saddle point. In this

way, one can circumvent the explicit determination of the integration contour

and can extract the dominant contribution in the Cardy limit. In this chapter,

we give a particular name for such dominant contribution, Cardy block, as it

plays an important role in our discussion.

Such Cardy block has been somehow overlooked due to its simplicity. How-

ever, recently it was found that the 3d Cardy block is indeed extremely useful,

especially for the microstate counting of AdS4 black holes. As we discussed in

chapter 5, the large N computation of the 3d superconformal index is chal-

lenging due to the existence of supersymmetric monopole operators. The lo-

calization saddles of the 3d superconformal index include infinite monopole

configurations, whose individual contribution has to be summed to obtain the

exact superconformal index. This problem can be rephrased in a slightly differ-

ent way using the holomorphic block. According to (6.1.1), the superconformal

index is also written in terms of the holomorphic blocks where the Cardy block

gives the dominant contribution. Furthermore, the Cardy block itself can be

independently computed using the localization, which provides another way to

compute the superconformal index in the Cardy limit. In that case, the infi-

nite monopole summation is already encoded in the Cardy block. Indeed, it

was shown in [79], which was discussed in chapter 5, that the large N limit of

the Cardy block, more precisely its square, successfully reproduces the known
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entropy function of the rotating BPS black hole in AdS4 × S7 [74], considered

in chapter 2, using the ABJM theory and the mirror dual of the maximal SYM

theory [44, 162]. The Legendre transformation of such entropy function yields

the Bekenstein-Hawking entropy of the dual black hole with the large angular

momentum.

In this chapter, we extend this analysis to more general theories and parti-

tion functions. We will consider the Cardy limit of the hemisphere index and

various other partition functions allowing the factorization into the holomorphic

blocks: the generalized superconformal index, the refined topologically twisted

index1 and the squashed sphere partition function. Especially in the Cardy

limit, the free energies of those partition functions, defined by FM = − logZM,

are written in terms of the Cardy block C in a much simpler manner than

(6.1.1):

FD2(t;β) ≈ − log C(t;β) ,

FS2(t, n;β) ≈ N log β − log C(t;β)− log C(t̄;−β) ,

F twisted
S2 (t, n;β) ≈ N log β − log C(t;β)− log C(t̄−1;−β) ,

FS3
b
(∆;β) ≈ N

2
log β − log C(e∆;β) ,

(6.1.2)

which only refer to the dominant saddle. We may call those formulae Cardy

factorizations. We should mention that the Cardy factorization of the topolog-

ically twisted index happens only in special circumstances such as the large N

limit. See section 6.2 for more detailed discussions including the notation. Also

note that our analysis will be applied on generic 3d N = 2 supersymmetric

1While the topologically twisted index can be defined on a generic Riemann surface Σg

of arbitrary genus g, the refined version is only available for S2, which has U(1) isometry
[181, 192, 193]. In this chapter, we focus on the refined topologically twisted index on S2

because such refinement is essential for the factorization and the Cardy limit, which play
crucial roles in our discussion.
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theories having UV Lagrangian description.

Surprisingly, the Cardy factorization allows us to find various universal re-

lations among those partition functions in the Cardy limit, some of which, in

particular, are phrased as index theorems in section 6.3. For example, we for-

mulate an index theorem relating the generalized superconformal index and the

squashed sphere partition function:

FS2(e∆, n;β) = FS3
b
(∆ + βn;β) + FS3

b
(−∆+ βn;−β) +O(β) (6.1.3)

where ∆ denotes flavor chemical potentials while n denotes flavor magnetic flux

collectively. For the superconformal index, β is the chemical potential for the

angular momentum on S2, with a shift by the R-charge due to the supersym-

metry condition, while, for the squashed sphere partition function, it is related

to the squashing parameter b of the sphere by β = πib2. In our Cardy limit, β

is taken to zero: β → 0+.

In addition to the Cardy limit, the large N limit of 3d superconformal field

theories is of particular interest because a large class of 3d SCFTs are known

to have holographic dual gravity theories in AdS4 in the large N limit. Accord-

ingly, if we further assume large N , we find another index theorem relating the

superconformal index and the topologically twisted index to the round sphere

partition function:

FS2(∆, n;β) =
(πi+ β)2

4πiβ
FS3

(
−∆+ βn

πi+ β

)
+

(πi+ β)2

4πiβ
FS3

(
−∆− βn

πi+ β

)
,

F twisted
S2 (∆, n;β) =

(πi+ β)2

4πiβ
FS3

(
−∆+ βn

πi+ β

)
− (πi− β)2

4πiβ
FS3

(
−∆− βn

πi− β

)
,

(6.1.4)

which relies on the large N relation between the squashed and round sphere
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partition functions found in [194]:

FS3
b

(
−πibQδ;πib2

)
=

Q2

4
FS3 (δ) (6.1.5)

where Q = b + 1/b and δ parametrizes trial R-charges. While our derivation

of (6.1.4) is valid up to O(β), there is strong evidence that it is indeed exact

even for finite β in the large N limit, at least for the known large N saddle

point capturing the dual black hole microstates. Especially, those indices in the

large N limit statistically account for the microstates of rotating dyonic BPS

black holes in AdS4. While the superconformal index should have the vanish-

ing magnetic flux for the R-symmetry, the topologically twisted index has the

non-zero R-symmetry flux, which leads to a particular asymptotically locally

AdS4 spacetime, dubbed mAdS4 [195], on the dual gravity side. We expect that

those indices give entropy functions of dual black holes for arbitrary β, which is

confirmed for some examples in section 6.4 and 6.5. In addition, the squashed

sphere partition function relates to the supersymmetric Rényi entropy [196],

which accounts for the Bekenstein-Hawking entropy of a charged topological

black hole in AdS4 [197, 198]. Also note that the right hand side is written in

terms of the round sphere partition function, which, with the superconformal

R-charge, is identified with the entanglement entropy for a spherical entangling

surface [199,200]. By the AdS/CFT dictionary, it corresponds to the Euclidean

on-shell action in AdS4 [36]. In that regard, our index theorem shows that var-

ious entropic quantities in dual AdS are not independent and indeed mutually

related. While we provide a field theoretic derivation of such relations, interest-

ingly, similar relations are discussed in the gravity context recently [201], using

the gravitational blocks, which are supposed to be dual to our Cardy blocks in

the large N limit.

Moreover, if we turn off all the magnetic flux for the flavor symmetry for
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the generalized superconformal index, it reduces to the ordinary superconformal

index, which satisfies

FS2(∆, n = 0;β) =
(πi+ β)2

2πiβ
Re

[
FS3

(
− ∆

πi+ β

)]
(6.1.6)

where Re[. . . ] should be understood with the conjugation defined by (6.2.36).

If we further turn off the flavor chemical potentials while restore the supercon-

formal R-charge, the right hand side is simply written as

FS2(β) =
∆2
R

2πiβ
Re [FS3 (δ∗)] (6.1.7)

where ∆R = πi+β is the chemical potential for the superconformal R-symmetry

and FS3 (δ∗) is the round sphere free energy at the superconformal R-charge,

which is determined by the F -maximization [202]. This is reminiscent of the

Cardy formula for 2d CFTs [12] or 4d N = 1 SCFTs [138] in the large N

limit, where the real part of the round sphere free energy, Re [FS3 (δ∗)], plays

the role of central charges in 2d and in 4d. Recently the same formula has been

obtained both on the gravity side and on the field theory side for a particular

class of theories called class R, which is obtained from M5-branes wrapped on

hyperbolic 3-manifolds, using the 3d-3d correspondence [203, 204]. Our result

validates this formula for generic 3d N = 2 SCFTs with UV Lagrangian.

Lastly, one can also find interesting relations from the leading term of the

right hand side of (6.1.4). If we expand the right hand side with respect to β

and take the leading term, we find

FS2(te−βδ, n;β) ≈ − π

2β
Re

[
FS3

(
−∆

πi

)]
,

F twisted
S2 (t, n;β) ≈ πi

2

∑
i

(
ni −

∆i

πi

)
∂

∂∆i
FS3

(
−∆

πi

)
+ FS3

(
−∆

πi

)
.

(6.1.8)

Especially, the strict Cardy limit of the topologically twisted index is essentially

the unrefined limit of the index, which accounts for the static dyonic BPS black
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holes in AdS4. Indeed, the second relation is a rederivation of the index theo-

rem for the unrefined topologically twisted indices, and therefore the entropy

functions of static black holes, discovered by Hosseini and Zaffaroni [205]. For

such unrefined indices with β = 0, the index theorem was later generalized for

those on generic Riemann surfaces with arbitrary genera [206,207].

Note that the interpretation of our results as black hole entropy functions

should be understood only when they give rise to positive macroscopic entropy,

which is not guaranteed for an arbitrary choice of the background, such as the

existence of the topological twist or the magnetic fluxes for flavor symmetries.

For instance, recently [204] have made use of the 3d-3d correspondence to show

that the refined topologically twisted index is exponentially suppressed in the

large N limit, and also exactly vanishes for some finite N , for a particular class

of theories with the universal twist, the twist along the exact superconformal

R-symmetry. Such universal twist corresponds to the so-called universal black

holes [206], and the vanishing of the index is consistent with the fact that there

is no universal black hole solution with near-horizon geometry AdS2 × S2.

This shows that macroscopic entropy and dual black hole solutions are not

always guaranteed for an arbitrary choice of background. Nonetheless, as long

as we have macroscopic entropy from the index, we expect this entropy captures

the microstates of some black hole, regardless of whether or not such a black

hole solution has been found already. This suggests that our index computation

can be a probe for a new black hole solution. Indeed, recently the Macdonald

index of 4d N = 4 SYM theory has been used to predict a new black hole in

AdS5 [75]. It will be also interesting if such predictions can be made for black

holes in AdS4 using our results for 3d field theories.
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The rest of this chapter is organized as follows. In section 6.2 we first review

the localization results of 3d N = 2 supersymmetric partition functions and

examine their Cardy limits, especially focusing on their factorization proper-

ties. In section 6.3, we derive universal relations among the partition functions

by combining the results of section 6.2. In particular, we formulate two index

theorems: one relating the generalized superconformal index and the squashed

sphere partition function in the Cardy limit and the other relating the gen-

eralized superconformal index, the refined topologically twisted index and the

round sphere partition function in the large N limit. In section 6.4, we address

the N = 4 U(N) SYM with one fundamental and one adjoint matters as an ex-

plicit example. We demonstrate how to obtain four different partition functions

in the large N limit using the factorization. Lastly, in section 6.5, we provide

more examples of 3d N ≥ 2 SCFTs. We discuss the large N Cardy limit of the

generalized superconformal indices for those examples. We also examine the

finite N Cardy formulae for some examples, which provide nontrivial tests for

known supersymmetric dualities.

6.2 3d Cardy block and factorization

In this section, we first review the localization results of 3d N = 2 supersym-

metric partition functions and examine their Cardy limits, especially focusing

on their factorization properties. Since the partition functions are 1-loop ex-

act in the context of the supersymmetric localization, the results are given by

finite dimensional matrix integrals whose integrands consist of the classical ac-

tion contributions as well as the 1-loop determinants. Also the factorization of

3d partition functions have been extensively discussed in the literature; e.g.,

180



see [175–180, 182, 183, 187, 191]. Here we revisit them in our notation, which is

chosen to be convenient for our Cardy limit analysis. In particular, we start

with the hemisphere index on D2 ×S1 defined in [171], which is closely related

to the holomorphic block discussed in [176]. This is a building block of the other

supersymmetric partition functions we will discuss. We then move on to those

partition functions on a circle fibered over a sphere, which are known to be

factorized, and examine their Cardy limits.

6.2.1 Hemisphere index

The first example we discuss is the hemisphere index on D2 × S1 [171], which

is defined by

ID2 = trH(D2;α)

[
(−1)F e−β1(D−R−J3)e−β2(D+J3)e−FlMl

]
(6.2.1)

where D is the translation generator along S1; R is the N = 2 U(1) R-charge;

J3 is the angular momentum; and Fl’s are the Cartan charges of the flavor

symmetry. The trace is taken over the Hilbert space on D2 with the boundary

condition α. As usual, this index counts the BPS states saturating D−R−J3 ≥ 0

and is thus independent of β1 unless there is a flat direction appearing while β1

changes. While the hemisphere index itself does not have a factorized structure

mentioned in the introduction, it plays a role of a building block of the other

partition functions we will consider.

F , a fermion number, is typically chosen to be F = 2J3. On the other

hand, to define an index, one can also use other choices of F ; one useful al-

ternative, especially for the factorization, is F = R. Recall that, for 3d N = 2

supersymmetric theories, the IR superconformal R-charge is determined by the

F -maximization [202]. However, to define an index, one can use a trial, or UV,
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value of the R-charge, from which the IR superconformal value can be achieved

as a mixture of the UV R-charge and various U(1) flavor charges. For con-

venience, we take the integer quantized UV R-charge and use it to define the

index. For the integer quantized R-charge, (−1)F is merely a sign while it would

be a nontrivial phase otherwise. In fact, the integer R-charge will be eventu-

ally required for the comparison with the topologically twisted index, which

demands the integer R-charge due to twisting. This choice of F will make the

comparison between the hemisphere index and other partition functions, espe-

cially the squashed sphere partition function, more clear as noted in [176].

From the definition of the index, one can see that those two choices are

related by the shift of β1, β2:

β1 → β1 − πi,

β2 → β2 + πi,
(6.2.2)

which yields extra sign (−1)R+2J3 . Note that if R is even integer quantized, the

two choices are identical. Using this shift, one can easily obtain the formula for

F = R from the localization result for F = 2J3 in [171]. Setting β2 = β + πi,

the hemisphere index with F = R is given by

ID2 =
1

|WG|

∮ rk(G)∏
a=1

dza
2πiza

 ZclassicalZvectorZN/D
chiralZ

2d
vectorZ2d

chiral/Fermi

(6.2.3)

where W (G) is the Weyl group of the gauge group G. The nontrivial classical

action contribution Zclassical consists of various Chern-Simons terms:

e
k
4β

tru2
(6.2.4)
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for a canonical Chern-Simons term with level k and

e
1
2β

tr(uAuB)
(6.2.5)

for a mixed Chern-Simons term between U(1)A×U(1)B, each of which is either

gauge or global U(1). Each u is defined by u = log z where z is the holonomy

for the corresponding (either gauge or global) symmetry.

The 1-loop determinants of the 3d bulk fields are as follows:

Zvector =
∏
α∈∆

e
− 1

8β
(α(u)±πi)2 (

zα;x2
)
, (6.2.6)

ZN
chiral =

∏
ρ⊗σ∈RN

e
β
8 ((rσ−1)2− 1

3)−
rσ−1

4
(ρ(u)+σ(v)−πi(rσ∓1))+ 1

8β
(ρ(u)+σ(v)−πi(rσ∓1))2

×
(
zρtσxrσe−πirσ ;x2

)−1
, (6.2.7)

ZD
chiral =

∏
ρ⊗σ∈RD

e
−β

8 ((rσ−1)2− 1
3)+

rσ−1
4

(ρ(u)+σ(v)−πi(rσ∓1))− 1
8β

(ρ(u)+σ(v)−πi(rσ∓1))2

×
(
z−ρt−σx2−rσeπirσ ;x2

)
(6.2.8)

with

zρ = eρ(u) , tσ = eσ(v) , x = e−β (6.2.9)

where ∆ is the set of non-zero roots of the gauge group; RN/D are the rep-

resentations of the chiral multiplets with the Neumann/Dirichlet boundary

conditions respectively, with gauge weight ρ and global weight σ, which in-

cludes U(1)R charge rσ. Here we use the shorthand expression (a;x2) for q-

Pochhammer symbol (a;x2)∞:

(a;x2)∞ =
∞∏
k=0

(
1− ax2k

)
. (6.2.10)

Due to our choice F = R, there are extra e−πirσ in contrast to the result of [171].
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Note that the exponential factor in each determinant spoils the invariance of

the determinant under the large gauge transformation. Such exponential factors

are remnant of the gauge non-invariant regularization, which should disappear

if one regularizes the determinant in a gauge invariant way with the appropriate

definitions of the UV Chern-Simons levels understood. However, we here stick

to the above definition of the determinants for easy comparisons with the earlier

literature. Indeed, the exponential factors should be completely canceled out

once the boundary matter contributions are taken into account. Thus, the entire

integrand is again invariant under the large gauge transformation. Nevertheless,

since each determinant is not invariant under the large gauge transformation,

we have to fix the ambiguity; namely, we take the above definition for the

arguments in chambers −2π < ±Im(α(u)), ±Im(ρ(u) + σ(v)− πirσ) < 0. If we

don’t specify the chamber explicitly, we take the upper plus sign of ±.

The exponential factor in each determinant makes an effective shift of

Chern-Simons levels. The effective Chern-Simons terms, dictated by such expo-

nential factors as well as the classical action contribution, yield anomalies at the

boundary, which should be canceled by extra boundary degrees of freedom, at

least up to a u-independent constant. The 1-loop determinants of the boundary

matters are

Z2d
vector =

∏
α∈∆2d

e
− 1

4β
(α(u)±πi)2

θ
(
zα;x2

)
, (6.2.11)

Z2d
chiral =

∏
ρ⊗σ∈R2d

chiral

e
β
4 ((rσ−1)2− 1

3)−
rσ−1

2
(ρ(u)+σ(v)−πi(rσ∓1))+ 1

4β
(ρ(u)+σ(v)−πi(rσ∓1))2

× θ
(
zρtσxrσe−πirσ ;x2

)−1
, (6.2.12)

Z2d
Fermi =

∏
ρ⊗σ∈R2d

Fermi

e
−β

4 ((rσ−1)2− 1
3)+

rσ−1
2

(ρ(u)+σ(v)−πi(rσ∓1))− 1
4β

(ρ(u)+σ(v)−πi(rσ∓1))2

× θ
(
zρtσxrσe−πirσ ;x2

)
(6.2.13)
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where θ
(
a;x2

)
is defined by

θ
(
a;x2

)
=
(
a;x2

)
∞
(
a−1x2;x2

)
∞ . (6.2.14)

The 3d determinants and 2d determinants satisfy

ZN
chiral

ZD
chiral

= Z2d
chiral =

1

Z2d
Fermi

(6.2.15)

once we assign the same representation and the R-charge. Note that those 2d

degrees of freedom are engineered so that the net exponential factor of the in-

tegrand is completely canceled.

In the Cardy limit, i.e., β → 0+ while the other variables kept finite, the 3d

determinants are given by

lim
β→0

logZvector(z;β) = − 1

2β

∑
α

[
1

4
(α(u)± πi)2 + Li2(z

αx−1)

]
,

lim
β→0

logZN
chiral(z, t;β)

=
1

2β

∑
ρ⊗σ

[
1

4
(ρ(u) + σ(v)− πi(rσ ∓ 1)− β(rσ − 1))2 + Li2(z

ρtσxrσ−1e−πirσ)

]
,

lim
β→0

logZD
chiral(z, t;β)

= − 1

2β

∑
ρ⊗σ

[
1

4
(ρ(u) + σ(v)− πi(rσ ∓ 1)− β(rσ − 1))2 + Li2(z

−ρt−σx1−rσeπirσ)

]
(6.2.16)

up to O(β). On the other hand, the 2d determinants become

lim
β→0

logZ2d
vector(z;β) =

π2

6β

lim
β→0

logZ2d
chiral(z, t;β) = − π2

12β

lim
β→0

logZ2d
Fermi(z, t;β) =

π2

12β
.

(6.2.17)
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for each pair of (α,−α) and for each ρ ⊗ σ. While those do not vanish in the

Cardy limit, we will see that their role is rather minimal when we construct

other 3d partition functions upon the hemisphere index. Since ZN
chiral and ZD

chiral

are related by Z2d
chiral/Fermi, also their distinction will not be very significant in

such situations. Thus, we mostly call them Zchiral unless their distinction is

necessary.

Note that, in each determinant, β always appears in a combination with v:

σ(v)− πirσ − β(rσ − 1) except β−1 in front. From now on, for convenience, let

us distinguish β in a combination with v and β in front by denoting the former

by β̂. And we also introduce t = (t,−x̂e−πi), on which σ act as follows:

tσ = tσx̂rσ−1e−πirσ (6.2.18)

where x̂ = e−β̂. In this way, the explicit β-dependence of the above determinants

is only β−1 in front. At the end, we should restore β̂ to β. Also note that

although we have set rσ to be the UV integer value, one can obtain the index

with the non-integer R-charge, such as the IR superconformal one, by shifting

the flavor chemical potentials v by v → v− (β+πi)δ. Then the deformed value

of the R-charge is rσ + σ(δ).

In the small β limit, one can evaluate the integral (6.2.3) using the saddle

point approximation as follows:

ID2 =

(
β

π

)N
2 ∑

∗
exp

(
− 1

2β
W∗
)(

det(−∂2
zW)∗

)− 1
2

(
N∏
a=1

1

z∗a
+O(β)

)
,

(6.2.19)

where N is the gauge group rank. Our effective potential is defined by

− 1

2β
W =

∑
lim
β→0

logZ, (6.2.20)
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where the summation is taken over the collection of the above determinants.

The β-dependence of W is hidden in t as β̂, which will be taken back to be β

at the end. ∗ denotes the value at each saddle point, which is a solution to the

equation

∂zW = 0 . (6.2.21)

As long as there is a saddle satisfying Re(W∗/β) < 0, the index exponentially

grows in the Cardy limit. In such cases, there is a dominant saddle such that

ID2(t;β) ≈ C(t;β) (6.2.22)

where C is the contribution at the dominant saddle, which we call the Cardy

block. Thus, the free energy, FD2 = − log ID2 , is written as

FD2(t;β) = − log C(t;β) +O
(
e−β

−1
)
=

1

β
G(0)(t)− N

2
log β +G(1)(t) +O(β)

(6.2.23)

where G(0) = 1
2W

∗ is the dominant saddle value of the effective potential while

the other saddle point contributions are suppressed exponentially. G(1) is the

collection of the remaining contributions at the dominant saddle, e,g,. that of

the Hessian. One should remember that t includes β̂ = β in such way that

tσ = tσx̂rσ−1e−πirσ .

6.2.2 Generalized superconformal index

Our next example is the generalized superconformal index [70,164,208], which

is defined by

IS2 = trHBPS(S2;n)

[
(−1)F e−β(R+2J3)e−FlMl

]
(6.2.24)
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where the BPS condition D− R− J3 = 0 is understood. n denotes the external

magnetic flux for the flavor symmetry collectively. Again, while a typical choice

of F is F = 2J3, our choice here is F = R. Those two are related by shift of β:

β → β − πi. Also R will be taken to be integer quantized. The superconformal

R can be restored by shifting Ml.

One can evaluate such superconformal index using the supersymmetric lo-

calization. The localization result for F = J3 was obtained in [165, 184]. Simi-

larly, the superconformal index with F = R is written as

IS2 =
1

|WG|
∑
m∈Γ∨

G

∮ rk(G)∏
a=1

dza
2πiza

 Zclassical Zvector Zchiral . (6.2.25)

m runs over the GNO charges including the Weyl equivalent ones. Thus, the

symmetry factor is just the order of the Weyl group of the gauge group G. The

1-loop determinants of the vector multiplet and the chiral multiplet are

Zvector =
∏
α∈∆

(
xe−πi

)− |α(m)|
2

(
1− zαx|α(m)|

)
, (6.2.26)

Zchiral =
∏

ρ⊗σ∈R

(
zρtσxrσ−1e−πi(rσ−1)

)− |ρ(m)+σ(n)|
2

(
z−ρt−σx2−rσ+|ρ(m)+σ(n)|eπirσ ;x2

)(
zρtσxrσ+|ρ(m)+σ(n)|e−πirσ ;x2

)
(6.2.27)

with

zρ = eiρ(a) , tσ = eiσ(b) , x = e−β . (6.2.28)

∆ is the set of non-zero roots. R is the representation of the chiral multiplets

under the gauge and global symmetry groups, including the R-symmetry, with

weights ρ and σ respectively. Note that there are extra e−πirσ compared to the

usual localization result due to the choice F = R. The nontrivial contribution of

the classical action again comes from various Chern-Simons terms. A canonical
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Chern-Simons term with level k gives rise to

eik tr(am) (6.2.29)

while a mixed Chern-Simons term between U(1)A × U(1)B gives

zmB
A zmA

B (6.2.30)

where U(1)A,B are either gauge or global U(1). Each pair of z = eia and m

denote the holonomy and the magnetic flux for the corresponding symmetry,

either gauge or global.

One can massage the 1-loop determinants to be written in terms of formal

holomorphic and anti-holomorphic variables. Using the identity [185]

(
−zx−1

) |m|+m
2

(
z−1x2−m;x2

)
|m|+m

2

(zx−m;x2) |m|+m
2

= 1, (6.2.31)

we have

Zvector =
∏
α

e
− 1

8β (α(u)
2−α(ū)2)

(
zα;x2

)
(z̄αx2;x2)

, (6.2.32)

Zchiral =
∏
ρ⊗σ

e
− rσ−1

4
(ρ(u)+σ(v)+ρ(ū)+σ(v̄))+ 1

8β ((ρ(u)+σ(v)−πi(rσ−1))2−(ρ(ū)+σ(v̄)+πi(rσ−1))2)

×
(
z̄ρt̄σx2−rσeπirσ ;x2

)
(zρtσxrσe−πirσ ;x2)

(6.2.33)

where we have defined that

zρ = eρ(u) = zρx−ρ(m) , tσ = eσ(v) = tσx−σ(m) ,

z̄ρ = eρ(ū) = z−ρx−ρ(m) , t̄σ = eσ(v̄) = t−σx−σ(m) ;
(6.2.34)

i.e.,

u = log z = ia+ βm , v = log t = ib+ βn ,

ū = log z̄ = −ia+ βm , v̄ = log t̄ = −ib+ βn .
(6.2.35)
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When a, b and β are real, the barred variables are the complex conjugates of

the unbarred variables. On the other hand, if we relax such reality conditions,

the barred variables should be understood as the formal conjugates defined by

the following map:

a → −a ,

m → −m,

β → −β

(6.2.36)

and similarly for b and n. This formal conjugate will be understood throughout

this chapter.

Note that each 1-loop determinant is completely factorized into a holomor-

phic piece and an anti-holomorphic piece:

Zvector = Zvector(z;β)×Zvector(z̄;−β) ,

Zchiral = Zchiral(z, t;β)×Zchiral(z̄, t̄;−β)
(6.2.37)

where Zvector and Zchiral are defined by

Zvector(z;β) =
∏
α

e
− 1

8β
(α(u)+πi)2 (

zα;x2
)
,

Zchiral(z, t;β) =
∏
ρ⊗σ

e
β
8 ((rσ−1)2− 1

3)−
rσ−1

4
(ρ(u)+σ(v)−πi(rσ−1))+ 1

8β
(ρ(u)+σ(v)−πi(rσ−1))2

×
(
zρtσxrσe−πirσ ;x2

)−1
.

Here Z is defined such that any imaginary coefficient flips its sign. Also the

following definition of (a;x2) for |x| ≠ 1 is understood:

(
a;x2

)
=


(
a;x2

)
∞ , |x| < 1 ,(

ax−2;x−2
)−1

∞ , |x| > 1 .
(6.2.38)

While we have introduced the exponential factor e
β
8 ((rσ−1)2− 1

3)+
πi
4
(rσ−1)2 in

Zchiral(z, t;β) to be matched with the hemisphere determinant, it is irrelevant
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because it is canceled by the same factor of Zchiral(z̄, t̄;−β). Their Cardy limits

are given by

lim
β→0

logZvector(z;β) = − 1

2β

∑
α

[
1

4
(α(u) + πi)2 + Li2(z

αx−1)

]
,

lim
β→0

logZchiral(z, t;β) =
1

2β

∑
ρ⊗σ

[
1

4
(ρ(u) + σ(v)− (β + πi)(rσ − 1))2 + Li2(z

ρtσxrσ−1e−πirσ)

]
(6.2.39)

up to O(β).

We should comment that there is another way of factorizing the 1-loop

determinant of the chiral multiplet:

Zchiral = Zchiral(z, t;β)×Zchiral(z̄, t̄;−β) , (6.2.40)

Zchiral(z, t;β) =
∏
ρ⊗σ

e−
β
8 ((rσ−1)2− 1

3)+
rσ−1

4
(ρ(u)+σ(v)−πirσ)e

− 1
8β

(ρ(u)+σ(v)−πirσ)2

×
(
z−ρt−σx2−rσeπirσ

)
, (6.2.41)

which can be obtained by replacing m by −m in the identity (6.2.31). The

Cardy limit is given by

lim
β→0

logZchiral(z, t;β)

= − 1

2β

∑
ρ⊗σ

[
1

4
(ρ(u) + σ(v)− (β + πi)(rσ − 1))2 + Li2(z

−ρt−σx1−rσeπirσ)

]
.

(6.2.42)

One should note that the holomorphic part of the first factorization (6.2.38)

is identified with the determinant on D2 × S1 with the Neumann boundary

condition (6.2.7) while the holomorphic part of the second factorization (6.2.41)

is identified with the determinant on D2 × S1 with the Dirichlet boundary

condition (6.2.8). As we have seen in the previous subsection, they differ by

the determinant of a boundary chiral multiplet, or equivalently a boundary
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Fermi multiplet. Recall that the 2d determinants in the Cardy limit are given

by (6.2.17):

lim
β→0

logZ2d
chiral = − lim

β→0
logZ2d

Fermi = − π2

12β
. (6.2.43)

They simply vanish when we glue two copies of them following the fusion rule

(6.2.37). Thus, we need not to worry about the boundary matters when we

factorize the superconformal index into two copies of the hemisphere indices in

the Cardy limit; and also the distinction between the two boundary conditions,

i.e., how we factorize the determinants, is not significant.

Lastly, let us examine the Chern-Simons terms. In terms of the holomorphic

variables, they are written as follows:

eik tr(am) = e
k
2β

tr( 1
2
u2− 1

2
ū2), (6.2.44)

zmB
A zmA

B = e
1
2β

tr(uAuB−ūAūB)
(6.2.45)

where the definition of u is given in (6.2.35). Thus, the classical action contri-

bution is also factorized in the same way:

Zclassical = Zclassical(z, t;β)×Zclassical(z̄, t̄;−β) (6.2.46)

where Zclassical(z, t;β) consists of two types of contributions:

e
k
2β

tr( 1
2
u2) (6.2.47)

for a level k Chern-Simons term and

e
1
2β

tr(uAuB)
(6.2.48)

for a mixed Chern-Simons term between U(1)A×U(1)B, which are exactly what

appears in the hemisphere index.
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Combining those Cardy limits of the 1-loop determinants and the classical

action contributions, the entire superconformal index is completely factorized

into the holomorphic integral and the anti-holomorphic integral. In particular,

the superconformal index has the holonomy integration as well as the magnetic

flux sum where the latter is replaced by another integration in the Cardy limit

[79,186]. Combined with the original holonomy integration, it gives rise to

∞∑
m=−∞

∮
|z|=1

dz

2πiz
=
∑
r∈eβZ

∫ 2π

0

dθ

2π
→

∫
C

dzdz̄

4πβ|z|2
(6.2.49)

up to O(β). If we consider a U(N) theory for simplicity, the Cardy limit of the

superconformal index is given by

lim
β→0

IS2 =
1

N !

∫
CN

(
N∏
a=1

dzadz̄a
4πβ|za|2

)
e
− 1

2β (W(z,t)−W(z,t)) (6.2.50)

where

− 1

2β
W(z, t) = lim

β→0
[logZclassical(z, t;β) + logZvector(z;β) + logZchiral(z, t;β)]

(6.2.51)

with each component described above. As seen in the previous subsection, there

is no explicit β-dependence in W as long as we use t = (t,−x̂e−πi), on which

the global weight σ acts such that tσ = tσx̂rσ−1e−πirσ . According to the rule

(6.2.36), t̄ is defined by

t̄ = (t̄,−x̂−1eπi) . (6.2.52)

In the Cardy limit, the superconformal index can be also evaluated by the

saddle point approximation. One should note that the holomorphic part of

(6.2.50) is nothing but the hemisphere index in the Cardy limit:

1

N !

∫ ( N∏
a=1

dza
2πiza

)
e
− 1

2β
W(z,t)

(6.2.53)
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while the anti-holomorphic part is given by its conjugate defined by (6.2.36).

Naively the holomorphic variable and anti-holomorphic variable may solve the

saddle point equations independently as they are formal conjugate variables

rather than complex conjugate. However, regarding β̂ as an independent vari-

able, if β̂ is pure imaginary, such conjugate variables are truly complex conju-

gate because they are related by β̂ ↔ −β̂. In that case, the two saddle point

equations are essentially the same; and there is no reason to solve the equations

independently because it is basically the saddle point approximation of a real

function on the real axis. If β̂ is slightly away from the imaginary axis, however,

β̂ → −β̂ is not compatible with the complex conjugate anymore, in which case,

the two saddle point equations should be solved independently. Nevertheless, if

we assume a smooth transition when β̂ moves away from the imaginary axis,

the saddle point should be determined such that z and z̄ at a saddle should

become complex conjugate to each other as β̂ approaches the imaginary axis;

i.e., there is a natural one-to-one map between the holomorphic saddles and

the anti-holomorphic saddles, and only the pairs of saddles related by this map

contributes to the index. Thus, the saddle points are determined by the same

equation for the hemisphere index, and each saddle point contribution is that

for the hemisphere index times its conjugate.

While we have assumed a smooth transition when β̂ moves aways from the

imaginary axis, it would be worth studying the behavior of those saddles more

rigorously. Nevertheless, in spite of such a subtlety in dealing with the two

complex saddle point equations, it is not very significant at the end as long as

the index exponentially grows in the Cardy limit. Recall that the free energy for

the hemisphere index is determined by the contribution of the dominant saddle

because the contributions of the other saddles are exponentially suppressed. As

the same thing happens for the superconformal index, we find a simple relation
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between their free energies:

FS2(t, n;β) = N log β + FD2(t;β) + FD2(t̄;−β)− log
[
N !πN

]
+O(β) ,

(6.2.54)

or in terms of the Cardy block in (6.2.23),

FS2(t, n;β) = N log β − log C(t;β)− log C(t̄;−β)− log
[
N !πN

]
+O(β) ,

(6.2.55)

with

t = t eβn , t̄ = t−1 eβn , (6.2.56)

where only the dominant saddle plays the role. While the formula is written for

a U(N) theory for simplicity, the generalization is straightforward.

6.2.3 Refined topologically twisted index

One can also define an index for a topologically twisted theory on a circle fibered

over a Riemann surface of genus g [181, 192, 193, 209, 210]. If g = 0, i.e., if the

Riemann surface is a sphere, one can refine the index by turning on the angular

momentum fugacity. In that case, the index is defined by

Itwisted
S2 = trHBPS(S2;n,nR=−1)

[
(−1)F e−2βJ3e−FlMl

]
(6.2.57)

where the trace is taken over the Hilbert space on S2 in the presence of the

R-symmetry flux nR = −1. Again n denotes the external magnetic flux for the

flavor symmetry. Using the supersymmetric localization, we have

Itwisted
S2 =

1

|WG|
∑
m∈Γ∨

G

∮ rk(G)∏
a=1

dza
2πiza

 Ztwisted
classical Z

twisted
vector Ztwisted

chiral . (6.2.58)
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where the integration contour is determined by the rule of the Jeffrey-Kirwan

residue [181]. The 1-loop determinants of the vector multiplet and the chiral

multiplet are given by

Ztwisted
vector =

∏
α∈∆

(
xe−πi

)− |α(m)|
2

(
1− zαx|α(m)|

)
, (6.2.59)

Ztwisted
chiral =

∏
ρ⊗σ∈R

(zρtσe−πi(rσ−1))
ρ(m)+σ(n)−rσ+1

2

(zρtσxrσ−ρ(m)−σ(n)e−πirσ ;x2)ρ(m)+σ(n)−rσ+1

. (6.2.60)

The twist by the (non-superconformal) R-symmetry demands that the R-charge

of a matter should be an integer. Again please note extra e−πirσ due to our

choice F = R. The classical action contributions are given by

eik tr(am) (6.2.61)

for a canonical Chern-Simons term with level k and

zmB
A zmA

B (6.2.62)

for a mixed Chern-Simons term between U(1)A×U(1)B, each of which is either

gauge or global U(1). Again each pair of z = eia and m denote the holonomy

and the magnetic flux for the corresponding symmetry.

One can manipulate the determinants in a similar way to the superconformal

index:

Ztwisted
vector =

∏
α

e
− 1

8β (α(u)
2−α(ū)2)

(
zα;x2

)
(z̄−αx2;x2)

, (6.2.63)

Ztwisted
chiral =

∏
ρ⊗σ

e
− rσ−1

4
(ρ(u)+σ(v)−ρ(ū)−σ(v̄)−2πi(rσ−1))+ 1

8β ((ρ(u)+σ(v)−πi(rσ−1))2−(ρ(ū)+σ(v̄)+πi(rσ−1))2)

×
(
z̄−ρt̄−σx2−rσe−πirσ ;x2

)
(zρtσxrσe−πirσ ;x2)

, (6.2.64)
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zρ = eρ(u) = zρx−ρ(m) , tσ = eσ(v) = tσx−σ(m) ,

z̄ρ = eρ(ū) = z−ρx−ρ(m) , t̄σ = eσ(v̄) = t−σx−σ(m) ,
(6.2.65)

which lead to the following factorization

Ztwisted
vector = Zvector(z;β)×Zvector(z̄

−1;−β) , (6.2.66)

Ztwisted
chiral = Zchiral(z, t;β)×Zchiral(z̄

−1, t̄−1;−β) (6.2.67)

where Zvector and Zchiral are defined exactly in the same way as the hemisphere

determinants:

Zvector(z;β) =
∏
α

e
− 1

8β
(α(u)+πi)2 (

zα;x2
)
, (6.2.68)

Zchiral(z, t;β) =
∏
ρ⊗σ

e
β
8 ((rσ−1)2− 1

3)−
rσ−1

4
(ρ(u)+σ(v)−πi(rσ−1))+ 1

8β
(ρ(u)+σ(v)−πi(rσ−1))2

×
(
zρtσxrσe−πirσ ;x2

)−1
. (6.2.69)

The Cardy limits of those are given in (6.2.16). In the Cardy limit, the boundary

matters are irrelevant for the factorization of the topologically twisted index,

due to the same reason as the superconformal index.

Next, the classical action contribution is factorized into

Ztwisted
classical = Zclassical(z, t;β)×Zclassical(z̄

−1, t̄−1;−β) (6.2.70)

where Zclassical(z, t;β) consists of two types of contributions:

e
k
2β

tr( 1
2
u2) (6.2.71)

for a level k Chern-Simons term and

e
1
2β

tr(uAuB)
(6.2.72)
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for a mixed Chern-Simons term between U(1)A × U(1)B.

Like the superconformal index, the entire topologically twisted index is com-

pletely factorized into the holomorphic integral and the anti-holomorphic inte-

gral given that the magnetic flux sum is replaced by an integration in the Cardy

limit:

lim
β→0

Itwisted
S2 =

1

N !

∫
CN

(
N∏
a=1

dzadz̄a
4πβ|za|2

)
e
− 1

2β (W(z,t)−W(z̄−1 ,̃t−1)) (6.2.73)

where

− 1

2β
W(z, t) = lim

β→0
[logZclassical(z, t;β) + logZvector(z;β) + logZchiral(z, t;β)] .

(6.2.74)

t = (t,−x̂e−πi) is defined such that tσ = tσx̂rσ−1e−πirσ as before, and t̃ =

(t̄,−x̂eπi). While this form of the topologically twisted index and that of the

superconformal index are very much alike, there is a crucial difference that the

topologically twisted index does not grow in the small β limit because β−1

terms should be canceled out at the end. This is anticipated because the strict

Cardy limit is basically the unrefined limit of the topologically twisted index,

which is O(1). Thus, if one does the saddle point approximation, every saddle

democratically contributes to the index, which ends up with the BAE formula

for the unrefined index [181]. Nevertheless, if there happens to be only one

saddle or if there is a dominant saddle due to other large parameters such as

large N , one can write down the free energy in a simple manner as before:

F twisted
S2 (t, n;β) = N log β + FD2(t;β) + FD2(t̄−1;−β)− log

[
N !πN

]
+O(β) ,

= N log β − log C(t;β)− log C(t̄−1;−β)− log
[
N !πN

]
+O(β)

(6.2.75)
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where t = t eβn, t̄ = t−1 eβn, and C is the Cardy block in (6.2.23). Furthermore,

although the strict Cardy limit is the unrefined limit of the topologically twisted

index, (6.2.74) will suggest a conjecture for finite β in the large N limit. We

will discuss it with explicit examples in section 6.4 and 6.5.

6.2.4 Squashed sphere partition function

Lastly, we consider the supersymmetric partition function on the squashed

sphere S3
b . Again using the supersymmetric localization, it is given by [211–213]

ZS3
b
=

1

|WG|

∫
drk(G)û Z

S3
b

classical Z
S3
b

vector Z
S3
b

chiral. (6.2.76)

The 1-loop determinants of the vector multiplet and the chiral multiplet are

Z
S3
b

vector =
∏
α∈∆

sb

(
i
Q

2
− α(û)

)−1

, (6.2.77)

Z
S3
b

chiral =
∏

ρ⊗σ∈R
sb

(
i
Q

2
(1− rσ)− ρ(û)− σ(v̂)

)
(6.2.78)

with Q = b+ 1
b . sb(û) is the double-sine function defined by

sb

(
i
Q

2
− û

)
= e

−πi
2

(
(iQ2 −û)

2
+Q2

12
− 1

6

)
(e−2πb−1û+2πib−2

; e2πib
−2
)

(e−2πbû; e−2πib2)
(6.2.79)

for Im(b2) ̸= 0, which leads to the following factorization of the determinants:

Z
S3
b

vector = ZS3
b

vector

(
e−2πbû;πibQ

)
×ZS3

b
vector

(
e−2πb−1û;πib−1Q

)
,

Z
S3
b

chiral = ZS3
b

chiral

(
e−2πbû, e−2πbv̂;πibQ

)
×ZS3

b
chiral

(
e−2πb−1û, e−2πb−1v̂;πib−1Q

)
(6.2.80)
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where

ZS3
b

vector(z;β) =
∏
α

e
− β

12
−πi

24
− 1

8β
α(u)2 (

zα;x2
)
, (6.2.81)

ZS3
b

chiral(z, t;β) =
∏
ρ⊗σ

e
β
8 ((rσ−1)2− 1

3)−
rσ−1

4
(ρ(u)+σ(v))+πi

24
+ 1

8β
(ρ(u)+σ(v))2 1

(zρtσxrσ ;x2)

(6.2.82)

u = log z , v = log t , β = − log x . (6.2.83)

For the sphere partition function the limit of our interest is the highly

squashed limit of the sphere. More precisely, we take the limit b2 → i0+ with

fixed u = −2πbû and v = −2πbv̂. We will compare this limit with the Cardy

limits of the other partition functions we have discussed. An interesting thing

is that in this limit, unlike the other partition functions, the holomorphic part

and the anti-holomorphic part do not contribute democratically. Indeed, even

though the squashed sphere partition function has the factorized structure as

in (6.2.80), what corresponds to the hemisphere index in the Cardy limit is the

entire squashed partition function rather than its holomorphic part. To see this,
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let us first take the highly squashed limit of each component in (6.2.80):

lim
b→0

logZS3
b

vector

(
e−2πbû;πibQ

)
= − 1

2πib2

∑
α

Li2

(
zαeπib

2
)
− 1

8πi

∑
α

(α(u) + πi)2,

(6.2.84)

lim
b→0

logZS3
b

vector

(
e−2πb−1û;πib−1Q

)
= − 1

2πib2

∑
α

[
π2

12
+

1

4
(α(u) + πi)2

]
+

1

8πi

∑
α

[
α(u)2 + π2

]
, (6.2.85)

lim
b→0

logZS3
b

chiral

(
e−2πbû, e−2πbv̂;πibQ

)
=

1

2πib2

∑
ρ⊗σ

Li2

(
zρtσe−πirσ−πib

2(rσ−1)
)
+

1

8πi

∑
ρ⊗σ

[ρ(u) + σ(v)− πi(rσ − 1)]2 ,

(6.2.86)

lim
b→0

logZS3
b

chiral

(
e−2πb−1û, e−2πb−1v̂;πib−1Q

)
=

1

2πib2

∑
ρ⊗σ

[
π2

12
+

1

4
(ρ(u) + σ(v)− πi(rσ − 1))2

]
− 1

8πi

∑
ρ⊗σ

[
(ρ(u) + σ(v))2 + π2(rσ − 1)2

]
,

(6.2.87)

provided that the argument sits in a chamber:−2π < Im(ρ(u)+σ(v)−πirσ) < 0.

As mentioned above, the holomorphic part and the anti-holomorphic part do

not contribute democratically. Indeed, the holomorphic and anti-holomorphic

parts combined give rise to

lim
b→0

logZ
S3
b

vector = − 1

2πib2

∑
α

[
π2

12
+

1

4
(α(u) + πi)2 + Li2

(
zαeπib

2
)]

− πi

4
|∆| ,

(6.2.88)

lim
b→0

logZ
S3
b

chiral

=
1

2πib2

∑
ρ⊗σ

[
π2

12
+

1

4

(
ρ(u) + σ(v)− πi(1 + b2)(rσ − 1)

)2
+ Li2

(
zρtσe−πirσ−πib

2(rσ−1)
)]

(6.2.89)
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up to O(b2), which are the same as the hemisphere determinants up to con-

stant terms. Indeed, such constant terms are just a phase or remnants of the 2d

boundary matter contributions, which however do not affect the factorization

of the superconformal index and of the topologically twisted index. Thus, one

can ignore such constant terms.

Next, the classical action contribution Z
S3
b

classical includes two types of contri-

butions:

e−πik tr(û
2) (6.2.90)

for a canonical Chern-Simons term with level k and

e−2πi ûAûB (6.2.91)

for a mixed Chern-Simons term between U(1)A×U(1)B, which can be factorized

in the same way as the determinants. Moreover, in the highly squashed limit,

they become

e
k

2πib2
tr( 1

2
u2), (6.2.92)

e
1

2πib2
uAuB (6.2.93)

since we are keeping u = −2πbû and v = −2πbv̂ finite.

Therefore, the sphere partition function in the highly squashed limit is given

in the following form:

lim
b→0

ZS3
b
=

1

(ib)N
1

N !

∫ ( N∏
a=1

dza
2πiza

)
e−

1
2πib2

W(z,t) (6.2.94)

where

− 1

2πib2
W(z, t) = lim

b→0

[
logZclassical(z, t;πib

2) + logZvector(z;πib
2) + logZchiral(z, t;πib

2)
]

(6.2.95)
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As before, we have used the variable t = (t,−e−πi−πib
2
), which is defined such

that tσ = tσe−πirσ−πib
2(rσ−1). In terms of the hemisphere index, the highly

squashed sphere partition function is given by

FS3
b
(∆;β) =

N

2
log β + FD2(e∆;β)−

N

2
log[−πi] +O(β) ,

=
N

2
log β − log C(e∆;β)− N

2
log[−πi] +O(β) .

(6.2.96)

with ∆ = −2πbv̂, β = πib2 and the Cardy block C in (6.2.23).

6.3 Universal formula

In this section, we discuss the universal relations in the Cardy limit among the

partition functions we have discussed in the previous section. So far we have

seen that those quantities can be solely written in terms of the Cardy block.

We examine this relation more carefully and propose general index theorems

for those quantities in the Cardy limit. In particular, such index theorems will

prove very useful when we consider the large N limit of those quantities, which

relates to the entropic quantities of the dual gravity.

In the previous section, we have already found how the hemisphere index,

or the Cardy block, relates to the other three partition functions. See (6.2.55),

(6.2.75) and (6.2.96). Since the topologically twisted index needs more care, let

us first focus on the generalized superconformal index and the squashed sphere

partition function:

FS2(t, n;β) = N log β − log C(t;β)− log C(t̄;−β) +O(β) ,

FS3
b
(∆;β) =

N

2
log β − log C(e∆;β) +O(β)

(6.3.1)
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up to irrelevant numerical constants. t = t eβn and t̄ = t−1 eβn are understood

for the superconformal index while ∆ = −2πbv̂ and β = πib2 are understood

for the squashed sphere partition function. Combining those, we find our first

index theorem:

FS2(e∆, n;β) = FS3
b
(∆ + βn;β) + FS3

b
(−∆+ βn;−β) +O(β) . (6.3.2)

One may recall that we have taken integer rσ. This is necessary condition for

the topologically twisted index while it is not for the other partition functions.

Even for the other partition functions, however, the R-charges are not com-

pletely arbitrary and are restricted by the superpotential of the theory. Indeed,

such restricted R-charges can be parametrized by the flavor chemical poten-

tials. Namely, one can obtain any allowed R-charges, which are generically non-

integer values, by shifting the flavor chemical potentials by ∆i → ∆i−(β+πi)δi.

Then, the R-charge is deformed from rσ to rσ + σ(δ). From now on, this de-

formed R-charge is understood except the topologically twisted index.

One can also expand the right hand side with respect to β. Recall that

− log C(t;β) ≈ FD2(t;β) has the form

− log C(t;β) = 1

β
G(0)(t)− N

2
log β +G(1)(t) +O(β) (6.3.3)

where t = (t,−x̂e−πi) is defined such that

tσ = tσx̂rσ−1e−πirσ . (6.3.4)

t has a different definition for each partition function, but most generally it is

defined by

t = teβ(n−δ)−πiδ , t̄ = t−1eβ(n+δ)+πiδ (6.3.5)
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where the R-charge deformation is taken into account. For later convenience,

we include e−πiδ in the definition of t from now on. The small β expansion of

− log C(t;β) is thus given by

− log C(t;β) =
[
1

β
G(0)(t)− N

2
log β +

dt

dβ
· ∂

∂t
G(0)(t) +G(1)(t)

]
β̂→0

+O(β) .

(6.3.6)

Here, the third term can be expanded as

dt

dβ
· ∂

∂t
G(0)(t) =

∑
i

(ni − δi)ti
∂

∂ti
G(0)(t)− x̂

∂

∂x̂
G(0)(t) (6.3.7)

where we have used dβ̂
dβ = 1. Using this expansion, we have the following ex-

pressions for − log C and − log C:

− log C(t;β) =
1

β
G(0)(t)− N

2
log β +

∑
i

(ni − δi)ti
∂

∂ti
G(0)(t)− ∂

∂x̂
G(0)(t)

∣∣∣∣
β̂→0

+G(1)(t) +O(β) ,

(6.3.8)

− log C(t̄;−β) =

− 1

β
G

(0)
(t−1)− N

2
log(−β)−

∑
i

(ni + δi)t
−1
i

∂

∂t−1
i

G
(0)

(t−1)− ∂

∂x̂−1
G

(0)
(̄t)

∣∣∣∣
β̂→0

+G
(1)

(t−1)

+O(β) (6.3.9)

where t̄ = (t̄,−x̂−1eπi). In addition, we have used a shorthand expression

G(0,1)(t) ≡ G(0,1)(t)
∣∣∣
β→0

= G(0,1)(t,−e−πi) (6.3.10)

where σ acts on −eπi as e−πirσ . n is nontrivial for the superconformal index

while it is set to be zero for the hemisphere index and the squashed sphere
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partition function. Combining all those expansions, in the end, we find that

FS2(te−βδ, n;β) =
2

β
i Im

[
G(0)(t)

]
+ 2

∑
i

nii Im

[
ti

∂

∂ti
G(0)(t)

]
− 2

∑
i

δiRe

[
ti

∂

∂ti
G(0)(t)

]
− 2 Re

[
∂

∂x̂
G(0)(t)

]∣∣∣∣
β̂→0

+ 2Re
[
G(1)(t)

]
+O(β)

(6.3.11)

FS3
b
(∆− (β + πi)δ;β) =

1

β
G(0)(t)−

∑
i

δiti
∂

∂ti
G(0)(t)− ∂

∂x̂
G(0)(t)

∣∣∣∣
β̂→0

+G(1)(t) +O(β)

(6.3.12)

up to numerical constants one can ignore. For the squashed sphere partition

function, t = e∆−πiδ = e−2πbv̂−πiδ, x̂ = e−β̂ = e−πib
2
is understood. Here the

real part and the imaginary part should be understood with the conjugate

(6.2.36).

On the other hand, for the topologically twisted index, we have seen that the

Cardy limit is not completely determined by a dominant saddle. Nevertheless,

it is worth mentioning the case that there is only one saddle or there is a domi-

nant saddle due to other large parameters. In such situations, the topologically

twisted index is written in terms of the Cardy block as

F twisted
S2 (t, n;β) = N log β − log C(t;β)− log C(t̄−1;−β) +O(β) . (6.3.13)

The expansion of the second term is given by (6.3.8) with δ = 0 while the third

term is expanded as follows:

− log C(t̄−1;−β) =

− 1

β
G(0)(t)− N

2
log(−β) +

∑
i

niti
∂

∂ti
G(0)(t)− ∂

∂x̂−1
G(0)(̃t−1)

∣∣∣∣
β̂→0

+G(1)(t) +O(β)

(6.3.14)
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where t̃ = (t̄,−x̂eπi). Combining the two contributions, therefore, we find

F twisted
S2 (t, n;β) = 2

∑
i

niti
∂

∂ti
G(0)(t)− 2

∂

∂x̂
G(0)(t)

∣∣∣∣
β̂→0

+ 2G(1)(t) +O(β),

(6.3.15)

which is only valid if there is only one saddle or if there is a dominant saddle

due to other large parameters such as large N , which we discuss shortly. Also

note that

F twisted
S2 (e∆, n;β) = FS3

b
(∆ + βn;β) + FS3

b
(∆− βn;−β) +O(β) (6.3.16)

in such cases.

Large N limit

So far we have seen that the Cardy limits discussed in the previous section

are determined by two functions G(0,1)(t). See (6.3.8), (6.3.11), (6.3.12) and

(6.3.15). On the other hand, we will see that, in the large N limit, only G(0)

plays the crucial role.

Before jumping into the large N limit, let us recall that a large class of 3d

supersymmetric gauge theories are known to have their gravity dual on AdS4.

In the large N limit, for example, the superconformal and topologically twisted

indices are supposed to count the microstates of the corresponding dual black

holes. This has been confirmed for a wide class of theories for the topologically

twisted index [160, 161, 205, 206, 214–216] and is also recently tested for the

superconformal index using the ABJM theory and its mirror dual theory [79].

Also the squashed sphere partition function relates to the supersymmetric Rényi

entropy [196], which accounts for the Bekenstein-Hawking entropy of a charged

topological black hole in AdS4 [197, 198]. Furthermore, although we have not
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discussed it so far, the round sphere partition function, which is a basic quantity

counting the degrees of freedom in odd dimensions, relates to the Euclidean on-

shell action in AdS4 [36] as well as the holographic entanglement entropy of

Ryu-Takayanagi [199,200,217].

As such, many observables of a field theory directly capture the entropic

quantities of its gravity dual. More surprisingly, in the large N limit, some of

those different looking quantities are proven to be related to each other. For

example, there is an index theorem between the topologically twisted index and

the round sphere partition function [205]:

F twisted
S2 (t, n;β) =

πi

2

∑
i

(
ni −

∆i

πi

)
∂

∂∆i
FS3

(
−∆

πi

)
+ FS3

(
−∆

πi

)
,

(6.3.17)

which is written in our notation. This index theorem relates two different en-

tropic quantities of the dual gravity theory: the black hole entropy and the

holographic entanglement entropy for a spherical entangling surface. Here we

extend this index theorem to include the superconformal index, which is sup-

posed to capture the entropy of the rotating black hole, and also rederive the

above index theorem in our factorization context.

First, we note an interesting relation between the squashed sphere partition

function and the round sphere partition function in the large N limit [194]:

FS3
b

(
−πibQδ;πib2

)
=

Q2

4
FS3 (δ) , (6.3.18)

or equivalently

FS3
b
(∆;β) =

(πi+ β)2

4πiβ
FS3

(
− ∆

πi+ β

)
. (6.3.19)
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The explicit field theoretic derivation of this relation is discussed in [194], where

the relation is derived for non-chiral Chern-Simons quiver gauge theories dual to

M-theory on AdS4×SE7. On the other hand, we will see that this relation holds

more generally, in particular for theories dual to massive IIA string theory as

well. Note that flavor chemical potentials are turned off while the deformations

of theR-charges are parametrized by δ. Putting this back into the index theorem

(6.3.2), and (6.3.16), we find our second index theorem in the large N limit:

FS2(∆, n;β) =
(πi+ β)2

4πiβ
FS3

(
−∆+ βn

πi+ β

)
+

(πi+ β)2

4πiβ
FS3

(
−∆− βn

πi+ β

)
+O(β) ,

F twisted
S2 (∆, n;β) =

(πi+ β)2

4πiβ
FS3

(
−∆+ βn

πi+ β

)
− (πi− β)2

4πiβ
FS3

(
−∆− βn

πi− β

)
+O(β) ,

(6.3.20)

which relates two types of black hole entropies with the holographic entangle-

ment entropy for a spherical entangling surface. Note that, for parity invariant

theories, FS3 is a real function. Furthermore although we have derived (6.3.20)

in the Cardy limit, many examples suggest that they are exact for arbitrary β

in the large N limit, at least for the known large N saddle point capturing the

black hole microstates. In particular, recall that the Cardy block is given by

− log C(t;β) = 1

β
G(0)(t)− N

2
log β +G(1)(t) +O(β) . (6.3.21)

In the next section, we will show that G(1) is subdominant in N compared

to G(0) at the large N saddle point for the M2-brane example. In the same

manner, we expect that the O(β) corrections are also all subdominant at the

large N saddle, which implies that our formula (6.3.20) is indeed exact for

arbitrary β. We will come back to this point in section 6.4 and 6.5. Also note

that recently similar relations are found in terms of gravitational blocks on the

dual gravity side [201], which are also inspired by the holomorphic blocks. It
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will be interesting to obtain those relations using the equivariant localization

in supergravity [218,219].

In particular, one can consider the ordinary superconformal index by turning

off all the magnetic flux for the flavor symmetry, n = 0. In that case, we have

FS2(∆, n = 0;β) =
(πi+ β)2

2πiβ
Re

[
FS3

(
− ∆

πi+ β

)]
(6.3.22)

where Re[. . . ] should be understood with the conjugation defined by (6.2.36).

Indeed, one can further unrefine the index by turning off the flavor chemi-

cal potentials as well. Restoring the superconformal R-charge by setting ∆ =

−(πi+ β)δ∗ ≡ −∆Rδ∗, we obtain a simple formula

FS2(β) =
∆2
R

2πiβ
Re [FS3 (δ∗)] (6.3.23)

where ∆R = πi+β is the chemical potential for the superconformal R-symmetry

and δ∗ is the shift of R-charges restoring the superconformal values, which are

determined by the F -maximization. This relates the unrefined superconformal

index and the round sphere partition function at the superconformal point in

a very simple manner, where the latter accounts for the degrees of freedom of

3d SCFTs [202]. This is reminiscent of the Cardy formula for 2d CFTs [12]2 or

4d N = 1 SCFTs [138] in the large N limit, where the real part of the round

sphere free energy, Re [FS3 (δ∗)], plays the role of central charges in 2d and in

4d. Recently the same relation has been observed for 3d SCFTs arising from

M5-branes wrapped on hyperbolic three-manifolds [203, 204], which show N3

degrees of freedom in the large N limit. Our result shows that this relation

holds much more generally. Also we would like to mention that similar univer-

sal relations among quantities in different dimensions are discussed in [207,222].

2Recently, it is shown that the 2d Cardy formula can be derived in a rigorous way using
Tauberian theorems [220,221].
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Again one can expand the right hand side with respect to β. First, comparing

(6.3.18) with our formula (6.3.12), we obtain the following expression for the

round sphere:

FS3(δ) =
4

πi
G(0)(e−πiδ) =

2

πi

∑
i

δi
∂

∂δi
G(0)(e−πiδ)− 2

∂

∂x̂
G(0)(t)

∣∣∣∣
t→e−πiδ,β̂→0

+ 2G(1)(e−πiδ) ,

(6.3.24)

which implies that

2

πi
G(0)(t) =

1

πi

∑
i

(∆i − πiδi)ti
∂

∂ti
G(0)(t)− ∂

∂x̂
G(0)(t)

∣∣∣∣
β̂→0

+G(1)(t) (6.3.25)

where t = e∆−πiδ. Putting this back into the general formula above, we obtain

FD2(te−βδ;β) =
1

β
G(0)(t)− N

2
log β − 1

πi

∑
i

∆iti
∂

∂ti
G(0)(t) +

2

πi
G(0)(t) +O(β) ,

(6.3.26)

FS2(te−βδ, n;β) =

2

β
i Im

[
G(0)(t)

]
+ 2

∑
i

nii Im

[
ti

∂

∂ti
G(0)(t)

]
− 2

∑
i

Re

[
∆i

πi
ti

∂

∂ti
G(0)(t)

]
+

4

π
Im
[
G(0)(t)

]
+O(β) , (6.3.27)

F twisted
S2 (t, n;β) = 2

∑
i

(
ni −

∆i

πi

)
ti

∂

∂ti
G(0)(t) +

4

πi
G(0)(t) +O(β) (6.3.28)

for the three indices and

FS3
b

(
−2πbv̂ − πibQδ;πib2

)
=

1

πib2
G(0)(e−2πbv̂−πiδ)− 1

πi

∑
i

v̂i
∂

∂v̂i
G(0)(e−2πbv̂−πiδ)

+
2

πi
G(0)(e−2πbv̂−πiδ) +O(β) , (6.3.29)

FS3(δ) =
4

πi
G(0)(e−πiδ) (6.3.30)

for the sphere partition functions. t is defined by t = e∆−πiδ; ni vanishes for the

hemisphere index; δi vanishes for the topologically twisted index; and finite bv̂

is understood for the squashed sphere partition function.
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Especially, if we only look at the leading term in each partition function,

FD2(te−βδ;β) =
1

β
G(0)(t) , (6.3.31)

FS2(te−βδ, n;β) =
2

β
iIm

[
G(0)(t)

]
, (6.3.32)

F twisted
S2 (t, n;β) = 2

∑
i

(
ni −

∆i

πi

)
ti

∂

∂ti
G(0)(t) +

4

πi
G(0)(t) , (6.3.33)

FS3
b

(
−2πbv̂ − πibQδ;πib2

)
=

1

πib2
G(0)(e−2πbv̂−πiδ) , (6.3.34)

FS3(δ) =
4

πi
G(0)(e−πiδ) , (6.3.35)

from which one can read off various relations among those partition functions

in the strict Cardy limit. For example, one can write down the superconformal

index and the topologically twisted index in terms of the round sphere partition

function as follows:

FS2(te−βδ, n;β) ≈ − π

2β
Re

[
FS3

(
−∆

πi

)]
,

F twisted
S2 (t, n;β) ≈ πi

2

∑
i

(
ni −

∆i

πi

)
∂

∂∆i
FS3

(
−∆

πi

)
+ FS3

(
−∆

πi

) (6.3.36)

where the former provides a new universal formula for the large N supercon-

formal indices of 3d N = 2 supersymmetric non-chiral Chern-Simons quiver

theories dual to M-theory on AdS4×SE7 while the latter reproduces the known

index theorem for the unrefined topologically twisted index [205].

Indeed, the relations in (6.3.36), and (6.3.20), hold more generally, in par-

ticular, for theories dual to massive IIA string theory. Recall that the second

relation in [205] is derived not only for theories dual to M-theory but also for

those dual to massive IIA string theory. Thus, by reversing the logic, combining

the index theorem of [205] and our formula (6.3.16), which relates the topolog-

ically twisted index and the squashed sphere partition function, one can find
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that the relation (6.3.19) should hold for massive IIA duals as well as M-theory

duals. Therefore, the resulting relations in (6.3.20) and (6.3.36) also hold for

massive IIA duals. We will encounter such a massive type IIA example in sec-

tion 6.5. Furthermore, the Cardy limit formula (6.3.2) without the large N limit

is even more general as it does not have any such restrictions.

6.4 Example: N = 4 U(N) SYM with one fundamental
and one adjoint hypermultiplets

In this section, we examine the N = 4 U(N) SYM theory with one fundamental

and one adjoint hypermultiplets as an explicit example. It lives on N D2-branes

and 1 D6-brane, and flows in IR to N = 8 SCFT on M2-branes. Its holographic

dual is the 11d SUGRA, or M-theory, on AdS4 × S7. The partition functions

of this theory are already discussed in the literature. For example, the Cardy

limits of the superconformal and hemisphere indices are discussed in [79], which

we review in chapter 5, and the (unrefined) topologically twisted index in the

large N limit is discussed in [214]. Here, we reexamine those partition functions

in the perspective of the Cardy factorization, which sheds more light on their

relations and the universal structure such as (6.3.20) or (6.3.36). For simplicity,

we will only consider the large N limit. The finite N superconformal index in

the Cardy limit can be found in [79], which we discussed in chapter 5.
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6.4.1 Hemisphere index

We first examine the hemisphere index. Following [171], the hemisphere index

of the theory is given by

ID2(Q̂, z, t
1
2 ;β) = trH(D2;α)

[
(−1)RxR+2J3tl−rz2mQ̂T

]
=

1

N !

(
θ(zt;x2)

θ(zx2;x2)

)N2−N
2

(
θ(zt

1
2 ;x2)θ(t

1
2 e−πix;x2)

θ(ze−πix;x2)

)N

×
∮ ( N∏

a=1

dsa
2πisa

)(
N∏
a=1

θ(saQ̂t
1
2 ;x2)

θ(sae−πix;x2)θ(Q̂t
1
2 ;x2)

) ∏
1≤a̸=b≤N

(sas
−1
b ;x2)


×

(
N∏
a=1

(sat
− 1

2x2;x2)

(sat
1
2 ;x2)

) N∏
a,b=1

(sas
−1
b zt−

1
2x2;x2)

(sas
−1
b t−1x2;x2)(sas

−1
b zt

1
2 ;x2)

 , (6.4.1)

where x = e−β. sa’s denote the gauge holonomies on S1, which were originally

denoted by za’s in section 6.2. Our theory has N = 4 SUSY in UV, which is

associated with SO(4) ∼= SU(2)l × SU(2)r R-symmetry. Also, the adjoint hy-

permultiplet can be decomposed into two half-hypermultiplets being a doublet

of SU(2)m flavor symmetry. Finally, there is a topological U(1)T symmetry

coming from the conserved current of the U(N) gauge symmetry jµ = tr(⋆F )µ.

l, r,m denote the Cartan charges of SU(2)l × SU(2)r × SU(2)m, and T is the

U(1)T charge. From theN = 2 viewpoint, l+r corresponds to the SO(2) ∼= U(1)

superconformal R-charge while l − r is a flavor charge. As explained in section

6.2, we will take the integer quantized R-charge to define the index with (−1)R,

R = 2r in this case, instead of the superconformal one. Those two merely differ

by a shift of the chemical potentials. Then, the adjoint chiral multiplet in the

N = 4 vector multiplet has R-charge 2, while the other chiral multiplets have

vanishing R-charges. This can be achieved by successive replacing t → tx−1

and x → e−πix for the index in [79], which made use of the superconformal

R-charge and F = 2J3, where J3 is the angular momentum on D2. Further note
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that Q̂ = e−ξ̂, z = ef , t
1
2 = e

T
2 are the fugacities conjugate to the integer quan-

tized flavor charges. Lastly we have introduced 2d degrees of freedom to cancel

the boundary mixed/flavor anomalies such that there is no UV mixed/flavor

Chern-Simons term except the one between the diagonal gauge U(1) and the

topological U(1). In particular, the θ functions in front of the integral are due

to the flavor anomalies while the θ functions inside the integral are due to the

mixed anomalies between the gauge and the flavor symmetries.

For this particular model, one may avoid 2d degrees of freedom by turning

on appropriate mixed/flavor Chern-Simons terms, as done in [79]. On the other

hand, here we keep 2d degrees of freedom and assume no extra mixed/flavor

Chern-Simons terms. In particular, if Q = e−ξ ≡ Q̂t
1
2 eπix−1 has discrete value

x2n with an integer n, the θ functions inside the integral are simplified to

N∏
a=1

θ(saQ̂t
1
2 ;x2)

θ(sae−πix;x2)θ(Q̂t
1
2 ;x2)

∣∣∣∣∣
Q̂t

1
2 eπix−1=x2n

=
1

(e−πix;x2)2

N∏
a=1

s
− ξ

2β
a , (6.4.2)

which can be regarded as the classical contribution of the Fayet-Iliopoulos ac-

tion, whose coupling constant should have a quantized real value on D2, up

to a gauge holonomy independent factor. In this regard, the above θ functions

incorporate a generalized FI parameter ξ̂ = log Q̂, which can take any com-

plex value. This is because, in 3d, the Fayet-Iliopoulos action can be realized

as a mixed Chern-Simons action between the gauge U(1) and the topological

U(1). For computational convenience, we will temporarily use the parameter

ξ = ξ̂ − T
2 − πi − β rather than ξ̂. At the final answer, we will convert it back

to ξ̂.

In the Cardy limit β → 0, all the other chemical potentials ξ, f, T may be

taken as pure imaginary and finite [75]. We will restrict the parameter region
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as

−2π < Im(ξ) < 0 , −2π < Im(T ) < 0 ,

0 < Im

(
f − T

2

)
< 2π , 0 < Im

(
−f − T

2

)
< 2π .

(6.4.3)

After gluing two hemisphere indices to make the superconformal index, or the

topologically twisted index, the resulting index at the other parameter regions

can be easily generated by periodic shifts of the chemical potentials and complex

conjugation of the index [79]. So, it suffices to consider the above case only to

cover the whole parameter region. Then, recall that the Cardy limit β → 0 of

the hemisphere index (6.4.1) can be evaluated by the saddle point method as

ID2 =

(
β

π

)N
2

exp

(
− 1

2β
W∗
)(

det(−∂2
sW)∗

)− 1
2

(
N∏
a=1

1

s∗a
+O(β)

)
, (6.4.4)

with an effective twisted superpotential [79, 171]

W =

N2 −N

2

(
T − 2πi(p1 − p2) + 2β

)(
−f − T

2
+ πi(p1 + p2 + 1)

)
+

N

2
(T + 2πi+ 2β)

(
−f − T

2

)
+N

(
−3

2
π2 + 2π2

(
(p3 − p4)(p3 + p4 + 2)− p5(p5 + 2)

)
− 2πi(p3 − p5)ξ −

1

2
β(2πi+ β)

)
+N

(
−Li2(t

−1x) + Li2(zt
− 1

2x)− Li2(zt
1
2x−1)

)
+

N∑
a=1

((
ξ + 2πi(p3 − p4)

)
log sa + Li2(sat

− 1
2x)− Li2(sat

1
2x−1)

)
+

∑
1≤a̸=b≤N

(
Li2(sasb

−1x−1)− Li2(sasb
−1t−1x) + Li2(sasb

−1zt−
1
2x)− Li2(sasb

−1zt
1
2x−1)

)
+O(β2) ,

(6.4.5)
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where

2πp1 < Im (f + T ) < 2π(p1 + 1) ,

2πp2 < Im (f) < 2π(p2 + 1) ,

2πp3 < Im (log sa − ξ − πi) < 2π(p3 + 1) ,

2πp4 < Im (log sa − πi) < 2π(p4 + 1) ,

2πp5 < Im (−ξ − πi) < 2π(p5 + 1) .

(6.4.6)

Here, we used the asymptotic formulae (A.0.2), (A.0.10). Also, we assumed that

the eigenvalue distribution sa does not pass across the branch cuts, and O(β)

corrections do not change the branches of the arguments. Due to the conditions

(6.4.3),

(p1, p2) = (−2,−1) , (−1,−1) , (−1, 0) , (0, 0) ,

p3 − p4 = 0, 1 , p5 = −1, 0 .
(6.4.7)

Focusing on the gauge holonomy dependent parts of (6.4.5), 2πi(p3 − p4)

effectively shifts the range of Im(ξ) to (2π(p3 − p4 − 1), 2π(p3 − p4)). However,

according to [79], the known Cardy saddle point of the hemisphere index (6.4.1)

only exists when −2π < Im(ξ) < 0. Therefore, we will set p3 − p4 = 0. This

restricts the possible range of the argument of sa’s. The known Cardy saddle

point belongs to that range. When p3− p4 = 1, there is no known saddle point.

Also, as the hemisphere index (6.4.1) is invariant under sa → e2πisa, due to the

large gauge invariance of our QFT, we can freely tune the value of p4. We shall
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set p3 = p4 = p5 ≡ p, which can be either −1 or 0. Then, W becomes

W =

N2 −N

2

(
T − 2πi(p1 − p2) + 2β

)(
−f − T

2
+ πi(p1 + p2 + 1)

)
+

N

2
(T + 2πi+ 2β)

(
−f − T

2

)
+N

(
−4p+ 3

2
π2 − 1

2
β(2πi+ β)− Li2(t

−1x) + Li2(zt
− 1

2x)− Li2(zt
1
2x−1)

)
+

N∑
a=1

(
ξ log sa + Li2(sat

− 1
2x)− Li2(sat

1
2x−1)

)
+

∑
1≤a̸=b≤N

(
Li2(sasb

−1x−1)− Li2(sasb
−1t−1x) + Li2(sasb

−1zt−
1
2x)− Li2(sasb

−1zt
1
2x−1)

)
+O(β2) .

(6.4.8)

The first and second lines become N2

2 (T + 2πi+ 2β)
(
−f − T

2

)
when (p1, p2) =

(−1, 0), which is proportional to N2. This exactly cancels W0 in [79], which is

the term proportional to N2 of W∗ in the large N limit. Namely, by introducing

appropriate boundary degrees of freedom, we can get rid of the term propor-

tional to N2 in the large N Cardy free energy, which does not come from the

degrees of freedom of N M2-branes. However, one may suspect what happens

in the other branches as it will not exactly cancels W0 in those cases. First note

that it does not depend on sa’s, so it does not affect the saddle point. Further-

more, as explained in [79], this term cancels out when we glue two hemisphere

indices to make the superconformal index or the topologically twisted index.

Therefore, this term does not affect the resulting indices at all so that we can

effectively ignore it in the hemisphere index even in the other branches.

To analytically compute W∗, let us consider the large N limit. It was ba-

sically studied in [79]. Carefully following section 4.1 of [79], it is not hard to
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keep O(β) terms in W. We obtain

−W∗

2β
=− i

√
2N

3
2

3β

√(
−ξ̂ +

T

2
+ πi+ β

)(
ξ̂ +

T

2
+ πi+ β

)(
f − T

2

)(
−f − T

2

)
+

o(N
3
2 )

β
+ o(N

3
2 )β0 +O(β) , (6.4.9)

where ξ̂ = ξ + T
2 + πi+ β.3 This large N Cardy saddle point value exists only

when we further restrict the parameters as

0 < Im

(
ξ̂ +

T

2
+ πi+ β

)
< 2π , Im(β) < 0 . (6.4.10)

Note that we shifted T → T + β and removed W0 in [79] as explained before.

According to (6.4.4), the following also contributes to the hemisphere index

at O(β0): (
β

π

)N
2 (

det(−∂2
sW)∗

)− 1
2

N∏
a=1

1

s∗a
. (6.4.11)

Also, from [79], one can find that the Cardy saddle point satisfies Im(sa) =

0, Re(sa) > 0 for our parameter region. Then, we may sort the eigenvalues in

the ascending order as follows:

0 < s1 < s2 < · · · < sN . (6.4.12)

Assuming Im(β) < 0 as before, which is the relevant region for our microstate

3Indeed, the subleading correction in N turns out to be not O(N) but O(N
1
2 ), according

to the numerical analysis [79]. So, one may replace o(N
3
2 ) → O(N

1
2 ) in (6.4.9). Nevertheless,

we shall keep using o(N
3
2 ) as we do not have its analytic proof yet.
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counting, the Hessian of W at β → 0 is given by

∂2W
∂sa∂sb

=
1

sasb

[
1 +

∑
µ

sµ

(
1

1− e−µsas
−1
b

+
1

1− e−µs−1
a sb

)]
, (a ̸= b) ,

∂2W
∂s2a

=

1

s2a

[
−(N − 1)− (N − 2a+ 1)πi− ξ + Li1(t

1/2sa)− Li1(t
−1/2sa) +

1

1− t−1/2s−1
a

− 1

1− t1/2s−1
a

+

N∑
b=1
b̸=a

{
log(sas

−1
b ) +

∑
µ

sµ

(
−Li1(e

µsas
−1
b ) + Li1(e

µs−1
a sb)−

1

1− e−µsas
−1
b

− 1

1− e−µs−1
a sb

)} ,

(6.4.13)

where µ = −T, f − T
2 , f + T

2 and s−T = −1, sf−T
2
= +1, sf+T

2
= −1. At the

large N Cardy saddle point [79]

s∗a = s0e
N1/2xa , s0 =

sinh(ξ/2)

sinh(ξ/2 + T/2)
, (6.4.14)

the above Hessian becomes

∂2W
∂sa∂sb

= − 1

s∗as
∗
b

[(∑
µ

2sµ sinhµ

)
e−N

1/2|xa−xb| +O
((

e−N
1/2
)2)]

, (a ̸= b) ,

∂2W
∂s2a

= − 1

s∗a
2

[
ξ + θ(xa)(T + 2πi)− δxa,0

(
ξ +

1

1− t−1/2s−1
0

− 1

1− t1/2s−1
0

)
+O

(
e−N

1/2
)]

,

(6.4.15)

where θ(x > 0) = 1, θ(x ≤ 0) = 0, and δxa,0 is the Kronecker delta. Then, the

Hessian determinant is given by

det(−∂2
sW)∗ =

N∏
a=1

1

s∗a
2 ∆N

(
1 +O

(
e−N

1/2
)
β0 +O(β)

)
, (6.4.16)

where ∆N ≡
∏N
a=1

[
ξ + θ(xa)(T + 2πi)− δxa,0

(
ξ + 1

1−t−1/2s−1
0

− 1
1−t1/2s−1

0

)]
,

i.e. ∆ is an O(1) constant. Finally, we obtain

log

[(
β

π

)N
2 (

det(−W ′′
ss)
)− 1

2

N∏
a=1

1

s∗a

]
=

N

2
log

(
β

π∆

)
+O

(
e−N

1/2
)
β0+O(β) ,

(6.4.17)
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which contributes asO(N) to the largeN Cardy free energy. Therefore, together

with (6.4.9), the large N Cardy free energy of the hemisphere index is given by

log ID2(e−ξ̂, ef , e
T
2 ;β)

= log C(e−ξ̂, ef , e
T
2 ;β)

= −i

√
2N

3
2

3β

√(
−ξ̂ +

T

2
+ πi+ β

)(
ξ̂ +

T

2
+ πi+ β

)(
f − T

2

)(
−f − T

2

)
+

N

2
log

(
β

π∆

)
+

o(N
3
2 )

β
+ o(N

3
2 )β0 +O(β) ,

(6.4.18)

when

0 < Im

(
−ξ̂ +

T

2
+ πi+ β

)
, Im

(
ξ̂ +

T

2
+ πi+ β

)
, Im

(
f − T

2

)
, Im

(
−f − T

2

)
< 2π ,

(6.4.19)

with

Im(β) < 0 . (6.4.20)

Note that the log β term is correct even at finite N as explained in section 6.2.

One can also restore the superconformal R-charge by shifting T → T − πi− β.

6.4.2 Generalized superconformal index

In this subsection, we construct the large N Cardy limit of the generalized

superconformal index from (6.4.18). This index should statistically account for

the microstates of the electrically charged [82] or dyonic [97] rotating BPS black

holes with vanishing magnetic charge for the R-symmetry and large angular

momentum J/N
3
2 = O(β−2) in AdS4 × S7 [79]. In order to preserve SUSY,

the black holes should have both electric charges and angular momentum while

it is free to turn off the magnetic charges for the (non-R) flavor symmetries

[74,82,97].
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Recall that, in the Cardy limit, the generalized superconformal index is

given in terms of the Cardy block (6.2.55) as follows:

FS2(t, n;β) =N log β − log C(e−ξ̂+βnξ , ef+βnf , e
T
2
+βnT ;β)

− log C(eξ̂+βnξ , e−f+βnf , e−
T
2
+βnT ;−β)− log

[
N !πN

]
+O(β)

(6.4.21)

Applying (6.4.18) to the above factorization formula, we obtain

log IS2(∆I , nI ;β) =− i
2
√
2N

3
2

3

√
(∆1 + n1β) (∆2 + n2β) (∆3 + n3β) (∆4 + n4β)

2β

− i
2
√
2N

3
2

3

√
(∆1 − n1β) (∆2 − n2β) (∆3 − n3β) (∆4 − n4β)

2β
+ o(N

3
2 )

+O(β) ,

(6.4.22)

where

∆1 ≡ −ξ̂ +
T

2
+ πi+ β , ∆2 ≡ ξ̂ +

T

2
+ πi+ β , ∆3 ≡ f − T

2
, ∆4 ≡ −f − T

2
,

n1 ≡ nξ + nT , n2 ≡ −nξ + nT , n3 ≡ nf − nT , n4 ≡ −nf − nT ,

(6.4.23)

which satisfy

4∑
I=1

∆I−2β = 2πi ,

4∑
I=1

nI = 0 , 0 < Im(∆I) < 2π , Im(β) < 0 . (6.4.24)

Here, ∆I ’s are the four Cartan chemical potentials for SO(8) R-symmetry of

the N = 8 SCFT in IR, and nI ’s denote the magnetic fluxes for the Cartan

subgroup. Then, the first constraint of (6.4.24) can be considered as the index-

like condition implied on a partition function defined without (−1)F [75, 79].

Also, the second constraint reveals that we do not turn on magnetic flux on S2

for the R-symmetry; i.e., there is no topological twist.

The above large N Cardy free energy (6.4.22) statistically accounts for the
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microstates of dyonic rotating BPS black holes in AdS4 × S7 [97, 201]. In par-

ticular, turning off all the magnetic fluxes for the flavor symmetries, we get

log IS2(∆I ;β) = −i
4
√
2N

3
2

3

√
∆1∆2∆3∆4

2β
+ o(N

3
2 ) +O(β) . (6.4.25)

This large N Cardy free energy of the superconformal index accounts for the

microstates of electrically charged rotating BPS black holes in AdS4 × S7 [74].

Namely, performing the Legendre transformation of the above free energies

with respect to ∆I ’s and 2β under the constraints (6.4.24), one obtains the

Bekenstein-Hawking entropy of the corresponding BPS black holes in AdS4×S7.

Further note that although we derive these large N free energies in the Cardy

limit β → 0, they in fact perfectly capture the entropy of the BPS black holes

even at finite β.

6.4.3 Refined topologically twisted index

In this subsection, we construct the large N Cardy limit of the refined topo-

logically twisted index from (6.4.18). This index should statistically account

for the microstates of the magnetically charged or dyonic, static [223–225] or

rotating [226] BPS black holes with the non-vanishing magnetic flux for the

gauged R-symmetry in mAdS4 × S7 [160], which is a particular asymptotically

locally AdS spacetime [195]. For these black holes, one can freely turn off the

electric charges, angular momentum, and magnetic charges for the (non-R) fla-

vor symmetries. The magnetic charge for the R-symmetry should be properly

tuned to preserve SUSY by a topological twist.

Recall that, in the Cardy limit, the refined topologically twisted index is
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given in terms of the Cardy block (6.2.75) as follows:

F twisted
S2 (t, n;β) =N log β − log C(e−ξ̂+βnξ , ef+βnf , e

T
2
+βnT ;β)

− log C(e−ξ̂−βnξ , ef−βnf , e
T
2
−βnT ;−β)− log

[
N !πN

]
+O(β) .

(6.4.26)

Applying (6.4.18) to the above factorization formula, we obtain

log Itwisted
S2 (∆I , nI ;β) =− i

2
√
2N

3
2

3

√
(∆1 + n1β) (∆2 + n2β) (∆3 + n3β) (∆4 + n4β)

2β

+ i
2
√
2N

3
2

3

√
(∆1 − n1β) (∆2 − n2β) (∆3 − n3β) (∆4 − n4β)

2β

+ o(N
3
2 ) +O(β) ,

(6.4.27)

where

∆1 ≡ −ξ̂ +
T

2
+ πi , ∆2 ≡ ξ̂ +

T

2
+ πi , ∆3 ≡ f − T

2
, ∆4 ≡ −f − T

2
,

n1 ≡ 1 + nξ + nT , n2 ≡ 1− nξ + nT , n3 ≡ nf − nT , n4 ≡ −nf − nT ,

(6.4.28)

which satisfy

4∑
I=1

∆I = 2πi ,
4∑
I=1

nI = 2 , 0 < Im(∆I) < 2π , Im(β) < 0 . (6.4.29)

Here, ∆I ’s are again the four Cartan chemical potentials for SO(8) R-symmetry

of the N = 8 SCFT in IR, and nI ’s denote the magnetic fluxes for each Cartan

subgroup. The first constraint of (6.4.29) comes from the index-like condition

for the partition function without (−1)F while the second constraint implies

the topological twist by the magnetic flux for the R-symmetry on S2.

The above large N Cardy free energy (6.4.27) statistically accounts for

the microstates of magnetically charged or dyonic rotating BPS black holes

in mAdS4 × S7 [201, 226]. As before, this large N free energy gives the correct
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entropy of the BPS black holes at arbitrary β. Also, expanding the free energy

in β, one can find that it is regular at β = 0. Then, setting β = 0, we get

log Itwisted
S2 (∆I , nI) = −i

√
2N

3
2

3

√
∆1∆2∆3∆4

4∑
I=1

nI
∆I

+ o(N
3
2 ) , (6.4.30)

whose Legendre transformation in ∆I ’s yields the entropy of the magnetically

charge or dyonic static BPS black holes in mAdS4 × S7 [160].

6.4.4 Squashed sphere partition function

In this subsection, we construct the large N Cardy limit of the squashed sphere

partition function from (6.4.18). This partition function should be related to

the round sphere partition function by (6.3.18) [194]. Then, the free energy of

the round sphere partition function [66] is supposed to be identified with the

regularized Euclidean on-shell action on AdS4 × S7 [65, 227].

Recall that, in the Cardy limit, the squashed sphere partition function is

given in terms of the Cardy block (6.2.96) as follows:

FS3
b
(−πibQδ;πib2) =

N

2
log
[
−b2

]
− log C(e−πibQδξ , e−πibQδf , e−πibQδT ;πib2) +O(b2)

(6.4.31)

where Q = b + 1
b ; δµ’s are the R-charge deformations by U(1)µ flavor charges;

and we turned off all the mass parameters on S3
b for simplicity. Applying (6.4.18)

to the above formula, we obtain

logZS3
b
(∆I ;πib

2) = −1

4

(
b+

1

b

)2 4
√
2πN

3
2

3

√
∆1∆2∆3∆4 + o(N

3
2 ) +O(b2) ,

(6.4.32)

where

∆1 ≡ 1− δξ− δT , ∆2 ≡ 1+ δξ− δT , ∆3 ≡ −δf + δT , ∆4 ≡ δf + δT , (6.4.33)
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which satisfy
4∑
I=1

∆I = 2 . (6.4.34)

Here, ∆I ’s parametrize trial R-charges of the theory, which are constrained as

above due to the condition that the superpotential should have R-charge 2. As

before, this large N free energy (6.4.32) is indeed exact at arbitrary b.

Using the relation between the squashed and round sphere partition function

(6.3.18), we get the following largeN limit of the round sphere partition function

with arbitrary R-charges:

logZS3(∆I) = 4

(
b+

1

b

)−2

logZS3
b
(∆I ;πib

2) = −4
√
2πN

3
2

3

√
∆1∆2∆3∆4+o(N

3
2 ) ,

(6.4.35)

which exactly agrees with the known field theory result [228] and the confirma-

tion on the gravity side [229]. In particular, setting δT = 1
2 and δξ = δf = 0,

one can restore the superconformal R-charge. In that case, we find ∆1 = ∆2 =

∆3 = ∆4 =
1
2 , which indeed maximize F = − logZS3(∆I) [202]. Then, the large

N limit of the round sphere partition function at the superconformal R-charge

is given by

logZS3 = −
√
2πN

3
2

3
+ o(N

3
2 ) , (6.4.36)

which precisely matches the regularized Euclidean on-shell action on AdS4×S7

[66]. In addition, one can easily check that our second index theorem (6.3.20)

indeed holds for the results obtained in this section.

6.5 Other examples

In this section, we study the Cardy limit of the superconformal index of various

N ≥ 2 SCFTs applying (6.3.1) or (6.3.20). For the definiteness, we shall only
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consider the SCFTs which can be obtained from M-theory or string theory.

Before moving on to explicit examples, we first make a comment on the Hes-

sian determinant of the hemisphere index in the large N limit. While computing

the Hessian determinant in section 6.4, the crucial point was that the eigenval-

ues spread as sa ∼ eN
1/2xa . This eigenvalue spreading is a common feature of

3d SCFTs while the precise factor Nα depends on a specific model. For SCFTs

with M-theory dual, α = 1
2 ; for SCFTs with massive IIA dual, α = 1

3 . As one

can see in section 6.4, the precise factor is not important in the computation.

Thus, we expect that the log of the Hessian determinant is O(N) in general.

Namely, for generic N = 2 SCFTs, we expect that

G(1) = O(N) +O(β) . (6.5.1)

It is well known that G(0) = O(N
3
2 ) for the M-theory dual while G(0) = O(N

5
3 )

for massive IIA dual. Therefore, we expect that G(1) is negligible in the large

N limit.

There are lots of examples whose round sphere partition functions [65, 66,

228, 230] or topologically twisted indices on S2 × S1 [214–216, 231] are known

in the large N limit. Using (6.3.20), one can easily read off the large N Cardy

limit of the superconformal index from the round sphere partition function.

Also, in the literature, the topologically twisted index was computed via its

index theorem (6.3.17), which was expressed in terms of the Bethe potential V.

In our notation, the Bethe potential is translated as

V(∆) =
2

i
G(0)(e−i∆) . (6.5.2)

Since G(1) can be ignored in the large N limit, reading off V from the topologi-

cally twisted index suffices to compute the superconformal index in the large N

Cardy limit by (6.3.1). We will illustrate such examples whose large N Cardy
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limit of the superconformal indices can be obtained either from the round sphere

partition functions or the topologically twisted indices.

Furthermore, we will also provide finite N Cardy results of the supercon-

formal indices for a few examples, with rank less than 3 for simplicity, which

are severed as nontrivial tests of known dualities of those examples.

6.5.1 M2-Branes probing a CY 4-fold singularity

In this subsection, we consider quiver gauge theories, which describe the low

energy dynamics of M2-branes probing a conical Calabi-Yau 4-fold singularity.

For this class of theories, the sum of the CS levels for each gauge group vanishes,

i.e.
∑

g kg = 0. Also, those theories are parity invariant so that the round sphere

free energy FS3 is real. Then, from (6.3.20), the generalized superconformal

index can be expressed as

FS2(∆, n;β) =
FS2(∆ + nβ, 0;β) + FS2(∆− nβ, 0;β)

2
. (6.5.3)

Keeping the above formula in mind, we shall turn off all the magnetic fluxes

for the flavor symmetries. The generalization can be easily done by the above

formula. There are two relevant regimes for these theories: M-theory regime,

and type IIA string theory regime.

M-theory regime

One can take the large N limit with fixed CS levels k ∼ O(1). Then, the field

theory is supposed to be dual to the M-theory or 11d SUGRA on AdS4 × SE7

where SE7 is the Sasaki-Einstein 7-manifold serving as the base of a conical CY

4-fold. The characteristic large N behavior of the free energy in this M-theory
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regime is

F ∼ k
1
2N

3
2 . (6.5.4)

First, the round sphere free energy at the superconformal R-charge is given

by [66]

FS3 = N
3
2

√
2π6

27Vol(SE7)
. (6.5.5)

Applying (6.3.23), the (unrefined) superconformal index in the large N Cardy

limit, for the generic N ≥ 2 SCFTs describing the low energy dynamics of

M2-branes, is given by

FS2 =
∆2
R

2πiβ
N

3
2

√
2π6

27Vol(SE7)
, (6.5.6)

which precisely matches the result from the dual supergravity analysis on uni-

versal spinning black holes in AdS4 [203], even in the non-Cardy regime.

Example 1: ABJM theory

The most common example in this class is the ABJMk theory, which describes

the low energy dynamics of N M2-branes probing C4/Zk singularity [44]. Its

holographic dual is given by 11d SUGRA on AdS4 × S7/Zk. The round sphere

free energy with generic R-charge assignment is given by [228]

FS3 =
4
√
2πk

1
2N

3
2

3

√
∆1∆2∆3∆4 . (6.5.7)

The large N Cardy free energy of the superconformal index is given by [79]

FS2 = i
4
√
2k

1
2N

3
2

3

√
∆1∆2∆3∆4

2β
. (6.5.8)

Indeed, they satisfy our large N Cardy formula (6.3.20):

FS2(∆;β) =
(πi+ β)2

2πiβ
FS3

(
− ∆

πi+ β

)
. (6.5.9)
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Note that the above large N Cardy free energy of the superconformal index, in

fact, precisely captures the entropy of dual BPS black holes in AdS4 × S7/Zk

[74, 82,97], even in the non-Cardy regime.

SL(2,Z) duality When k = 1, the ABJM theory is supposed to be dual

to N = 4 U(N) SYM with one fundamental and one adjoint hypermultiplets

in section 6.4 by the SL(2,Z) duality [44]. Indeed, in the large N Cardy limit,

two free energies (6.4.25), (6.5.8) coincide. One can also test this duality in the

finite N Cardy limit using (6.3.1). When N = 1, the Cardy free energy of the

ABJM1 theory is given by

FS2 ∼ 8iG

2β
≈ 7.33i

2β
, (6.5.10)

at ∆1 = ∆2 = ∆3 = ∆4 =
πi
2 . G is Catalan’s constant, which is defined by

G =
Li2(i)− Li2(−i)

2i
≈ 0.915966 . (6.5.11)

It turns out that (6.5.10) is identical to the Cardy free energy of the dual theory

when N = 1 [79]. One would test this duality at N > 1 by numerical analysis.

Now we discuss a few more examples belonging to this class. The topologi-

cally twisted indices of those examples are examined in [214]. We examine their

superconformal indices in the Cardy limit, mainly with large N but also with

finite N for a few theories with rank less than 3.

Example 2: N = 4 U(N) SYM with Nf fundamental and one adjoint

hypermultiplets

This theory is a natural generalization of the theory we have considered in

section 6.4. This theory describesN M2-branes probing C2×C2/ZNf
singularity.
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Referring to the topologically twisted index in [214], we obtain the following

large N Cardy free energy of the superconformal index from (6.3.1):

FS2 = i
4
√
2N

1
2
f N

3
2

3

√
∆1∆2∆3∆4

2β
. (6.5.12)

Also, at Nf = 2, we give the Cardy free energy at finite N . When N = 1,

FS2 ∼ i

2β

[
4G+ 8Im

{
Li2((−1 +

√
2)i)

}
− π log(−1 +

√
2)
]

≈ 9.68691i

2β
,

(6.5.13)

and when N = 2,

FS2 ≈ 22.6365i

2β
, (6.5.14)

at ∆1 = ∆2 = ∆3 = ∆4 = πi
2 . Note that the above free energies comes from

the dominant one among several saddle points.

Example 3: N = 4 U(N)g necklace quiver SYM with Nf fundamental

hypermultiplets for the g-th gauge group

This theory contains g > 1 bifundamental hypermultiplets, each of which

connects adjacent gauge nodes, as well as Nf fundamental hypermultiplets

attached to the last gauge node. The theory lives on N M2-branes probing

C2/Zg × C2/ZNf
singularity. The large N Cardy free energy of the supercon-

formal index is given by

FS2 = i
4
√
2(gNf )

1
2N

3
2

3

√
∆1∆2∆3∆4

2β
. (6.5.15)

Mirror symmetry This theory at g = 2, Nf = 1 is dual to the former

theory at Nf = 2 by the mirror symmetry [232]. Indeed, the Cardy free energies

of two theories, (6.5.12) and (6.5.15), agree at large N limit. Also, when g =
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2, Nf = 1 and N = 1,

FS2 ∼ i

2β

[
4G+ 4Im

{
Li2(e

πi
4 ) + Li2(e

3πi
4 )
}]

≈ 9.68691i

2β
,

(6.5.16)

at ∆1 = ∆2 = ∆3 = ∆4 = πi
2 . Hence, two Cardy free energies, (6.5.13) and

(6.5.16), also agree at N = 1.

Example 4: N = 3 U(N)g necklace quiver CS matter theory with CS

levels (+k,−k, 0, 0, . . . , 0)

This theory lives on N M2-branes probing (C2 ×C2/Zg−1)/Zk singularity. The

large N Cardy free energy is given by

FS2 = i
4
√
2[(g − 1)k]

1
2N

3
2

3

√
∆1∆2∆3∆4

2β
. (6.5.17)

This theory with g gauge nodes at k = 1 is dual to the third example with

g− 1 gauge nodes at Nf = 1 by the SL(2,Z) duality [233]. Indeed, the large N

Cardy free energies of two theories, (6.5.15) and (6.5.17), are identical.

Example 5: N = 3 U(N)2g necklace quiver CS matter theory with al-

ternating CS levels ±k

This theory describes the low energy dynamics ofN M2-branes probing (C2/Zg×

C2/Zg)/Zk singularity. The large N Cardy free energy is

FS2 = i
4
√
2gk

1
2N

3
2

3

√
∆1∆2∆3∆4

2β
. (6.5.18)

Type IIA string theory regime

One can take the large N limit with large but fixed ’t Hooft couplings λ =

N
k ≫ 1 ∼ O(N0). Then, the field theory in this ’t Hooft limit is dual to type
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IIA string theory. The characteristic large N, λ behavior of the free energy in

this type IIA string theory regime is

F ∼ N2

√
λ

. (6.5.19)

Our example is the ABJMk theory. In the above ’t Hooft limit, the ABJMk

theory is dual to type IIA SUGRA on AdS4×CP3 [44]. This can be understood

as the 10d reduction of the M-theory on AdS4 × S7/Zk where S7 is a U(1)

bundle over CP3. Using (6.3.1), the Cardy free energy of the superconformal

index in the large N, λ limit can be read off from the topologically twisted

index in [231] as follows:

FS2 = i
4
√
2N2

3
√
λ

√
∆1∆2∆3∆4

2β
. (6.5.20)

The above large N Cardy free energy perfectly captures the entropy of dual

BPS black holes in AdS4 × CP3 [74, 231].

6.5.2 D2-Branes probing a CY 3-fold singularity in massive IIA
string theory

In this subsection, we consider Chern-Simons matter gauge theories describing

the low energy dynamics of D2-branes probing a conical CY 3-fold singularity

in the presence of a non-vanishing quantized Romans mass, i.e. in massive IIA

string theory [230,234]. For this class of theories, sum of the CS levels for each

gauge group does not vanish, i.e.
∑

g kg ̸= 0. Hence, those theories are not

parity invariant so that the round sphere free energy FS3 is complex.

We shall consider the large N limit with fixed CS levels k ∼ O(1). The

holographic dual is given by massive IIA SUGRA on AdS4 ×M6 where M6 =

SY5 is the suspension of a Sasaki-Einstein 5-manifold Y5, which serves as the
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base of a conical CY 3-fold. The characteristic large N behavior of the free

energy of this class is given by [234]

F ∼ n
1
3N

5
3 , (6.5.21)

where n =
∑

g kg, sum of the CS levels for each gauge node. The round sphere

free energy at the superconformal R-charge is given by [230]

Re[FS3 ] =
21/331/6π3

5Vol(Y5)2/3
n

1
3N

5
3 =

25/331/6π

5
(nN)

1
3 (a4d)

2
3 , (6.5.22)

where a4d is the a-anomaly coefficient of the parent 4d SCFT, which lives on

D3-branes probing the same CY 3-fold singularity. Applying (6.3.23), the (un-

refined) superconformal index in the large N Cardy limit, for the generic N ≥ 2

SCFTs describing the low energy dynamics of D2-branes in massive IIA string

theory, is given by

FS2 =
∆2
R

2πiβ

21/331/6π3

5Vol(Y5)2/3
n

1
3N

5
3 =

∆2
R

2πiβ

25/331/6π

5
(nN)

1
3 (a4d)

2
3 , (6.5.23)

as expected from the dual gravity side in the non-Cardy regime [203].

For a generic N = 2 U(N)g quiver theory with equal CS level k and bifun-

damental and adjoint matters, the large N Cardy free energy of the generalized

superconformal index can be read off from the round sphere partition func-

tion [230] using (6.3.20) as follows:

FS2 =

21/333/2

80iβ

(
1− i√

3

)[ ∑
I∈matters

(∆I + nIβ)(∆I + nIβ + πi+ β)(∆I + nIβ + 2πi+ 2β)

] 2
3

n
1
3N

5
3

+
21/333/2

80iβ

(
1 +

i√
3

)[ ∑
I∈matters

(∆I − nIβ)(∆I − nIβ + πi+ β)(∆I − nIβ + 2πi+ 2β)

] 2
3

n
1
3N

5
3 .

(6.5.24)
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One particular example is an N = 2 CS deformation of the maximal SYM.

This SCFT is dual to massive IIA SUGRA on AdS4 × S6. The large N Cardy

free energy of the generalized superconformal index can be read off from the

topologically twisted index [215,216] using (6.3.1) as

FS2 =
21/3313/6

80iβ
k

1
3N

5
3

[(
1− i√

3

)
[(∆1 + n1β)(∆2 + n2β)(∆3 + n3β)]

2
3

+

(
1 +

i√
3

)
[(∆1 − n1β)(∆2 − n2β)(∆3 − n3β)]

2
3

]
,

(6.5.25)

which is consistent with the above general formula. This large N Cardy free

energy is supposed to account for the microstates of the dyonic rotating BPS

black holes with vanishing magnetic charge for the R-symmetry in the massive

IIA SUGRA background AdS4 × S6.

6.6 Concluding remarks

In this chapter, we have examined the Cardy limit of 3d supersymmetric parti-

tion functions using their factorization into the Cardy block, which is defined as

the dominant saddle point contribution to the hemisphere index in the Cardy

limit. The Cardy block plays the role of a building block of other 3d partition

functions such as the generalized superconformal index, the refined topologically

twisted index and the squashed sphere partition function. The factorization to

the Cardy block allows us to find universal relations among those partition

functions in the Cardy limit.

Furthermore, our analysis can be applied to holographic SCFTs in 3d, which

are dual to AdS4 gravity in the large N limit. In the large N limit, such uni-

versal relations extend to include the round sphere partition function, which is

known to count the degrees of freedom of a SCFT in odd dimensions and is
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also dual to the holographic entanglement entropy in dual AdS4 for a spher-

ical entangling surface. In addition, the two supersymmetric indices we have

examined correspond to the entropy functions of BPS black holes in AdS4; the

generalized superconformal index, in the presence of the magnetic flux for the

flavor symmetry, captures the microstates of rotating dyonic BPS black holes

in AdS4 while the refined topologically twisted index captures the microstates

of rotating dyonic BPS black holes in mAdS4, an asymptotically locally AdS4

spacetime. Therefore, our analysis provides a field theoretic derivation of univer-

sal relations among the black hole entropies and the holographic entanglement

entropy in AdS4. We have also provided explicit examples, which confirm the

universal relations we have found.

We would like to remark a few interesting points and future directions.

• Black hole microstate counting in the non-Cardy regime

In section 6.4, we have seen that our Cardy formulae for the M2-brane

theory, which are derived in the β → 0 limit, exactly account for the

microstates of various BPS black holes in AdS4 × S7 even at finite β.

Those BPS black holes are supposed to be realized as the local large

N saddle points on the dual field theory side. Indeed, there are a lot

of examples showing that the Cardy formula is exact at finite β: from

the pioneering work of Strominger and Vafa counting the microstates of

the D1-D5-P black holes [11] to recent works counting the microstates

of the electrically charged rotating BPS black holes in AdS5 [75, 138],

AdS7 [75,159], AdS6 [78], AdS4 [79]. Remarkably, the resulting Cardy free

energy of the index at large N perfectly captures the Bekenstein-Hawking

entropy of the dual BPS black holes even in the non-Cardy regime.
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Accordingly, we expect that our Cardy formulae such as (6.3.20) are exact

in the non-Cardy regime as long as we consider the large N saddle point

corresponding to the dual BPS black holes in AdS4. For example, let us

consider the superconformal index without magnetic flux for the flavor

symmetry. The form of the entropy function of generic rotating electric

BPS black holes in AdS4 can be found in [97], which is the same as

our Cardy free energy once we identify Im
[
G(0)

]
with the supergravity

prepotential F up to some multiplicative constant factors. We expect

that G(1) and all O(β) corrections are subdominant in N at the large N

saddle point capturing the dual black hole microstates. Also the unrefined

superconformal index leads to the Cardy formula (6.3.23), which is proven

exact by the supergravity analysis for the universal spinning black holes

in AdS4 [203]. It is worth studying such exactness of our Cardy formulae

further, both on the field theory side and on the gravity side.

• Cardy limit for finite N

In section 6.5, we have examined the superconformal indices in the Cardy

limit of some examples for finite N . In [79], which we discussed in chapter

5, the finite N Cardy limit of the superconformal index was examined

for N = 4 SYM with one fundamental and one adjoint matters both

analytically and numerically. In particular, for N = 2, we obtained the

exact coefficient of the free energy:

log IS2

∼ i

2β

[
−8G− 2 Im

{
2Li2(ix) + 2Li2

(
i

x

)
+ 2Li2(ix

2) + 2Li2

(
i

x2

)
+ Li2

(
1

x

)}]
≈ −17.4771i

2β
(6.6.1)
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with

G =
Li2(i)− Li2(−i)

2i
≈ 0.915966 ,

x =
1

2
(1− 3

1
4

√
2 +

√
3) ≈ 0.435421 ,

(6.6.2)

which is the finite N version of the N
3
2 scaling of the M2-brane degrees of

freedom. Our analysis provides similar results for more examples, and it

would be interesting to find the physical interpretation of those numbers.

Also our Cardy free energy is a simple but nontrivial observable of a

theory. For example, its matching can be regarded as a nontrivial test

of a duality for 3d SCFTs. We have illustrated such examples in section

6.5, where the Cardy free energy shows perfect matches under 3d mirror

symmetry or SL(2,Z) duality. While our analysis is restricted for theories

of rank less than 3, it would be worth studying higher rank theories.

• Twisted compactification of 5d, 6d SCFTs

While our analysis relies on the localization computation of supersymmet-

ric partition functions, and thus on the Lagrangian description of a theory,

recently similar results are obtained for class R theories, which are gener-

ically non-Lagrangian theories, realized as twisted compactification of 6d

(2,0) AN−1 theory on hyperbolic 3-manifolds [185,235,236]. The supercon-

formal indices of those theories can be computed as topological invariants

of SL(N,C) Chern-Simons theories by the 3d-3d correspondence and are

shown to capture N3 degrees of freedom of N M5-branes [203, 204]. Re-

markably, they satisfy the same relation (6.3.23):

FS2(∆ = −∆Rδ∗, n = 0;β) =
∆2
R

2πiβ
Re [FS3 (δ∗)] , (6.6.3)

which we derive for 3d SCFTs with Lagrangian descriptions. Also the

same relation is expected by the supergravity analysis [203] for 3d the-
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ories obtained as the twisted compactification of 5d SCFTs [237]. From

those results, we may expect that our Cardy analysis for Lagrangian the-

ories would hold for a broader class of 3d SCFTs, which will be interesting

to clarify.
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Chapter 7

Background field analysis for large
AdS5,7 black holes

In this chapter, we use a background field method on S3 and S5 to analyze the

asymptotic free energy of the indices on S3×S1 and S5×S1 in the Cardy limit.

This method can be useful for non-Lagrangian QFTs. In 4d case, we revisit the

N = 4 SYM discussed in chapter 3. In 6d case, we analyze theN = (2, 0) SCFT.

We will show that the Chern-Simons terms of the background fields yield the

asymptotic free energy. The relevant Chern-Simons terms are determined by

the ’t Hooft anomalies. The resulting Cardy free energies exactly agree with

the entropy functions of the BPS black holes in AdS5 × S5 and AdS7 × S4

respectively, thus statistically accounting for their microstates.

7.1 Large supersymmetric AdS5 black holes

In this chapter, we consider an alternative approach to compute the asymptotic

free energy of the index in the Cardy limit. As an exercise, in this section, we
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revisit the index of 4d N = 4 SYM on S3 × S1, discussed in chapter 3. The

chemical potentials β, ωi are reflected in the background metric of S3 × S1 as

ds2 = r2

[
dθ2 +

2∑
i=1

n2
i

(
dϕi −

iωi
β

dτ

)2
]
+ dτ2 , (7.1.1)

where (n1, n2) = (cos θ, sin θ), 0 ≤ θ ≤ π
2 . The Euclidean time τ has period

τ ∼ τ+β, and we restored the radius r of S3. ∆I are encoded in the background

U(1)3 ⊂ SO(6) gauge fields

AI = − i∆I

β
dτ . (7.1.2)

The partition function is given by a path integral over the N = 4 Yang-Mills

fields at coupling constant gYM, coupled to these background fields in a canon-

ical manner. Again having in mind imposing

3∑
I=1

∆I −
2∑
i=1

ωi = 2πi (7.1.3)

to get the index, we take β → 0+. Very naively, one might think that a Kaluza-

Klein reduction to S3 would be possible, integrating out heavy KK fields, be-

cause the circle size β is small. If one can integrate out the heavy fields, they

will contribute to an effective action of the background fields, arranged in the

derivative expansion which is a series in small β. This will turn out to be a much

subtler issue, because β−1 appears in other background fields. Indeed, naively

doing the KK reduction, one would see shortly that the 3d metric, dilaton and

U(1)3 fields all see inverse powers of β. Still, when ω1,2 ≪ 1, we will show that

the KK fields can be integrated out, whose effect will be arranged in a deriva-

tive expansion. The expansion will be a series in small β, ω1,2, whose leading

terms will be given by Chern-Simons terms. The effect of 3d zero modes is also

expected to be subleading in our model. The analysis is similar to [73], except

that our setting is subtler with new aspects.
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Having these in mind, we arrange the 4d background fields as 3d background

fields. To this end, we rewrite (7.1.1) in terms of 3d metric, gravi-photon a, and

the dilaton Φ as

ds24 = r2

dθ2 +∑
i

n2
i dϕ

2
i +

r2(
∑

i ωin
2
i dϕi)

2

β2(1− r2
∑

i
n2
iω

2
i

β2 )

+ e−2Φ (dτ + a)2 ≡ ds23 + e−2Φ(dτ + a)2

e−2Φ = 1− r2
∑
i

n2
iω

2
i

β2
, a = −i

r2
∑

i ωin
2
i dϕi

β(1− r2
∑

i
n2
iω

2
i

β2 )
. (7.1.4)

The 4d U(1)3 background fields AI are arranged to 3d gauge field AI and the

scalar AI4 as AI = AI4(dτ + a) +AI , where

AI4 = − i∆I

β
≡ αI

β
, AI = −AI4a . (7.1.5)

We take β to be the smallest variable, eventually intending to take the limit

β → 0+. ωi ≪ 1 are also small, but still satisfying β
rωi

≪ 1. One might worry

that some background fields may behave badly due to the factor 1−r2
∑

i
n2
iω

2
i

β2 in

denominators. We temporarily circumvent this issue by taking ωi to be complex

and generic, evading the poles. Physically, this has to do with the fact that non-

BPS derivatives’ effect is present before imposing (7.1.3).

We first consider the limiting behaviors of the 3d background fields for

β
r ≪ |ωi| ≪ 1:

ds23 ∼ r2
[
ds2(S3

round)−
(
∑

i ωin
2
i dϕi)

2∑
i n

2
iω

2
i

+ · · ·
]

β2e−2Φ ∼ −r2
∑
i

n2
iω

2
i + · · · ,

a

β
∼

i(
∑

i ωin
2
i dϕi)

2
∑

i n
2
iω

2
i

+ · · · . (7.1.6)

The omitted terms · · · are suppressed by positive powers of β
rωi

≪ 1. Note that

in the 3d metric, one has a canonical round sphere metric, accompanied by

the second term which is an O(1) negative length element along one direction.

For instance, if ω1 = ω2 ≡ ω, this direction is the Hopf fiber of S3. Along
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this direction, leading O(1) length elements cancel and its [length]2 becomes

smaller, at a positive power in β
ω . This is one reason why a naive KK reduction

becomes subtle in our case. The dilaton field β2e−2Φ for the [circumference]2

of temporal circle is suppressed to be small |ωi| ≪ 1, which is an intuitive

reason why we should also keep ωi small to trust the derivative expansion. The

3d background fields are highly singular (e.g. ω, β dependence), presumably

having short wavelength components on S3, so that one might wonder if the

whole spirit of using derivative expansion is relevant or not. In general, using

these fields will be highly problematic in the general effective field theory. For

instance, if one wishes to make variation of this effective action in background

fields to generate correlation functions, this probably might be tricky. However,

our strategy here is very practical, having in mind using this EFT just for our

particular background. In other words, we use it just as a way of expressing

the series expansion of a particular observable logZ in β, ω1, ω2. So no matter

how singular the fields may look, we just care about whether the actual values

of terms after spatial integrals are sequentially suppressed as an infinite series.

We will show (more precisely, strongly illustrate) that this is indeed true.

In this background, we consider the path integral of 4d N = 4 Yang-Mills

theory. We formally decompose the 4d dynamical fields into 3d ‘zero modes’

and ‘KK fields,’ depending on the momentum mode on S1. We schematically

call the zero modes ΦL and KK modes ΦH , where L/H stand for ‘light/heavy.’

ΦH couples to the background field a, while ΦL does not. The path integral is

done by integrating over ΦH at fixed ΦL, and then integrating over ΦL.

We discuss the structure of the path integral over ΦH , at fixed ΦL. In our

scaling limit of small S1 radius, the path integral over ΦH gives an effective

action that depends only on the 3d background fields, but not on ΦL which are
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held fixed for the moment. To see this, consider the schematic structure of the

3d action for ΦH . It takes the form of

L ∼ ΦH(∂
2 +M2

KK)ΦH + g23dV (ΦL,ΦH) (7.1.7)

where V denotes a potential quartic in ΦH ,ΦL, with order 1 coefficients. Here

we consider the case in which ΦH , ΦL are bosonic, for simplicity. Both MKK and

g23d have dimension of mass, proportional to the inverse-radius of the temporal

circle ∼ 1
rω (where ω ∼ ω1,2.) The solution to ΦH at given ΦL is schematically

given by ΦH ∼ g23d
∂2+M2

KK
∂ΦH

V . The propagator factor scales like
g23d

∂2+M2
KK

≲ rω,

which suppresses the ΦH tadpole and fluctuations depending on ΦL.
1 ΦH ’s path

integral is effectively Gaussian, depending on background fields only. So after

integrating out ΦH , Z consists of two factors: one given by the 3d background

fields, and another given by the path integral of ‘zero modes’ ΦL canonically

coupled to 3d background fields, obtained by classical dimensional reduction of

4d N = 4 Yang-Mills theory. In the latter sector, the dilaton appears as the 3d

coupling constant (which may depend on spatial coordinate if ω1 ̸= ω2), while

the gravi-photon β−1a does not couple to the classical 3d Yang-Mills.

We first consider the factor coming from the path integral over ΦL. It con-

sists of the fields of 3d maximal super-Yang-Mills, whose action is deformed

to be less supersymmetric by various parameters. Here, we simply discuss how

its contribution to logZ will depend on various parameters. The 3d effective

coupling is given by g23d ∼ 1
rω . The 3d metric consists of 2d base whose length

scale is r, and a fiber whose length scale is β
ω ≪ r. As we shall see below from

background effective actions (which is also obvious from BPS kinematics), the

1We expect a caveat when ΦL has zero modes held at large value without a potential
cost, making ∂ΦHV large. There are two types of such modes, again depending on the IR
divergent behaviors of ZS3 for ΦL [114]. In our 4d U(N) theory, or 6d (2, 0) theory for N
M5-branes, we assume the absence of such dangerous modes. See the next two paragraphs for
more discussions.
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leading free energy will be of order ∼ β0

ω2 at β
r ≪ ω ≪ 1. We can argue that the

path integral of ΦL will yield much smaller terms than this. Suppose otherwise,

and the ΦL’s path integral contributes a term at this order. Then, the diver-

gent ω−2 part would come either from positive power in the 3d gauge coupling

g23d ∼ g2YM
rω , or positive power in the Hopf fiber radius ∼ (βω−1)#. But acquiring

this factor from the Hopf fiber radius is accompanied by a positive power in β,

which is subleading. So β0ω−2 dependence would come from the divergent 3d

coupling, g23d ∼ ω−1.

However, it is also hard to imagine (probably inconsistent) that a 3d QFT

partition function diverges as the coupling grows, as the 3d QFT seems to

be perfectly well defined. The only way in which we can imagine a divergent

dependence on large g3d is when the observable suffers from infrared divergence,

since g3d → ∞ is a sort of IR limit in 3d. More concretely, the partition function

of 3d maximal SYM on S3 is well known to have an IR divergence [162]. As

studied in [73,114], this is due to the N gauge holonomies of U(N) on S1 being

non-compact in the small circle limit. At small but finite circle radius, ∼ rω, the

holonomies have period given by ∼ 1
rω , thus providing an IR cutoff. This would

yield a factor of ∼ ω−N to Z, contributing at a subleading order ∼ N logω to

the free energy. Thus, we expect the divergent leading part ∝ β0ω−2 of the net

free energy to be unaffected by the 3d dynamical fields.

So it suffices to consider the effect of integrating out the ‘KK fields’ ΦH ,

yielding an effective action of gµν , aµ, Φ,AI
µ, A

I
4. There are infinitely many terms

in this effective action, arranged in a derivative expansion, whose coefficients are

mostly unknown. At generic points of the background fields, before imposing the

BPS index constraint (7.1.3), all fermions of the 4d theory will go to ΦH , due to

the anti-periodic boundary conditions. At (7.1.3), some fermion modes may be
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massless. Across this surface, as we shall see, these transiently massless fermions

at (7.1.3) will simply change some Chern-Simons coefficients, without further

effects on the effective action. Below, we will show that: (1) the derivative

expansion is arranged in a series of β, ω1, ω2; (2) the leading terms are at order

β0

ω1ω2
, completely coming from the Chern-Simons terms; (3) the Chern-Simons

coefficients can be determined either from the free 4d QFT, or by an anomaly

consideration. We shall discuss these issues in the order of (3) → (2) → (1).

We first discuss possible Chern-Simons terms ofAI , a. (One might also think

of the gravitational Chern-Simons term ∼ ω∧R. We think its coefficient is zero,

but anyway it will be subleading in our scaling limit, as illustrated below.) There

can be standard gauge-invariant Chern-Simons terms of the forms [73,238]

β−2

∫
a ∧ da , β−1

∫
AI ∧ da ,

∫
AI ∧ dAJ , (7.1.8)

whose coefficients are dimensionless and quantized. There can also be gauge

non-invariant Chern-Simons terms which are needed for anomaly matching [73,

238]. Since their coefficients are all quantized, either from gauge invariance or

anomaly matching, one can determine them by integrating out KK fermions of

the 4d QFT at weak coupling.

We follow [73] to compute these coefficients for U(1)3 ⊂ SO(6) times the

gravi-photon U(1). There are four Weyl fermions ΨQ1,Q2,Q3
α , where α = ±1

2 ,

and with (Q1, Q2, Q3) = (−,+,+), (+,−,+), (+,+,−), (−,−,−). ±’s for QI ’s

denote ±1
2 . The fermions with anti-periodic boundary conditions are labeled

by the Kaluza-Klein level n ∈ Z + 1
2 . The contributions to the Chern-Simons

terms from the n’th KK modes are given by [73]2

S
(n)
CS =

iN2

8π

∑
(Q1,Q2,Q3)

sgn

(
n− β

2π
AI4QI

)∫
S3

(
QIQJAI ∧ dAJ + 2QI

2πn

β
AI ∧ da+

(2πn)2

β2
a ∧ da

)
.

(7.1.9)

2The overall sign is chosen to be consistent with our chirality/parity convention.
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There are infinitely many contributions from the tower of KK modes, which

should be regularized. Following [73], we sum over all n ∈ Z+ 1
2 using the zeta

function regularization.3 To start with, when −1
2 < µ ≡ β

2πQIA
I
4 < 1

2 for a

fermion mode with given QI , one obtains [73]

∑
n

sgn(n− µ) ∼ 2µ ,
∑
n

sgn(n− µ)n ∼ µ2 +
1

12
,
∑
n

sgn(n− µ)n2 ∼ 2

3
µ3 .

(7.1.10)

If AI4’s are chosen so that β
2πQIA

I
4 is in the range (−1

2 ,
1
2) for all possible QI ’s,

one obtains

SCS =
iN2

4π

∑
(Q1,Q2,Q3)

∫ [
β

2π
QIQJQKAI4AJ ∧ dAK +

2π

β
QI

(
QJQK

β2

(2π)2
AJ4A

K
4 +

1

12

)
AI ∧ da

+
β

3 · 2π
QIQJQKAI4A

J
4A

K
4 a ∧ da

]
. (7.1.11)

Here, note that

∑
(Q1,Q2,Q3)

QIQJQK = −1

2
CIJK ,

∑
(Q1,Q2,Q3)

QI = 0 , (7.1.12)

where CIJK is symmetric in I, J,K, C123 = 1, and CIJK = 0 if any two of

I, J,K are same. (These are the anomaly coefficients of U(1)3.) Using these

facts, one obtains

SCS = − iN2

8π
· β
2π

∫
S3

CIJK

(
AI4AJ ∧ dAK +AI4A

J
4AK ∧ da+

1

3
AI4A

J
4A

K
4 a ∧ da

)
.

(7.1.13)

3There are various proposals for regularizing Z[S3 × S1] [73, 239–241], concerning the su-
persymmetric Casimir energy [150, 242, 243]. Employing the regularization of [73], we obtain
a free energy unspoiled by the formal Casimir energy factor of [242]. Although we have no
clear reasoning for this, note that Casimir energy is very sensitive to regularization, while
the integral spectrum part should be more robust. Especially, our setup respects all the pe-
riodicities of holonomies, which is a property of the spectral part of logZ but not of the
Casimir energy [242]. So our regularization appears to disallow a room for vacuum energy
factor like [242].
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Note that the gauge invariant Chern-Simons terms (7.1.8) are all zero in this

chamber, with −1
2 ≤ β

4π (±A1
4 ± A2

4 ± A3
4) ≤ 1

2 for all four possible sign choices

satisfying ± · ± · ± = −1.

In general chambers of AI4, one takes

− 1

2
+ pQ ≤ β

2π
QIA

I
4 ≤ 1

2
+ pQ , (7.1.14)

where Q runs over 4 possible cases, with integral pQ’s. In this chamber, the

regularized sums are now given by∑
n

sgn(n− µ) =
∑
n′

sgn(n′ − µ′) ∼ 2(µ− p) (7.1.15)

∑
n

sgn(n− µ)n =
∑
n′

sgn(n′ − µ′)(n′ + p) ∼ (µ− p)2 +
1

12
+ 2p(µ− p)

∑
n

sgn(n− µ)n2 =
∑
n′

sgn(n′ − µ′)((n′)2 + 2pn′ + p2) ∼ 2

3
(µ− p)3 + 2p(µ− p)2 +

p

6
+ 2p2(µ− p) ,

where n′ = n− p, µ′ = µ− p. In this chamber, one obtains

SCS =
iN2

4π
· β

2π

∑
(Q1,Q2,Q3)

∫ [(
QIA

I
4 −

2πpQ
β

)
QJQKAJ ∧ dAK (7.1.16)

+QI

((
Q ·A4 −

2πpQ
β

)2

+
1

12
· (2π)

2

β2
+ 2pQ · 2π

β

(
Q ·A4 −

2πpQ
β

))
AI ∧ da

+

(
1

3

(
Q ·A4 −

2πpQ
β

)3

+
2πpQ
β

(
Q ·A4 −

2πpQ
β

)2

+
(2πpQ)

2

β2

(
Q ·A4 −

2πpQ
β

)
+

pQ
12

· (2π)
3

β3

)
a ∧ da

]
.

We shall mostly work with the result (7.1.13) in the canonical chamber.

One can also determine (7.1.13) by just knowing ’t Hooft anomalies and dis-

crete symmetries. Firstly, the gauge non-invariant terms (7.1.13) are completely

fixed in [73, 238], by demanding that its gauge variation yields the expected ’t

Hooft anomaly of the 4d U(1)3 ⊂ SO(6)R symmetry. (More precisely, (7.1.13)

matches the covariant anomalies.) To complete the argument, we discuss why

gauge invariant CS terms (7.1.8) should vanish. Firstly, a ∧ da is forbidden by
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the 3d parity after S1 reduction, which is a symmetry of the mother 4d theory if

an object is blind to SO(6)R, such as a∧da. Similarly, AI∧dAI with a given I is

forbidden since the mother 4d N = 4 theory is invariant under parity with sign

flip of odd number of AI fields. The latter flip is charge conjugation, flipping

4 ↔ 4. The remaining gauge invariant CS terms are forbidden simply from the

Weyl symmetry of SO(6). We consider the Weyl reflections which reflects two of

the three AI ’s, leaving one invariant. This reflection also acts on AI4. But they

cannot affect the gauge invariant CS terms, so in the canonical chamber which

is left invariant under these reflections, the gauge invariant CS terms should

respect this symmetry. For AI ∧ da with any given I, a reflection which flips I

and another J (̸= I) flips sign of this term, forbidding its generation. Similarly,

for AI ∧ dAJ at given pair I ̸= J , reflection of I and K( ̸= I, J) forbids its

generation. This completes a symmetry-based argument for (7.1.13). Such an

approach may be useful for some non-Lagrangian theories, if there are enough

discrete symmetries. In section 4, we shall make similar studies with 6d (2, 0)

theory, although it appears that such intrinsic arguments are less predictive

there.

We now evaluate these CS terms for our backgrond fields, in the canonical

chamber. We first consider the background R-symmetry fields (7.1.5) with real

αI = −i∆I , and later continue to complex ∆I . Also, we keep ϵi ≡ −iωi real for

a moment, and later continue to complex ωi. (7.1.13) is given by

SCS = − iN2

48π2β2
CIJKαIαJαK

∫
S3

a ∧ da . (7.1.17)
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Inserting a in (7.1.4), one finds∫
a ∧ da =

r4

β2

∫
ϵin

2
i dϕi ∧ ϵjd(n

2
j ) ∧ dϕj(

1 +
r2n2

i ϵ
2
i

β2

)2 =
(2π)2r4ϵ1ϵ2

β2

∫
ydx− xdy(

1 +
r2(ϵ21x+ϵ

2
2y)

β2

)2 (7.1.18)

=
(2π)2r4ϵ1ϵ2

β2

∫ 1

0

dx(
1 + r2

β2 (ϵ
2
2 + (ϵ21 − ϵ22)x)

)2 =
(2π)2r4ϵ1ϵ2

β2(1 +
r2ϵ21
β2 )(1 +

r2ϵ22
β2 )

,

where x ≡ n2
1, y ≡ n2

2 = 1− x. So one finds

SCS = − iN2r4ϵ1ϵ2

12β4(1 +
r2ϵ21
β2 )(1 +

r2ϵ22
β2 )

CIJKαIαJαK (7.1.19)

in the canonical chamber. Inserting αI = −i∆I , ϵi = −iωi and taking β → 0+,

one obtains

SCS → −N2CIJK∆I∆I∆K

12ω1ω2
= −N2∆1∆2∆3

2ω1ω2
(7.1.20)

in the canonical chamber. If SCS is the dominant term in the effective action

(which we will show shortly), this yields the asymptotic free energy by the

relation Z ∼ e−SCS . So logZ ∼ −SCS completely agrees with the free QFT

analysis in chapter 3, and the entropy function of the supersymmetric AdS5

black holes, thus accounting for their microstates. The extension of this result

to different chambers also agrees with the result from free QFT.

Now to complete the analysis of the free energy, we show that all the other

terms in the effective action are subleading in our scaling limit, suppressed by

small β, ω1,2. The background fields are the 3d metric gµν , dilaton Φ, gravipho-

ton aµ, gauge boson AI
µ, and scalar AI4. Greek indices run over the coordinates

{ϕ1, ϕ2, θ}, and small Latin indices used below will run over the locally flat coor-

dinates {1, 2, 3}. There are rich possibilities in constructing the effective action.

However, many possible terms are eliminated by taking into account the actual

background value (7.1.4) and (7.1.5). First, the Riemann curvature Rµνρσ has

non-zero components only at {µ, ν} = {ρ, σ} or {µ, ν} ∩ {ρ, σ} = {θ}. Second,
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the background value (7.1.4) and (7.1.5) depends only on the θ coordinate, so

that the field strengths F0
µν ≡ 1

2β (∂µaν − ∂νaµ) and FI
µν ≡ 1

2(∂µA
I
ν − ∂νAI

µ)

of the graviphoton aµ and gauge field AI
µ have non-zero components only at

{µ, ν} ⊃ {θ}. For the same reason, the derivative of any scalar function of the

background fields ∂µf(ωρ
ab,Φ, aρ,AI

ρ, A
I
4) can have non-zero components only

at {µ} = {θ}. Third, the graviphoton aµ and gauge field AI
µ have non-zero

components only at {µ} ̸⊃ {θ}. We will further assume that ω1 = ω2 ≡ ω for

simplification, so that the dilaton Φ becomes a constant.

Let us first examine the possible terms that involve the volume integral∫
d3x

√
g of gauge-invariant Lagrangian densities, formed by contracting tensors

without ϵµνρ. When we consider the scalar contraction between the curvature

Rµνρσ and the field strength F0
µν or FI

µν , only an even number of F0
µν or FI

µν

can appear in the non-vanishing Lagrangian densities. It can be shown as fol-

lows: the scalar contraction of Rµνρσ, F0
µν , FI

µν can be encoded in the circular

sequence of antisymmetric pairs of tensor indices [αβ][γδ] · · · [ζα], where ad-

jacent indices in adjoining pairs are contracted to each other. We distinguish

the curvature tensor indices by using capital letters. Then the contraction to a

Lorentz scalar can be generally written as

[α1,1β1,1] · · · [α1,n1β1,n1 ][A1B1][α2,1β2,1] · · · [α2,n2β2,n2 ][A2B2] · · · [A2jB2j ] with
∑2j

i=1 ni ∈ 2Z+ 1.

The set of the field strength indices {αk,1, βk,nk
} in [αk,1βk,1] · · · [αk,nk

βk,nk
] can

only be either

{ak,1, bk,nk
} =


{ϕ1, θ} or {ϕ2, θ} if nk ∈ 2Z+ 1

{θ} or {ϕ1, ϕ2} or {ϕ1} or {ϕ2} if nk ∈ 2Z.
(7.1.21)

Collecting the sets of the curvature indices {Ak, Bk} for k = 1, · · · , 2j, there are

always an odd number of {ϕ1, θ} or {ϕ2, θ} and an odd number of {ϕ1, ϕ2}. Any
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complete pairings in this collection have at least one pair between {ϕ1, ϕ2} and

{ϕ1,2, θ}, so each term in the contraction refers to Rϕ1ϕ2ϕiθ = 0. This exhausts

many possible terms in the effective action. Here we evaluate and list all non-

vanishing terms which involve up to 4 derivatives: (Below we assume I, J,K,L

run over 0, 1, 2, 3, and ∆0 ≡ −i.)

1

(2π)2

∫
β−3e3Φ

√
g =

βr3

2(β2 − r2ω2)2
=

β

2rω4
+O

(
β3

r3ω6

)
(7.1.22)

1

(2π)2

∫
β−1eΦ

√
gRab

ab =
r(3β3 − 4βr2ω2)

(β2 − r2ω2)2
= − 4β

rω2
+O

(
β3

r3ω4

)
1

(2π)2

∫
βe−Φ√gFI

abFJ
ab =

β∆I∆Jr3ω2

(β2 − r2ω2)2
=

β∆I∆J

rω2
+O

(
β3

r3ω4

)
1

(2π)2

∫
β3e−3Φ√g (∇cFI

ab)(∇cFJab) =
2β3rω2∆I∆J

(β2 − r2ω2)2
=

2β3∆I∆J

r3ω2
+O

(
β5

r5ω4

)
1

(2π)2

∫
β3e−3Φ√g (∇cFI

ab)(∇aFJcb) =
β3rω2∆I∆J

(β2 − r2ω2)2
=

β3∆I∆J

r3ω2
+O

(
β5

r5ω4

)
1

(2π)2

∫
βe−Φ√gRab

a
cRb

d
cd =

2β(8r4ω4 − 8β2r2ω2 + 3β4)

r(β2 − r2ω2)2
=

16β

r
+O

(
β3

r3ω2

)
1

(2π)2

∫
βe−Φ√gRabcdRabcd =

32βr4ω4 − 16β3r2ω2 + 6β5

r(β2 − r2ω2)2
=

32β

r
+O

(
β3

r3ω2

)
1

(2π)2

∫
β3e−3Φ√gFIabFJ

a
cRb

d
cd =

2β∆I∆Jrω2(β2 − 2r2ω2)

(β2 − r2ω2)2
= −4β∆I∆J

r
+O

(
β3

r3ω2

)
1

(2π)2

∫
β3e−3Φ√gFI

abFJ
cdRabcd =

2β∆I∆Jrω2(β2 − 4r2ω2)

(β2 − r2ω2)2
= −8β∆I∆J

r
+O

(
β3

r3ω2

)
1

(2π)2

∫
β5e−5Φ√gFIabFJ

a
cFK

b
dFL

cd =
β∆I∆J∆K∆Lr3ω4

(β2 − r2ω2)2
=

β∆I∆J∆K∆L

r
+O

(
β3

r3ω2

)
1

(2π)2

∫
β5e−5Φ√gFIabFJ

abFKcdFL
cd =

2β∆I∆J∆K∆Lr3ω4

(β2 − r2ω2)2
=

2β∆I∆J∆K∆L

r
+O

(
β3

r3ω2

)
.

These terms are all much smaller than (7.1.19) in the scaling limit β/r ≪ ω ≪ 1.

Extrapolating a pattern from the above terms, an action made of n1 curvature

tensors, n2 graviphoton field strengths, n3 background U(1) ⊂ SO(6) field
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strengths, and n4 derivatives should behave as

β1+n4∆n3

r1+n4ω4−2n1−n2−n3
+O

(
β3+n4

r3+n4ω6−2n1−n2−n3

)
(7.1.23)

which would be suppressed in the limit β/r ≪ ω ≪ 1.

As a next step, we turn to the effective action that contains a totally an-

tisymmetric tensor ϵµνρ. This consists of Chern-Simons terms and those terms

associated with a gauge invariant Lagrangian density. We can further distin-

guish the gauge non-invariant Chern-Simons terms from the gauge invariant

ones. The gauge non-invariant Chern-Simons terms are entirely dictated by the

chiral anomaly, so that no other terms than (7.1.11) can arise [73,238]. And also,

the gauge invariant Chern-Simons terms displayed in (7.1.8) are already shown

to be absent in the canonical chamber. The gravitational Chern-Simons term

tr (ω∧R+ 2
3ω∧ω∧ω), even if present, makes only a sub-dominant contribution

in the limit β/r ≪ ω ≪ 1:

1

3!

1

(2π)2

∫
ϵµνρ

(
ωµ

abRνρ
ab +

2

3
ωµ

abων
bcωρ

ca

)
= − 4β2

r2ω2
+O

(
β4

r4ω4

)
.

(7.1.24)

Other gauge invariant Lagrangian densities containing ϵµνρ are constrained by

the symmetry-based argument, which was used to argue the gauge invariant

CS terms (7.1.8) are absent. Each allowed term should have odd numbers of

three different U(1) ⊂ SO(6) field strengths F1,2,3
µν . So even a minimal term of

this sort has 3 U(1)3 ⊂ SO(6) field strengths coupled to one another. Some

non-vanishing sample terms are evaluated and displayed below:∫
β6e−6Φ

3! (2π)2
ϵµνρF1

µν(∇αF2
ρβ)F3ασF0

σ
β = − iβ2r2ω4∆1∆2∆3

3(β2 − r2ω2)2
= − iβ2∆1∆2∆3

3r2
+O

(
β4

r4ω2

)
∫

β10e−10Φ

3! (2π)2
ϵµνρF1

µαF1
νβF1αβ(∇λF2

ρσ)F3λδF0
δ
σ = − iβ2r2ω6∆3

1∆2∆3

3(β2 − r2ω2)2
= − iβ2ω2∆1∆2∆3

3r2
+O

(
β4

r4

)
(7.1.25)
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Notice that these leading corrections exhibit the same scaling behavior as

(7.1.23). In any case, all these terms become sub-dominant in the limit β/r ≪

ω ≪ 1. One can probably make a systematic proof of this statement, but we

content ourselves here by illustrating the suppressions. This establishes our

claimed result (7.1.20), rederived from an effective action approach.

7.2 Large supersymmetric AdS7 black holes

In this section, we apply the method of the former section to the 6d N = (2, 0)

SCFT living on N M5-branes. We shall again rely on a background field method

on S5, reducing the system on small temporal S1 in a Cardy-like limit. We show

that gauge non-invariant Chern-Simons terms determined by ’t Hooft anomalies

derive the free energy suggested in [91] in the Cardy limit, which completely

captures the large supersymmetric AdS7 black holes. And then we explain that

other higher derivative terms are suppressed in our BPS Cardy limit. Then, we

are left with finite number of gauge invariant Chern-Simons terms of background

fields. The absence or 1
N suppression of some of them are partly addressed in

the literature [73, 150], as we shall explain below. For the complete arguments

for ignoring them, refer to [159].

The SCFT is put on S5 × R. The 6d partition function is given by

Z = Tr
[
e−βEe−∆1Q1−∆2Q2e−

∑3
i=1 ωiJi

]
, (7.2.1)

where Q1, Q2 are two charges for U(1)2 ⊂ SO(5)5, and J1,2,3 are three U(1)3 ⊂

SO(6) angular momenta on S5. The 6d theory has 16 Poincare supercharges

QQ1,Q2

J1,J2,J3
where (Q1, Q2) = (±1

2 ,±
1
2), and Ji = ±1

2 with the product of three ±

signs of Ji’s being −1. We choose Q ≡ Q++
−−− and its conjugate S, and constrain

∆I , ωi, β to make Z an index. One should constrain

∆1 +∆2 − ω1 − ω2 − ω3 = 2πi (mod 4πi) (7.2.2)
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and take β → 0+. We will study logZ at |ωi| ≪ 1, again keeping finite imaginary

parts of ∆I to admit saddle points in which boson/fermion cancelations are

obstructed.

We consider the 6d QFT on S5 × S1 coupled to the following background

fields:

ds2 = r2
3∑
i=1

[
dn2

i + n2
i

(
dϕi −

iωi
β

dτ

)2
]
+ dτ2 (7.2.3)

where ni label two of the coordinates of S5, constrained as n2
1 + n2

2 + n2
3 = 1.

The other angles satisfy ϕi ∼ ϕi + 2π. τ has period β. The U(1)2 ⊂ SO(5)R

gauge fields are given by

AI = − i∆I

β
dτ . (7.2.4)

In the absence of any 6d Lagrangian description, we find it awkward to con-

cretely discuss the KK modes and follow all the discussions presented in section

2.2. However, the structure of zero modes are well known, given by 5d maximal

SYM (deformed by various parameters) on S5. If the S1 radius for KK reduction

is small, the 5d zero modes are weakly coupled. Also, we simply assume here

that nontrivial holonomy issues of [114] are absent, at least for the AN−1 type

theory which is of our main concern.4 The contribution from 5d zero modes’

perturbative partition function on S5 can surely be ignored. This can be seen

either by relying on arguments similar to the former section, or simply by a 1
N

suppression since this part will be proportional to N2.

So we study the structure of the effective action of our background fields,

which encodes the effects of 6d KKmodes along S1. We organize the background

4It will be interesting if one can address whether there are nontrivial issues with outer
automorphism twists [244], whose zero modes are 5d Yang-Mills theories with non-ADE gauge
groups. [245] studied such partition functions on R4 × T 2 from 5d instanton calculus, which
may provide microscopic clues to this question.
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fields to the following 5d fields after the KK reduction:

ds26 = ds25 + e−2Φ(dτ + a)2

ds25 = r2
[
dθ21 + sin2 θ1dθ

2
2 + n2

i dϕ
2
i +

r2(ωin
2
i dϕi)

2

β2(1− r2
n2
iω

2
i

β2 )

]
(7.2.5)

where the dilaton field Φ and the gravi-photon field a are given by

e−2Φ = 1− r2
n2
iω

2
i

β2
, a = −i

r2ωin
2
i dϕi

β(1− r2
n2
iω

2
i

β2 )
(7.2.6)

The 6d background fields AI are rewritten as 5d gauge fields AI and scalars AI6

as AI = AI6(dτ + a) +AI , where

AI6 = − i∆I

β
, AI = −AI6a . (7.2.7)

In our scaling limit (β ≪ |ωi| ≪ 1), the leading terms will turn out to come

from Chern-Simons terms, at order β0

ω1ω2ω3
. So it is crucial to know all their

coefficients to get the free energy in our Cardy limit. The gauge non-invariant

CS terms are again dictated by the ’t Hooft anomalies of SO(5)R, which will

be presented below. The gauge invariant Chern-Simons terms of AI and a take

the forms of [73]

β−3a ∧ da ∧ da, β−2AI ∧ da ∧ da, β−1AI ∧ dAJ ∧ da, AI ∧ dAJ ∧ dAK .

(7.2.8)

Here, just like in the former section, we do not discuss Chern-Simons terms

involving gravitational fields since they will be absent or subleading in our

scaling limit. (See below in this section.) Now, unlike the 3d CS terms for 4d

N = 4 theory, we are not given enough discrete symmetries of 6d (2, 0) theory

to forbid them all. In fact, some of them are believed to be nonzero.

Trying to see if one can use abstract symmetry-based arguments to forbid

CS terms, one can only partly achieve the goal. Firstly, AI ∧ dAJ ∧ dAK at
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I, J,K = 1, 2, AI ∧ dAJ ∧ da at I ̸= J and AI ∧ da ∧ da can be forbidden from

the Weyl symmetry of SO(5)R, just like we excluded AI ∧ da or AI ∧ dAJ at

I ̸= J in the former section. In the former section, one used parity (suitably

blind to SO(6)R) to forbid other terms. However, in 6d (2, 0) theory, the system

is intrinsically chiral, so that we have no simple argument to forbid

β−3a ∧ da ∧ da , β−1
2∑
I=1

AI ∧ dAI ∧ da . (7.2.9)

A proposal made in [73] had a consequence that the coefficient of a∧ da∧ da is

zero for the (2, 0) theory. This is partly supported from a SUSY calculus of the

index on S5 × S1 at high temperature [150], by not exhibiting a free energy at

order β−3 (although the calculus was carried out after turning off many chemical

potentials). Also, the β−1 term of the free energy studied in [150] was at order

N1. This may be related to an argument that the second term of (7.2.9) is 1
N

suppressed. Anyway, in the remaining part of this section, we shall assume the

vanishing or suppression of (7.2.9). For the complete arguments proving this

assumptions, refer to [159].

The gauge non-invariant Chern-Simons terms for AI , AI6 can be determined

from the ’t Hooft anomaly of SO(5)R. Note that the anomaly 8-form of 6d (2,0)

AN−1 theory is

I8 =
N3 −N

24
p2(N) +

N

48

[
p2(N)− p2(T ) +

1

4
(p1(T )− p1(N))2

]
(7.2.10)

with

p1(N) = − 1

2(2π)2
trF 2, p2(N) =

1

(2π)4

(
− 1

4
trF 4 +

1

8
(trF 2)2

)
. (7.2.11)

[158] discussed the gauge non-invariant Chern-Simons term for A1
6 + A2

6 = 0,

A1 + A2 = 0, to study certain asymptotic aspects of the free energy of (2, 0)
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theory on R4 × T 2. Generalizing the calculus of [158] for U(1)2, one obtains5

SCS =
i(N3 − N

4 )β

192π3

∫
S5

[
2
(
A1

6A1 ∧ dA2 ∧ dA2 +A2
6A2 ∧ dA1 ∧ dA1

)
+
(
4A1

6A
2
6A1 ∧ dA2 ∧ da+ (A1

6)
2A2 ∧ dA2 ∧ da+ (A2

6)
2A1 ∧ dA1 ∧ da

)
+ 2
(
(A2

6)
2A1

6A1 ∧ da ∧ da+ (A1
6)

2A2
6A2 ∧ da ∧ da

)
+ (A1

6)
2(A2

6)
2a ∧ da ∧ da

]
+

iNβ

1536π3

2∑
I=1

∫
S5

[
4AI6AI ∧ dAI ∧ dAI + 6(AI6)

2AI ∧ dAI ∧ da

+ 4(AI6)
3AI ∧ da ∧ da+ (AI6)

4a ∧ da ∧ da
]
. (7.2.12)

Inserting (7.2.6), (7.2.7) to (7.2.12), one obtains

SCS = − iN3

192π3

∆2
1∆

2
2

β3

∫
S5

a ∧ da ∧ da+O(N1) . (7.2.13)

Evaluating
∫
a ∧ da ∧ da with (7.2.6), one obtains∫

S5

a ∧ da ∧ da = −(2π)3(−i)3r6ω1ω2ω3

β3

1(
1− r2ω2

1
β2

)(
1− r2ω2

2
β2

)(
1− r2ω2

3
β2

) .

(7.2.14)

Taking the β → 0+ limit, one obtains

SCS =
N3

24

∆2
1∆

2
2

ω1ω2ω3
. (7.2.15)

Therefore, the asymptotic free energy one obtains from SCS is

logZ ∼ −SCS = −N3

24

∆2
1∆

2
2

ω1ω2ω3
, (7.2.16)

supposing that other higher derivative terms are suppressed. If SCS is the dom-

inant term in the effective action (which we will show shortly), the asymptotic

free energy completely agrees with the entropy function of the supersymmetric

5We flipped the overall sign of SCS compared with [158], due to opposite 6d chirality
conventions. E.g., in [158], supercharges contain (anti-chiral)R4× (right chiral)T2 , which is in
(0, 2) spinors in our convention here.
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AdS7 black holes discussed in chapter 2. Thus, we have statistically accounted

for the microstates of the large supersymmetric AdS7 black holes.

Now to complete the analysis of the asymptotic free energy, we examine

other background terms in the S5 effective action, assuming the absences or

large N suppressions of particular low-order terms (7.2.8), as discussed above.

All other terms arranged in an infinite tower of derivative expansion will turn

out to be suppressed in the scaling limit β/r ≪ ω ≪ 1, as we shall illustrate

with sample terms below. We shall study the case without ϵµνρσλ first and

then the other case. The analysis on the S5 background action will be parallel

to that on the S3 action done in the former section. So we shall keep our

discussion more concise, inspecting a few sample terms rather than attempting

an exhaustive list of corrections to certain order, as in (7.1.22). Below we assume

ω1 = ω2 = ω3 ≡ ω for simplification, so that the dilaton Φ becomes a constant.

We first consider the background action built from the scalar contraction

of tensors without ϵµνρσλ. Evaluating a few terms which involve 0, 2, and 4

derivatives, we find

1

(2π)3

∫
β−5e5Φ

√
g =

βr5

8(β2 − r2ω2)3
= − β

8rω6
+O

(
β3

r3ω8

)
(7.2.17)

1

(2π)3

∫
β−3e3Φ

√
gRµν

µν =
5β3r3 − 6βr5ω2

2(β2 − r2ω2)3
=

3β

rω4
+O

(
β3

r3ω6

)
1

(2π)3

∫
β−1eΦ

√
gFI

abFJab =
βr5ω2∆I∆J

2(β2 − r2ω2)3
= −β∆I∆J

2rω4
+O

(
β5

r5ω8

)
1

(2π)3

∫
βe−Φ√g (∇cFI

ab)(∇cFJab) =
β3∆I∆Jr3ω2

(β2 − r2ω2)3
= −β3∆I∆J

r3ω4
+O

(
β5

r5ω6

)
1

(2π)3

∫
β−1eΦ

√
gRµνρσRµνρσ =

24βr5ω4 − 12β3r3ω2 + 5β5r

(β2 − r2ω2)3
= −24β

rω2
+O

(
β3

r3ω4

)
1

(2π)3

∫
βe−Φ√gFI

abFJ
cdRabcd = −∆I∆J(6βr5ω4 − β3r3ω2)

(β2 − r2ω2)3
=

6β∆I∆J

rω2
+O

(
β3

r3ω4

)
1

(2π)3

∫
β5e−5Φ√gFIabFJ

abFKcdFL
cd =

2βr5ω4 ·∆I∆J∆K∆L

(β2 − r2ω2)3
= −2β ·∆I∆J∆K∆L

rω2
+O

(
β3

r3ω4

)
.
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where the indices I, J,K,L run over 0, 1, 2, 3 and ∆0 ≡ −i. These terms are

all much smaller than (7.2.15) in the scaling limit β/r ≪ ω ≪ 1. Moreover,

their leading behavior is consistent with the following speculation: An action

made of n1 curvature tensors, n2 graviphoton field strengths, n3 background

U(1)2 ⊂ SO(5)R field strengths, n4 derivatives scales as

β1+n4∆n3

r1+n4ω6−2n1−n2−n3
+O

(
β3+n4

r3+n4ω8−2n1−n2−n3

)
, (7.2.18)

Notice that it differs from (7.1.23) due to the additional factor r2 · (βe−Φ)−2 ∼

ω−2. All these terms would be suppressed by taking the scaling limit β/r ≪

ω ≪ 1.

Now we turn to the background action associated to a pseudo-scalar La-

grangian density which has ϵµνρσλ. It can be either a Chern-Simons action or the

action coming from a gauge invariant Lagrangian density. Gauge non-invariant

CS terms have been determined to be (7.2.12) from 6d ’t Hooft anomaly. The

analogue of the gravitational CS term (2.60) that involves the spin connection

ωabµ cannot exist in 5 dimensions, but only in 3, 7, 11 dimensions [246]. The Weyl

symmetry of SO(5)R restricts the other gauge invariant CS terms to be invari-

ant under the simultaneous sign flip of AI=1 and AI=2. Displaying all possible

CS terms,

β−3

5!(2π)3

∫
ϵµνρσλaµ(da)νρ(da)σλ =

ir6ω3

120 (β2 − r2ω2)3
= − i

120ω3
+O

(
β2

r2ω5

)
(7.2.19)

β−1

5!(2π)3

∫
ϵµνρσλaµRνρ

αβRσλαβ = − ir6ω5

5 (β2 − r2ω2)3
=

i

5ω
+O

(
β2

r2ω3

)
(7.2.20)

β−1

5!(2π)3

∫
ϵµνρσλAI

µFJ
νρ(da)σλ = − i∆I∆Jr6ω3

120 (β2 − r2ω2)3
=

i∆I∆J

120ω3
+O

(
β2

r2ω3

)
.

(7.2.21)

260



In fact, as asserted earlier, CS terms containing gravitational terms are sup-

pressed, while other gauge invariant CS terms are not. As noted above, here

we assume that their coefficients are either exactly zero or 1
N suppressed, but

indeed that can be proved as in [159]. Then we move to study the action associ-

ated to the gauge invariant Lagrangian density containing ϵµνρσλ. We compute

some non-vanishing terms of this kind, e.g.,

1

5!(2π)3

∫
β6e−6Φ ϵµνρσλFI

µνFI
ρσ(∇αFJ

λβ)FJαδF0
δ
β =

iβ2r4ω5(∆I∆J)2

30 (β2 − r2ω2)3
= − iβ2(∆I∆J)2

30r2ω
+O

(
β4

r4ω3

)
1

5!(2π)3

∫
β14e−14Φ ϵµνρσλFI

µαFI
νβFIαβFI

ρκFJ
σιFJκι(∇ψFJ

λγ)FJψτF0
τ
γ =

iβ2r4ω9(∆I∆J)4

30 (β2 − r2ω2)3

= − iβ2ω3(∆I∆J)4

30r2
+O

(
β4ω1

r4

)
.

We observe that their scaling behavior in the limit β/r ≪ ω ≪ 1 follows

(7.2.18). All these terms would be subleading corrections to the free energy.

This establishes our claimed result (7.2.16) derived from an effective action

approach.

As a final comment, it may be useful to employ the background field ap-

proach at small S1, to explore large non-BPS AdS black holes. Of course in this

case, we expect that additional dynamical information has to be put in, unlike

BPS black holes. Maybe not too surprisingly, we find similar structures as the

hydrodynamic approach to the large AdS black holes [247].

261



Chapter 8

AdS black holes and finite N
indices

In this chapter, we study the index of 4d N = 4 Yang-Mills theory with U(N)

gauge group, focussing on the physics of the dual BPS black holes in AdS5×S5.

Certain aspects of these black holes can be studied from finite N indices with

reasonably large N2. We make numerical studies of the index for N ≤ 6, by

expanding it up to reasonably high orders in the fugacity. The entropy of the

index agrees very well with the Bekenstein-Hawking entropy of the dual black

holes, say at N2 = 25 or 36. Our data clarifies and supports the recent ideas

which allowed analytic studies of these black holes from the index, such as the

complex saddle points of the Legendre transformation and the oscillating signs

in the index. In particular, the complex saddle points naturally explain the 1
N -

subleading oscillating patterns of the index. We also illustrate the universality of

our ideas by studying a model given by the inverse of the MacMahon function.
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8.1 Introduction and summary

In this chapter, we want to present our numerical study of the 4d N = 4

superconformal index, showing that some aspects of the BPS black holes in

AdS5 [83–86] can be investigated by numerically studying the index at finite

N . Our numerical data will also nontrivially support certain recent ideas which

enabled the analytic studies of these AdS black holes.

We define the Witten index of 4d N = 4 superconformal field theory on

S3 × S1 as [69]

Z(∆I , ωi) = Tr
[
(−1)F e−

∑3
I=1 ∆IQI−

∑2
i=1 ωiJi

]
(8.1.1)

with the constraint ∆1+∆2+∆3−ω1−ω2 = 0 on the chemical potentials. QI

with I = 1, 2, 3 denote the U(1)3 ⊂ SO(6) R-charges of N = 4 superalgebra,

and Ji with i = 1, 2 denote the U(1)2 ⊂ SO(4) angular momenta on S3. Only

the BPS states with the energy E =
∑3

I=1QI +
∑2

i=1 Ji can contribute to

the index. Since the supersymmetric index is invariant under the continuous

deformation of the gauge coupling, one can evaluate the index from the weakly

interacting QFT. It can be done in a few steps. First, we obtain the following

single-letter index [69]

Isingle(∆I , ωi) = 1− (1− e−∆1)(1− e−∆2)(1− e−∆3)

(1− e−ω1)(1− e−ω2)
(8.1.2)

by counting all single-letter operators in the N = 4 vector multiplet that sat-

isfy the above mentioned BPS energy condition. Next, we apply the Plethystic

exponential to this index Isingle multiplied by the adjoint character χg(z) of the

gauge algebra g, [69]

PE[Isingle(∆I , ωi)χg(za)] ≡ exp

[ ∞∑
n=1

Isingle(n∆I , nωi)χg(z
n
a )

n

]
. (8.1.3)
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Finally, we project to the set of gauge invariant states by integrating over za

with the Haar measure of the gauge group. The index of the 4d N = 4 theory

with a gauge group corresponding to the Lie algebra g reduces to a matrix

model calculation giving the following integral [69]:

Zg =

∮
dµg(z) PE

[
Isingle(∆I , ωi)χg(z)

]
. (8.1.4)

Here dµg(z) is the Haar measure of g. Explicitly, it can be written as∮
dµg(z) =

1

(2πi)r
1

|W |

∮
|z1|=1

. . .

∮
|zr|=1

dz1 . . . dzr
z1 . . . zr

∏
α∈∆

(1− zα) , (8.1.5)

where W is the Weyl group of g, r is the rank, za is the fugacity corresponding

to its a-th Cartan generator and ∆ is the set of its roots. It turns out that for

numerical purposes it is more efficient to use a slightly modified definition of

the Haar measure given by restricting the product in (8.1.5) to only the positive

roots of g [248]:∮
dµg(z) =

1

(2πi)r

∮
|z1|=1

. . .

∮
|zr|=1

dz1 . . . dzr
z1 . . . zr

∏
α∈∆+

(1− zα) . (8.1.6)

This helps by removing the need to normalize the integral by the order of

the Weyl group. From (8.1.4) and (8.1.2), Z(∆I , ωi) is invariant under 2πi

shift of each of ∆I , ωi. So one can equivalently study the index at the surface∑
I ∆I −

∑
i ωi = 2πiZ. Below, we shall often choose the right hand side to be

2πi.

For our purposes it suffices to consider a special unrefined case of the above

integral by setting e−∆1 = e−∆2 = e−∆3 ≡ e−∆, e−ω1 = e−ω2 ≡ e−ω. If one

Legendre transforms to the microcanonical ensemble at macroscopic charges,

this amounts to taking equal charges and equal angular momenta, Q1 = Q2 =

Q3 = Q and J1 = J2 = J . From 3∆− 2ω = 2πiZ, one can set x2 = e−∆, x3 =
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e−ω for certain x. The fugacity x is now conjugate to the charge j ≡ 6(Q+ J).

The expression in (8.1.4) then becomes

Zg =

∮
dµg(z) PE

[(
1− (1− x2)3

(1− x3)2

)
χg(z)

]
. (8.1.7)

The resulting index can be expanded as

Z =
∞∑
j=0

Ωjx
j (8.1.8)

where j ≡ 6(Q+ J) and Ωj are integers which count the number of BPS states

(with −1 factor for fermions). For U(N) gauge group, we shall study this index

at N = 2, 3, 4, 5, 6, by computing the coefficients of the fugacity expansion in

x up to fairly high orders, till O(x100) for N ≤ 5, and till O(x70) for N = 6.

Naively, finite N indices will be irrelevant for studying emergent gravitational

phenomena expected in the large N limit. In particular, one would like to study

the large N limit of Ωj when j is of order N2 ≫ 1. In this limit, black hole

like degeneracy will grow like log |Ωi| ∼ N2 when j ∼ N2. Our starting point is

that, in practice, taking N = 5 or 6 has already large enough N2, so that we can

hope to see the black hole like exponential growth of Ωj quite convincingly. In

fact, plugging in N2 = 25 or 36 to the geometric Bekenstein-Hawking entropy

formula for the known AdS5 black holes, we shall find very good agreements

with the field theory calculus of log |Ωj |. In non-Abelian gauge theories, how

small 1
N should be at finite N to exhibit large N behaviors depends on the type

of physics one is interested in. So not too surprisingly, our finite N approach

does not clearly see certain types of black holes. For instance, we empirically find

that the charge range for the so-called ‘small black holes’ is not clearly resolved

in our finite N discretized analysis. (See section 2 for more explanations.) The

detailed physics that can be learned is outlined below, and will be elaborated

more in section 3.
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Our finite (but reasonably large)N calculus reveals various interesting struc-

tures which shed more concrete lights on the recent analytic studies of these

black holes. After computing the large N free energy logZ as a function of

chemical potentials ∆I , ωi, one makes a Legendre transformation to the mi-

crocanonical ensemble to compute the entropy. Legendre transformation is a

saddle point approximation of the inverse Laplace transformation

Ωj =
1

2πi

∮
dx

x
x−jZ(x) (8.1.9)

at macroscopic charge j. (The formula can be generalized to refined ∆I , ωi,

but we present the above unrefined formula for simplicity.) The fact is that

the dominant saddle point values x∗ of x (or ∆I , ωi) are complex, at real j (or

QI , Ji). The naively computed saddle point value of the integral, Ωj(x∗) ≡ eS(j),

at real positive j is therefore complex. Somewhat surprisingly, this simple fact

apparently seems to have confused many people, leading to a number of ad

hoc prescriptions and interpretations on how to extract the correct physics out

of this result. We stick to the natural interpretation of [75, 76, 78] and find

extremely nontrivial evidences supporting it from our numerical studies. We

think this will confirm our interpretation to be the canonical picture, which goes

as follows. From the unitarity of the underlying QFT, it is always guaranteed

that one can find the complex conjugate saddle point x̄∗ for any complex x∗.

The conjugate saddle point value is given by Ωj(x̄∗) = eS(j). Adding the two

equally dominant contributions, one obtains

Ωj ∼ Ωj(x∗) + Ωj(x̄∗) ∼ exp [Re(S(j)) + · · · ] cos [Im(S(j)) + · · · ] , (8.1.10)

where · · · denote possible subleading corrections at large N2 and large j. (Note

that Re(S(j)) and Im(S(j)) scale like N2.) As will be manifest from our data

in the next section, the integers Ωj at macroscopic j grow exponentially fast to
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account for the dual black holes, but come with possible minus signs at certain

j’s. Namely, Ωj as a function of (quantized) j oscillates between positive and

negative integers as j changes. However, the macroscopic Legendre transfor-

mation calculus is not sensitive to the precise quantized nature of j and Ωj .

Therefore, the best one can expect to see from this calculus is an exponentially

growing envelope function, which is provided by eRe(S(j)), multiplied by a factor

which oscillates between +1 and −1, which is provided by cos [Im(S(j)) + · · · ]

in the above expression.

Our numerical calculus will justify this interpretation. Firstly, the computed

entropy log |Ωj | from the integers Ωj indeed takes the form of

Re(S(j)) + log [cos(Im(S(j) + · · · )] , (8.1.11)

where Re[S(j)] and Im[S(j)] are those computed recently from the index using

various analytic methods (in the large N and/or large charge limit). Further-

more, more importantly, investigating the overall signs in Ωj from our numerical

calculus, the sign oscillating pattern is also determined by the sign oscillation

of cos (Im(S(j)) + · · · ), upon fitting a constant O(1) phase shift in ‘· · · ’ that

has not yet been computed by any analytic methods. Therefore, a precise in-

terpretation is given to Im(S(j)), as containing the overall sign information of

Ωj .

While comparing our numerically computed log |Ωj | with (8.1.11), confirm-

ing the appearance of the second term is nontrivial. This is because, while the

first term is proportional to N2, the second term is typically subleading because

the macroscopic quantity Im(S(j)) ∼ N2 is inside the cosine function. To de-

tect the second term, it is crucial to make a precision computation of the index

which sees this ‘ 1N corrections.’ Our finite N indices (say at N = 5, 6) provide a

perfect setup to confirm such structures, as these values of N2 are large enough
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to provide a large N hierarchy to various contributions to the entropy, while

not being too large so that the subleading corrections are visible. We think our

numerical support to the formula (8.1.11) is compelling. See section 3 for the

details.

The interpretations outlined above appear to be universal, which may ap-

pear in any index-like generating functions that have negative integer coeffi-

cients at various orders. We illustrate that this is actually the case, by studying

in detail the inverse of the MacMahon function

f(x) ≡
∞∏
n=1

(1−xn)n =
∞∑
j=0

Ωjx
j = 1−x−2x2−x3+0x4+4x5+4x6+7x7+3x8−2x9−9x10−17x11−· · · .

(8.1.12)

At large j, one can analytically compute the macroscopic entropy given by

log |Ωj | ∼ 3
4

[
2ζ(3)j2

] 1
3 + · · · , where ‘· · · ’ denotes small 1

j corrections which

can be concretely computed to any desired accuracy. On the other hand, Ωj

exhibits a characteristic oscillation between positive and negative integers. We

shall illustrate that this is precisely realized in the Legendre transformation as

the complex saddle points, where a formula like (8.1.11) will provide a perfect

match. As we can explicitly compute the 1
j corrections to high orders, including

the finite phase shifts in the second term of (8.1.11), our interpretation can be

tested to very high accuracy in this model.

The remaining part of this chapter is organized as follows. Section 2 sum-

marizes our numerical results for the integers Ωj . We also explain some salient

structures of the series Ωj , and also provide a comparison with the Bekenstein-

Hawking entropy of black holes. In section 3, we take a closer look at the

structures of Ωj and the 1
N correction, and provide various interpretations and

discussions.
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8.2 Numerical study of the N = 4 index

We now specialize to the case of 4d N = 4 theories with a U(N) gauge group.

We would like to probe the regime

QI , Ji ∼ N2 ≫ 1 . (8.2.1)

However, the last inequality will be reasonably met by trying to take N2 and

charges to be as large as possible within our computational capability. We

expand the index in x (as introduced in section 1), perform the integral over N

variables on computer, to obtain various coefficients of

ZU(N) =
∞∑
j=0

Ωjx
j with j ≡ 6(Q+ J) . (8.2.2)

This is a straightforward exercise, with the main impediment coming from the

availability of sufficient computing power. The computational-complexity of the

integral grows extremely quickly as the rank of the gauge group increases. We

were able to explicitly evaluate the above integral for 2 ≤ N ≤ 5 up to O(x100),

as given in appendix A of [80]. For U(6) we evaluated it up to O(x70). The
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explicit expression of the U(6) index is given by:

ZU(6) = 1 + 3x2 − 2x3 + 9x4 − 6x5 + 21x6 − 18x7 + 48x8 − 42x9 + 99x10 − 96x11

+ 200x12 − 198x13 + 345x14 − 340x15 + 540x16 − 426x17 + 564x18 − 234x19

+ 189x20 + 636x21 − 1026x22 + 2262x23 − 2583x24 + 3438x25 − 1851x26

− 794x27 + 8757x28 − 20460x29 + 40398x30 − 63054x31 + 88401x32

− 99388x33 + 80856x34 + 4680x35 − 184576x36 + 494910x37 − 920943x38

+ 1392360x39 − 1690101x40 + 1451568x41 − 114147x42 − 2931498x43 + 8129358x44

− 15183836x45 + 22398435x46 − 25748382x47 + 18439724x48 + 8645112x49

− 64166661x50 + 150570130x51 − 254339973x52 + 334069536x53 − 310532838x54

+ 68770386x55 + 514459605x56 − 1501534768x57 + 2775637323x58 − 3887229606x59

+ 3923925613x60 − 1520426502x61 − 4814089191x62 + 15863550944x63

− 30282658596x64 + 42802285428x65 − 42817602705x66 + 14831924490x67

+ 57170104014x68 − 179436305580x69 + 331894244529x70 +O(x71) . (8.2.3)

It was pointed out in [76] that the alternation of ± signs of Ωj demands special

care when one attempts to extract it out at large j using Legendre transforma-

tion. These sign alternations are generic: they also happen at lower N ’s. See the

results in appendix A of [80]. We shall later observe more organized patterns of

the sign alternations, as will be explained in section 3. Here, we simply note that

the absolute degeneracy |Ωj | indeed grows very fast at large j. For instance,

one finds |Ω70| ∼ 3.3 × 1011 at N = 6, and |Ω100| ∼ 1.4 × 1016 at N = 5. We

will see shortly that Ωj grows quantitatively like the black hole entropy even

at N = 5, 6. See Fig. 8.1 for log |Ωj | and the signs of Ωj at N = 5, 6.

We want to compare our indices at reasonably large N with the spectra in

the gravitational dual. At low energies, the BPS spectrum can be computed
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Figure 8.1: Plots of log |Ωj | for U(5) and U(6) indices. The colors of the points
encode the sign of (−1)jΩj : red being positive and blue being negative. Re(S(j))
computed from the black hole entropy function is the Bekenstein-Hawking en-
tropy, given by the curve drawn with a solid black line.
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from the gas of gravitons [69]. A BPS graviton particle corresponds to a par-

ticular single trace BPS operator in the QFT dual. It is a valid approach when

the energy E satisfies E ≪ N . In this limit, the BPS multi-graviton states cor-

respond to multi-trace operators obtained by multiplying the above mentioned

single trace operators, where one does not have to consider trace relations. As

the energy grows, the finite N effects of these graviton states have been studied

in some detail in the BPS sector. The trace relations will start to enter from

an energy of order N , reducing the number of independent operators than the

naive multi-particle spectrum beyond this threshold. To see how this picture

is reflected in our Ωj ’s, we first consider the index over BPS gravitons given

by [69]

∞∑
j=0

Ωgjx
j ≡

∞∏
n=1

(1− x3n)2

(1− x2n)3
. (8.2.4)

Comparing our Ωj and Ωgj , one finds that Ωj = Ωgj holds for j ≤ 2N + 1. This

can be seen exactly for all N = 2, · · · , 6, and presumably holds exactly for other

values of N . Slightly beyond this point, j ≳ 2N+1, |Ωj | is smaller than |Ωgj | for

a certain while. So j = 2N + 1 is naturally interpreted as the threshold where

the trace relation starts to reduce the BPS states.

Now we consider the regime in which j is substantially larger than this

threshold, so that the resulting |Ωj | cannot be explained from |Ωgj | with the

trace relation reduction. (|Ωj | becomes bigger than |Ωgj | for sufficiently large j.)

Eventually we enter a region with j ∼ N2, whose gravitational dual descrip-

tion will be the BPS black holes in AdS. To provide the comparison with the

Bekenstein-Hawking entropy of these black holes, let us first explain the en-

tropy function approach to understand its structures in a simple manner [90].

We present the results in the version which only keeps one fugacity x [75, 76].

The entropy function we shall discuss assumes the convention 3∆− 2ω = 2πi.
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Then x2 = e−∆, x3 = e−ω can be solved as

x = e−
ω
3
+ 2πi

3 = −e−
∆
2 . (8.2.5)

In this setup, consider the following entropy function of j and ω:

S(ω, j) =
N2∆3

2ω2
+

ω − 2πi

3
j =

N2

2ω2

(
2πi+ 2ω

3

)3

+
ω − 2πi

3
j . (8.2.6)

The first term on the right hand side originates from logZ in the grand canonical

ensemble, and the second term is the Legendre transformation factor, whose ex-

ponential becomes x−j of (8.1.9). At fixed charge j > 0, one extremizes S(ω, j)

with ω. This yields a cubic equation in ω, which yields three different solutions

ω∗. Among these three, we take the one which yields maximal Re(S(j)) > 0

where S(j) ≡ S(ω∗, j). At this solution, one finds

ω∗ = −ξ

√
3π + 3ξ

π − 3ξ
+ iξ (8.2.7)

j = −N2

9

(π − 2ξ)2(π + ξ)

ξ3

logZ = +
N2

18

π3 − 9πξ2 − 8ξ3

ξ2

√
π + ξ

3π − 9ξ
− i

N2

54

(π − 8ξ)(π + ξ)2

ξ2
,

where ξ is a real number satisfying −π < ξ < 0. It parametrizes the imaginary

part of ω, and is a monotonically increasing function of j implicitly given by

the second line. Inserting this value back to S(ω, j), one obtains S(j) given by

Re(S(j)) =
N2

6

π(π2 − 2πξ − 3ξ2)

ξ2

√
π + ξ

3π − 9ξ
(8.2.8)

Im(S(j)) = −N2

18

π(π − 5ξ)(ξ + π)

ξ2
− 2π

3
j

where the relation j(ξ) is assumed. The fact is that Re(S(j)) is precisely the

Bekenstein-Hawking entropy of the BPS AdS black holes of [83, 84, 86] at Q ≡

Q1 = Q2 = Q3 and J ≡ J1 = J2. More precisely, [83, 84, 86] found black
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hole solutions carrying two charges Q, J , depending on only one independent

parameter. The entropy is a function of this parameter, which is in one to one

correspondence with j ≡ 6(Q + J). Therefore, expressing the one-parameter

Bekenstein-Hawking entropy in terms of j, one obtains the above Re(S(j)).

Here, N2 in the gravity side is related to the inverse Newton constant G−1
5 of

the 5d gravity as N2 = πℓ3

2G5
, where ℓ is the radius of AdS5.

The classical gravity description will be reliable at small enough Newton

constant, i.e. N2 ≫ 1. To compare with our numerical results at N = 5, 6,

we plug in N2 = 25 or 36 to (8.2.8) expecting that N2 is reasonably large. In

Fig. 8.1, we have drawn these Re(S(j)) by the black solid lines. At large enough

charge j (especially for U(5) where we could do numerical calculations for larger

charges), this agrees very well with the numerically computed entropy log |Ωj | of

the index. There appear intriguing oscillations of our numerical log |Ωj |, which

appear to be subleading in 1
N at large enough charges. We shall comment on

these subleading fluctuations in the next section.

Similar plots are shown for lower N in appendix A of [80]. Of course, insert-

ing the finite values of N2 to (8.2.8) becomes less meaningful for those lower

values. As one can see from these figures, the numerical log |Ωj | and Re(S(j))

do not agree that well for N = 2 or N = 3. Here we note that, although S(j)

of (8.2.8) is introduced here as the entropy function for the black hole, valid at

N2 ≫ 1, it has been shown [75] that (8.2.6) and (8.2.8) are true at any finite

N2 when ω becomes small (or equivalently, when j ≫ N2). This is called the

‘Cardy limit’ of higher dimensional SCFTs in the recent literature. In this case,

(8.2.8) and (8.2.6) have been derived from the field theory side for any value

of N . As one can see gaps between log |Ωj | and Re(S(j)) for N = 2, 3 in Figs.

4 and 5 in appendix A of [80], it appears that the charge j = 100 has not yet
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reached the Cardy regime.

We can also try to characterize which kinds of black holes are well described

by our numerical data, and which kinds are not well visible. In AdS, one can

classify black holes into ‘small black holes’ and ‘large black holes’ depending

on various (closely related) criteria. The classification was originally made for

AdS-Schwarzschild black holes. However, similar notion exists for our BPS black

holes by the charge playing the role of energy, and the inverse chemical potential

playing the role of temperature. The most intuitive way to distinguish the AdS

black holes is whether the ‘size’ of the black hole is smaller than the AdS radius

ℓ, or larger than it. To make it more precise, consider the temperature T of the

black hole given by 1
T = dS(E)

dE . For our BPS black holes, Re(ω), j, Re(S(j))

play the role of T−1, E, S(E) respectively. They satisfy the analogous relation

1

3
Re(ω) =

d[ReS(j)]

dj
. (8.2.9)

Now consider taking the second derivative with energy (or j),

dT−1(E)

dE
=

d2S(E)

dE2
,

1

3

dRe(ω(j))

dj
=

d2[ReS(j)]

dj2
, (8.2.10)

where the first and second expressions apply for Schwarzschild black holes and

our BPS black holes. The negativity of these expressions implies that the black

holes are stable in the canonical and grand canonical ensemble, respectively,

due to the heat capacity or susceptibility being positive. We call these black

holes ‘large black holes.’ They are characterized by the entropy being a convex

function of E or j. Our BPS black holes are in the large black hole branch for

j > j0 ≡ (5+3
√
3)N2

9 (or − π√
3
< ξ < 0). On the other hand, for j < j0 (or

−π < ξ < − π√
3
), the curve S(j) is concave and one is in the small black hole

branch. As one sees from the black curves in Fig. 8.1, the visibly concave region

is at so small charges, that they are essentially overlapping with the region
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j ≤ 2N +1 in which the graviton description is good. Namely, we find that the

small black hole branch squeezed by the graviton region from the left and j0

from the right is not clearly visible from our finite N indices. At large enough

N , the two charge scales j ∼ 2N +1 and j ∼ j0 will be given enough hierarchy

to allow a visible small black hole region. However, our finite N index does not

seem to have large enough N to make this region clearly visible. Indeed, this

can be clearly seen from our numerical plots in Fig. 8.1. In the small black hole

region, S(j) will increase very fast in j. However, our numerical log |Ωj | does

not manifestly exhibit such an inflating region. It will be interesting to compute

Ωj ’s for larger N ’s to see this region.

So far, we explained how to compare our log |Ωj | with Re(S(j)) of the dual

black holes. There is other interesting information that one can get from our

numerical data, concerning Im(S(j)), the signs of Ωj , and the subleading os-

cillations that one sees in the figures. These will be discussed in more detail in

the next section.

8.3 Interpretations and discussions

In this section, we discuss more detailed information encoded in our numerical

Ωj , and relate it to the interpretations made on (8.2.6).

We first study the signs of Ωj . The pattern of the signs visible in the series

Z(x) =
∑

j Ωjx
j apparently looks very complicated. However, one observes

simplifications upon inserting x → −x:

Z(−x) =
∑
j

(−1)jΩjx
j . (8.3.1)

The signs of (−1)jΩj are shown in Fig. 8.1 and also in the figures of appendix A

of [80] by the colors of the dots. After this substitution, one finds that the sign
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change pattern is correlated to the subleading oscillation pattern of log |Ωj |.

Namely, the sign changes only at the local minima of the oscillation.

At this point, we revisit the interpretation of complex S(j) at the saddle

point of the Legendre transformation at macroscopic charges, that we outlined

in section 1. The interpretation asserts that the sign of cos[Im(S(j)) + · · · ]

equals the sign of the integers Ωj . Since we have observed very simple sign

oscillation patterns of our data (−1)jΩj , let us try to understand this also from

the entropy function (8.2.6). Since (−1)j = eπij , one finds that

(−1)jΩj ∼ exp

[
N2(2πi3 + 2ω∗

3 )3

2ω2
∗

+
ω∗ + πi

3
j + · · ·

]
+ c.c. , (8.3.2)

where · · · are possible subleading corrections in small 1
N2 and 1

j that have not

been computed to date. From this, one obtains

(−1)jΩj ∼ exp [Re(S(j)) + · · · ] cos [Im(S(j)) + πj + · · · ] . (8.3.3)

Although the subleading corrections to Re(S(j)) will not affect our studies

below, the corrections to Im(S(j)) will be somewhat important since they will

make a finite phase shift of the oscillation. The corresponding entropy (8.1.11)

improving the black curve of Fig. 8.1 is shown in Fig. 8.2.

Firstly, Fig. 8.2 clearly shows that the signs of (−1)jΩj are equal to the

sign of cos [Im(S(j)) + πj + η]. As mentioned in the previous paragraph, we

empirically fitted the possible subleading correction η by an O(1) constant.

Although η is in principle a function of j, N2 such as η( j
N2 ), constant η seems

to be reasonably good within the relatively short ranges of charges in Fig. 8.2.1

The agreements in Fig. 8.2 justify our interpretation that the oscillation caused

1We also note that, upon including the 1-loop determinant factor of the Legendre transfor-
mation (8.2.6) in this framework, one obtains much better agreements than those in Fig. 8.2.
However, we do not show these results here since they do not seem to be based on a systematic
calculus of the subleading terms.
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Figure 8.2: Same plots as Fig. 8.1, with the extra red/blue curves for Re(S(j))+
log |cos [Im(S(j)) + πj + η]|. A subleading constant η is empirically tuned to
η ≈ −1 to minimize the overall off-phase behaviors. The red and blue colors of
the curves denote cos[Im(S(j)) + πj + η] ≷ 0, respectively.

278



by the complex saddle point accounts for the sign oscillations of Ωj . Moreover,

Fig. 8.2 shows that the oscillation of |cos [Im(S(j)) + πj + η]| accounts for the

subleading oscillations of our numerically computed log |Ωj |. Therefore, we find

that our finite N numerical data strongly supports the detailed structures of

the macroscopic entropy computed at the complex saddle points of Legendre

transformation.

As mentioned in the introduction, it seems that our interpretation for the

complex saddle point is very universal. To confirm this expectation, it will be

helpful to study other index-like generating functions which are simpler than

the large N index of the N = 4 Yang-Mills theory. In particular, for the Yang-

Mills index, note that the analytic form of S(j) is known only to the leading

order in large N and j. Due to this limitation, we added an empirical constant

η at a subleading order to see if the structures of S(j) and Ωj are compatible

with each other. So it will be desirable to study simpler examples in which we

can easily compute the subleading corrections for the precision tests.

As a simple example, consider the inverse of the MacMahon function,

f(x) =
∞∏
n=1

(1− xn)n = exp

[
−

∞∑
n=1

1

n

xn

(1− xn)2

]
≡

∞∑
j=0

Ωjx
j . (8.3.4)

Numerically, one can easily expand f(x) in power series of x with a computer to

very high orders. At large charge j, one can see that the resulting Ωj ’s become

macroscopic with sign oscillations. We shall now make an analytic evaluation

of the asymptotic entropy at j ≫ 1, with necessary subleading corrections in 1
j

included. We would like to compute

Ωj =
1

2πi

∮
dx

x
x−jf(x) =

1

2πi

∮
dx

x
exp

[
jβ −

∞∑
n=1

1

n

e−nβ

(1− e−nβ)2

]
(8.3.5)

where x ≡ e−β. The saddle point values β∗ of β will be small complex numbers
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with Re(β∗) > 0. At small β, one can use

−
∞∑
n=1

1

n

e−nβ

(1− e−nβ)2
= −ζ(3)

β2
− 1

12
log β−ζ ′(−1, 0)+

β2

2880
+

β4

725760
+

β6

43545600
+· · · ,

(8.3.6)

where ζ(s) is the Riemann zeta function, and ζ ′(−1, 0) ≈ −0.165421 is the

derivative ζ ′(s, q) ≡ ∂ζ(s,q)
∂s of the Hurwitz zeta function. Using this formula

with higher order corrections in small β, one can approximate the integral

(8.3.5) with subleading corrections in 1
j included. One finds that the following

mutually complex conjugate pair of saddle points are dominant:

β±
∗ = e±

πi
3

(
2ζ(3)

j

) 1
3

+
1

36j
+

e∓
πi
3

1296(2ζ(3)j5)
1
3

+ · · · . (8.3.7)

Performing the Gaussian approximations at these two saddle points (with some

subleading terms included) and adding the two contributions, one obtains

Ωj ∼ 1

(2π)
1
2

∑
±

exp

[
3

2
e±

πi
3 (2ζ(3)j2)

1
3 +

1

36
log j − ζ ′(−1, 0)− log(2ζ(3))

36
∓ πi

36
+ · · ·

]

×

[
3e∓

πi
3

(
j4

2ζ(3)

) 1
3

+
1

4
e±

πi
3

(
j

2ζ(3)

) 2
3

− 1

216ζ(3)
+ · · ·

]− 1
2

·
[
1 + · · ·

]
. (8.3.8)

Here, the three factors on the right hand side come from the saddle point action,

the 1-loop determinant, and possible higher loop corrections, respectively. We

plot this asymptotic log |Ωj | in Fig. 8.3, together with the dotted plot obtained

from the series expansion up to O(x200) order.
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Figure 8.3: Two plots of log |Ωj | for the MacMahon function. Red/blue colors
denote the positive/negative signs of Ωj .
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Chapter 9

Comments on deconfinement in
AdS/CFT

In this chapter, we study the index of N = 4 Yang-Mills theory on S3 ×R. We

argue that the index should undergo a large N deconfinement phase transition,

by computing an upper bound of its ‘temperature.’ We compute this bound

by optimizing the phases of fugacities. The bound we find has some features

analogous to the Hagedorn temperature.

9.1 Introduction

In this chapter, we make a small extension of [69] to probe the deconfinement

transition from the index. More precisely, we find an upper bound of the transi-

tion temperature by studying the local instability of the confining saddle point.

Some aspects of this bound is similar to the so-called the Hagedorn tempera-

ture [57,59,60]. The similarity arises from the fact that a tachyon condensation

instability appears to the confining saddle point [57]. The bound we find is
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indeed order 1 in the unit of S3 radius, obtained by optimizing the phases of

fugacities.

We further sketch a possible scenario on how a first order deconfinement

transition may happen below our bound. Note that in the partition function

of [57], without (−1)F insertion, there is a plenty of room for this to happen

because the partition function depends on the coupling constant. Indeed, study-

ing the interaction effects, [57] suggested a mechanism in which a first order

deconfinement transition can happen below the Hagedorn temperature. In the

index, this mechanism cannot be realized since one should trust the free QFT

calculus. We suggest a new mechanism (without any quantitative studies) of

how a deconfinement transition may be realized below our bound in the index.

The remaining part of this chapter is organized as follows. After developing

the basic setup at the beginning of section 2, we compute an upper bound

of the deconfinement transition temperature from the index in section 2.1, by

optimally tuning the phases of fugacities in the index. In section 2.2, we revisit

the high temperature Cardy-like behavior studied in [75]. Section 3 concludes

with some discussions and remarks.

9.2 The large N index at complex fugacities

The index of 4d N = 4 Yang-Mills theory was found in [68,69]. Its definition is

given by

Z(∆I , ωi) = Tr
[
(−1)F e−

∑3
I=1 ∆IQI−

∑2
i=1 ωiJi

]
, (9.2.1)

with the constraint

∆1 +∆2 +∆3 − ω1 − ω2 = 0 (9.2.2)

on the chemical potentials. QI with I = 1, 2, 3 are three U(1)3 ⊂ SO(6) R-

charges, and Ji with i = 1, 2 are two U(1)2 ⊂ SO(4) angular momentum on
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spatial S3. They are all normalized so that fermionic fields assume ±1
2 eigenval-

ues. This index counts states whose energy is given by E = Q1+Q2+Q3+J1+J2,

when the S3 radius is multiplied to E to make it dimensionless. See, e.g. [75]

for more explanation on our notation. The free QFT calculus with the U(N)

gauge group yields the following unitary matrix integral form of the index [69]:

Z =
1

N !

∫ N∏
a=1

dαa
2π

·
∏
a<b

(
2 sin

αab
2

)2
exp

 N∑
a,b=1

∞∑
n=1

1

n

(
1−

∏3
I=1 2 sinh

n∆I
2

2 sinh nω1
2 · 2 sinh nω2

2

)
einαab


(9.2.3)

where αab ≡ αa − αb. αa’s are the U(1)N ⊂ U(N) gauge holonomies along the

temporal circle, if one interprets this as a partition function of a Euclidean QFT

on S3 × S1.

As pointed out in [75], we shall give nonzero imaginary parts of ∆I , ωi

compatible with (9.2.2). This will turn out to yield phase factors of fugacities,

obstructing ‘cancelations’ between bosonic/fermionic states at nearby charges.

This schematic idea was already explained in the introduction. Making a macro-

scopic saddle point approximation of the inverse Laplace transformation of the

index at charges ∼ N2, one wishes to see if one captures macroscopic entropies.

Macroscopic charges are insensitive to whether they are integers or half-integers.

In particular, it is unclear whether the saddle point approximation computes

+(degeneracy) or −(degeneracy). Due to a rapid oscillation between ± signs

in the index as one changes charges by ‘indistinguishable’ units, the apparent

degeneracy captured by the index may look much smaller than it actually is.

Our suggestion is to try to maximally improve this situation by inserting extra

phase factors for fugacities, making the rapid oscillation milder, or hopefully

absent in favorable cases. A priori, we merely try an optimal obstruction of

rapid oscillation, hoping to provide a better lower bound on the true BPS en-

tropy from the index. In case the lower bound saturates the entropy of known
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black holes, as in [75], this approach would count them. However, still we mod-

estly have the general possibilities in mind: we seek for possible lower bounds

for entropies, which probably will mean upper bounds on various transition

temperatures. Conservatively, most of the results in this chapter in principle

has to be interpreted this way. However, such bounds will lead to interesting

predictions on the gravity duals.

Once we complexify the chemical potentials ∆I , ωi, the effective potential

for αa appearing in (9.2.3) (minus log of the integrand) will be complexified.

Then the large N saddle points for αa may deviate from real αa, i.e. away from

the unit circle in the space of eiαa . Finding the large N saddle points in this

complex plane appears to be a difficult problem. Here, we first review the large

N analysis of the index at real fugacities [69], where the saddle points for eiαa

all stay on the unit circle, and slightly improve it in the following section to see

a tachyon instability from the index.

[57, 69] replaces the integrals over a large number of variables αa by a

functional integral over the distribution function ρ(θ) of N particles on a circle.

Here, θ ∼ θ+2π. The exact, or fine-grained, distribution for N particles would

have been

ρ(θ) =
1

N

N∑
a=1

δ(θ − αa) =
1

2πN

∞∑
n=−∞

N∑
a=1

ein(θ−αa) , (9.2.4)

with the normalization
∫ 2π
0 dθρ(θ) = 1. At large N , with a dense distribution

of eigenvalues along the circle, we coarse-grain ρ(θ) to generic functions. One

may Fourier expand ρ(θ) as

ρ(θ) =
1

2π
+

1

2π

∞∑
n=1

[
ρne

inθ + ρ−ne
−inθ

]
, ρ−n = ρ∗n . (9.2.5)

This function is subject to the local constraint ρ(θ) ≥ 0. The global constraint
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∫ 2π
0 dθρ(θ) = 1 is already solved in the above expression. In the exact fine-

grained expression (9.2.4), the n’th Fourier coefficient ρn is given by

ρn =
1

N

N∑
a=1

e−inαa . (9.2.6)

The functional integral form of Z in the large N limit is given by [69]

Z =

∫ ∞∏
n=1

[dρndρ−n] exp

[
−N2

∞∑
n=1

1

n
ρnρ−n

∏
I(1− e−n∆I )∏
i(1− e−nωi)

]
. (9.2.7)

Here, in the manipulation, we used
∑

I ∆I =
∑

i ωi.

For simplicity, from now on, let us consider the case with equal charges,

Q1 = Q2 = Q3 ≡ Q, J1 = J2 ≡ J . Then one sets ∆1 = ∆2 = ∆3 ≡ ∆,

ω1 = ω2 ≡ ω, satisfying 3∆ = 2ω. We label e−ω = x3, e−∆ = x2. Then one

finds

Z =

∫ ∞∏
n=1

[dρndρ−n] exp

[
−N2

∞∑
n=1

f(xn)

n
ρnρ−n

]
(9.2.8)

with

f(x) =
(1− x2)3

(1− x3)2
. (9.2.9)

At real fugacity in the physical range 0 < x < 1, f is positive. This implies

that all the mode integrals over ρn can be approximated by a Gaussian integral

around ρn = 0. Since the large N saddle point is a uniform distribution ρ(θ) =

1
2π , one does not have to worry about the positivity constraint ρ(θ) ≥ 0. The

resulting partition function is given by

Z ∼
∞∏
n=1

f(xn)−1 =
∞∏
n=1

(1− x3n)2

(1− x2n)3
, (9.2.10)

and agrees with the index over gravitons in AdS5 × S5 [69]. (This analysis was

done in [69] with all 4 fugacities kept.) Since the free energy is independent

of N , the index does not see deconfinement at arbitrary high ‘temperature’

(meaning x close to 1, or ω close to 0).
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On the other hand, in the partition function without (−1)F at weak cou-

pling, the term f(xn) appearing in (9.2.8) is replaced by [57]

1− zB(x
n)− (−1)n−1zF (x

n) . (9.2.11)

zB and zF are bosonic and fermionic parts of the ‘letter partition function’

respectively. This expression turns negative beyond certain values of x, say at

x > xH for n = 1. It turns out that the coefficient for n = 1 becomes nega-

tive first, driving ρ1 to condense. As discussed in [57], this implies that the low

temperature saddle point with ρn = 0, preserving the ‘winding number symme-

try’ in the Euclidean picture, seize to exist. So one identifies TH ≡ − log xH as

the Hagedorn temperature of this system. The actual phase transition to the

high temperature deconfining phase may happen below this temperature, and

various scenarios at weak but nonzero coupling are discussed in [57]. In any

scenarios, TH is the upper bound for the temperature for which the free energy

of the dominant saddle point can be at O(N0) order. This allows us to identify

TH as an upper bound for the deconfinement transition temperature.

9.2.1 Instability of the confining saddle point

Now we introduce a phase for x, shifting x → xeiϕ with real x, ϕ ∼ ϕ + 2π,

and redo the analysis starting from (9.2.8). Now with the complexified effective

action, one should allow eiαa ’s away from the unit circle at the saddle points.

This would mean that one will have to generalize the ansatz from the unit circle

to a more general curve on the complex plane. This apparently complicated task

will not be discussed here.

We restrict our interest to the fate of the graviton saddle point, focussing

on the local fluctuations. In (9.2.8), we are simply asking whether the effective
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Figure 9.1: Contour plot of Re(f) on the x-ϕ space. The red line shows the
curve Re(f) = 0.

action

Seff = N2
∞∑
n=1

f(xn)

n
ρnρ−n (9.2.12)

is locally stable or not around ρn = 0. Clearly, even with complex f(xn), ρn = 0

will continue to be an extremum under their small variations. One simply has

to make sure if the real part of Seff is at its local minimum, and if the imaginary

part of it is stationary. If both of these conditions are met, the Gaussian inte-

gration of the virtually unconstrained small fluctuations δρn (around ρn = 0)

clearly yields the known graviton index on AdS5 × S5 [69], simply with com-

plexified fugacities.

The above analysis will hold if Re(f(xneinϕ)) > 0. If this can go negative

at finite x < 1, at optimally tuned ϕ, this will imply the disappearance of the

graviton saddle point. One should tune ϕ so that Re(f) becomes 0 at lowest pos-

sible x. This is because, with boson/fermion cancelation, we see less spectrum
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and the phase transitions apparently look delayed or even become invisible in

the index. With minimized boson/fermion cancelations, we can probably see a

transition with minimized delay. So we identify the lowest x with Re(f) = 0 as

the ‘temperature’ where tachyon condensation starts. We call this value xH .

One finds that Re(f(xeiϕ)) as a function of x, ϕ is given by

(1− x2)(1 + x2 − 2x cosϕ)2
(
2x(2 + 5x2 + 2x4) cosϕ+ (1 + x2)(1 + 4x2 + x4 + 3x2 cos(2ϕ))

)
(1 + x6 − 2x3 cos(3ϕ))2

.

(9.2.13)

All other factors are positive except the last factor on the numerator. The

vanishing condition

2x(2 + 5x2 + 2x4) cosϕ+ (1 + x2)(1 + 4x2 + x4 + 3x2 cos(2ϕ)) = 0 (9.2.14)

is solved by

cosϕ =
−2− 5x2 − 2x4 ±

√
−2 + 2x2 + 9x4 + 2x6 − 2x8

6x(1 + x2)
. (9.2.15)

This line on the x-ϕ plane is shown in by Fig. 9.1 by the red curve. On the right

sides of this curve, one finds Re(f) < 0. In the remaining region, Re(f) > 0.

On the red curve, the minimal value of x (maximal value of chemical po-

tential ω, meaning minimal ‘temperature’) is obtained when the two solutions

for ϕ get degenerate, i.e. when

− 2 + 2x2 + 9x4 + 2x6 − 2x8 = 0 . (9.2.16)

The relevant solutions is xH =

√√
3−1
2 ≈ 0.605. This is the point at which

one can optimally tune ϕ to trigger the tachyon condensation at lowest x. The

tuned value of ϕ is given by cosϕ = − 1
2xH

, i.e. ϕ ≈ 0.81π or ≈ (2 − 0.81)π.

The two values of ϕ’s are symmetric around ϕ = π, as is manifest from Fig.

9.1. They are at the top of the two dome regions for Re(f) ≤ 0. This will set
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the upper bound on the actual deconfinement transition temperature. At these

points, one finds

ωH = −3 log xH ≈ 1.508. (9.2.17)

This is higher than the Hawking-Page transition point

ωknown
HP =

π

16

√
414− 66

√
33 ≈ 1.159 (9.2.18)

of the known black holes, computed in section 2.3 of [75]. See also our section

2.3 below for a review and summary. Our upper bound ω−1
H is lower than the

Hawking-Page temperature of known black holes, ω−1
H < (ωknown

HP )−1.

The tachyon instability of ρ1 has some similarities with the Hagedorn be-

havior in the partition function of [57]. In particular, as one approaches x → xH

from below, the density of states exhibits an exponential growth [57]. However,

in the index, this feature is not visible in the graviton index (9.2.10). Namely,

due to nonzero Im(f) at xH , cos θ = − 1
2xH

, the index remains finite even at

x = xH .

For x > xH , ρ1 should condense. The free energy is expected to be of order

N2. In this regime, ω < ωH , there seem to be no reason to expect that the true

saddle point for eiαa ’s be on the unit circle. So it seems that we cannot apply

the studies made in [57], beyond the transition.

At x < xH , whether the saddle point with ρn = 0 is a global one or not is

of course unclear. To this end, one should make a more global study, again at

more general contour on the space of eiαa .

9.2.2 Cardy limit revisited

Despite the complication stated at the end of section 2.1, due to complex ef-

fective action, one can still make a quantitative analysis at ω = −3 log x ≪ 1.
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(Here, x means the real modulus of the complex fugacity xeiϕ.) This is the so-

called ‘Cardy limit’ studied in [75]. To see this, consider the following 2-body

potential

Veff(θ) = − log

(
2 sin

θ

2

)2

+
∞∑
n=1

1

n

(
f(xneinϕ)− 1

)
(einθ + e−inθ) (9.2.19)

= − log

(
2 sin

θ

2

)2

+

∞∑
n=1

1

n

(
(1− x2ne2inϕ)3

(1− x3ne3inϕ)2
− 1

)
(einθ + e−inθ)

between two eigenvalues αa, αb, where θ = αab. This leads to a ‘force’ on the

complex θ plane, which is in fact a cylinder with θ ∼ θ + 2π, given by

− ∂Veff

∂θ
= cot

θ

2
+ 2

∞∑
n=1

(
(1− x2ne2inϕ)3

(1− x3ne3inϕ)2
− 1

)
sin(nθ) . (9.2.20)

The first term coming from the Haar measure behaves like ∼ 2
θ at small θ,

which is repulsive at real θ. Had θ been real and nonzero (even if small), one

could have rearranged part of the second term in Veff as

−
∞∑
n=1

1

n
(einθ + e−inθ) = log(1− eiθ)(1− e−iθ) = log

(
2 sin

θ

2

)2

, (9.2.21)

canceling the first term of Veff . However, for complex θ, separating terms in the

sum over n could be dangerous.

Now let us consider the second term of Veff in the ‘high temperature limit’

ω → 0+. In the index, this limit may or may not be nontrivial, depending on the

value of ϕ. For instance, at ϕ = 0 and 0 < x < 1, the index will never exhibit

a macroscopic entropy as shown in [69]. The crucial reason for this was that

Re(f(xn)) remained positive, as shown in Fig. 9.1 along the x-axis. However,

note that beyond x > xH =

√√
3−1
2 , there is a region in the x-ϕ plane which

has Re(f) < 0, providing chances for a macroscopic entropy. Even though the

analysis of section 2.1 was limited to the situation where eiαa ’s sit on the unit

circle, it is still an important question whether Re(f(xneinϕ)) can go negative,
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since this will allow Veff(θ) to have negative real part even at (small) complex

θ. So we carefully re-investigate the results of section 2.1 on the behaviors of

Re(f(xneinϕ)).

We first study the term with n = 1, i.e. Re(f(xeiϕ)). It will turn out that

understanding this term will be most important even in the Cardy limit. The

region with Re(f(xeiϕ)) < 0 is on the right side of the red curve shown in Fig.

9.1, consisting of the ‘dome’ regions. Therefore, if one wishes to take the Cardy

limit x → 1−, one should again keep ϕ at an optimal value in this region, to

maximally obstruct cancelations of nearby bosons/fermions. For the term with

n = 1, it is easy to see from Fig. 9.1 how to set ϕ, as x → 1−. This is easily

noticed by following the valley of lowest Re(f) inside the dome. At x = xH ,

the optimal value was shown to be ϕ = cos−1
(
− 1

2xH

)
≈ 0.81π. From here,

we only consider the lower dome, ϕ ≤ π. As one further increases x, the value

of ϕ which minimizes Re(f(xeiϕ)) will decrease, towards ϕ ↘ 2π
3 as x → 1−.

Namely, setting ϕ = 2π
3 , Re(f(xeiϕ)) will maximally diverge to −∞ as x → 1−.

We would like to see this behavior more quantitatively, including all other

terms at higher n’s in Veff . Let us take x = e−
ω
3 with ω ≪ 1 and ϕ ≈ 2π

3 . Then

one finds

(1− x2ne2inϕ)3

(1− x3ne3inϕ)2
≈ (1− x2ne

4πni
3 )3

(1− x3n)2
≈ 1

n2ω2
(1− e

4πni
3 )3 . (9.2.22)

At n ̸= 1, the real part of this term will oscillate in its sign. Therefore, it may

not be clear at this stage whether setting ϕ = 2π
3 is an ideal one or not. A

more general study can be made by setting ϕ to be an arbitrary real number

between 0 and 2π, and maximize logZ or the entropy after all the calculus.

This was in fact done in [75] (with maximally deconfining distribution, to be

addressed shortly below), which indeed confirms that ϕ = 2π
3 is the optimal one.

So with this understood, we shall set ϕ = 2π
3 in this chapter for the simplicity
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of presentation.

Since this term (9.2.22) is dominant in (9.2.20) due to the diverging factor

1
ω2 , the vanishing force condition at the leading order requires

∑∞
n=1

(1−e
4πin
3 )3

n2ω2 sin(nθ) ≈

0.1 So the leading order solution at small ω is θ ≈ 0 for all pairs αa, αb, i.e.

the maximally deconfining configuration. Since all matters are in the adjoint

representation, it does not matter in the leading order in ω whether eiαa ’s stay

on the unit circle or not. These are precisely the Cardy saddle points considered

in [75]. As in [75], we assume the global dominance of this saddle point.

With the discussions in the previous paragraph, we can regard the eigen-

values as asymptotically living on the unit circle. Thus we can use the formula

(9.2.12), where ρn are Fourier coefficients of the distribution on unit circle. Just

like the studies made in section 5.3 of [57] for the maximally deconfining saddle

point, we set ρn = 1 for ρ(θ) = δ(θ). One thus obtains

logZ ∼ −Seff = −N2
∞∑
n=1

f(xn)

n
ρnρ−n ≈ −N2

ω2

∞∑
n=1

(1− e
4πin
3 )3

n3
=

3N2

ω2

(
Li3(e

4πi
3 )− Li3(e

8πi
3 )
)
.

(9.2.23)

Li3(z) =
∑∞

n=1
zn

n3 converges for |z| < 1, and also at |z| = 1 if z ̸= 1 (i.e. not at

the branch point of this function). Here, note that

Li3(e
4πi
3 )− Li3(e

8πi
3 ) =

1

6

(
2πi

3

)3

. (9.2.24)

This can be proved by using an identity of Li3 and the Bernoulli polynomial B3,

as in [75]. Alternatively, one can confirm this simply by performing the infinite

sums on the left hand side. For instance, as a brutal but clearest check, we

reconfirmed it numerically by computing the infinite sum till n = 1000, finding

that both sides are ≈ −1.53117i. So one obtains

logZ ∼
N2
(
2πi
3

)3
2ω2

, (9.2.25)

1A more careful treatment of the sum over n, separating n ≲ |ω|−1 and n ≳ |ω|−1, was
presented in [75].
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at ω ≪ 1. This is the specialization of the Cardy-like formula found in [75,90],

logZ ∼ N2∆1∆2∆3

2ω1ω2
, ∆1 +∆2 +∆3 − ω1 − ω2 = 2πi . (9.2.26)

Restricting to the case ∆1 = ∆2 = ∆3 ≡ ∆ and ω1 = ω2 ≡ ω ≪ 1, one obtains

∆ ≈ 2πi
3 . So (9.2.26) indeed reduces to (9.2.25) in the setting of this subsection.

9.3 Discussions

In this chapter, we pointed out that the index of N = 4 Yang-Mills theory on

S3 ×R should undergo a large N phase transition. A key idea is to turn on the

finite phases of BPS fugacities, to optimally obstruct boson/fermion cancela-

tions of nearby BPS states at macroscopic charges. We compute a temperature

which sets an upper bound of the confinement-deconfinement transition of the

gauge theory in the BPS sector. Recently, in [249], it was shown that when

the action is complex as in our model, due to destructive interference, tachy-

onic modes do not immediately condense and the deconfinement transition is

delayed.

One would hope to better understand the actual transition from the index.

We think our calculations and arguments clearly indicate the existence of such a

transition, visible in the index. Unfortunately, the large N saddle point analysis

of the index appears technically tricky, and we leave this interesting question

for future studies. However, the studies of this chapter and of [75] shed concrete

lights on the BPS black holes in AdS5 × S5.

Turning the logic around, one would also like to find (perhaps unstable)

saddle points of the large N index at small charges, to study small AdS black

holes in the microcanonical ensemble [250]. For instance, it will be interesting

to see if the non-interacting mix picture [116] between the small black hole and

the hair can be confirmed from the QFT side. See also [117].
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More generally, it will be desirable to further study how rich the landscape of

BPS black holes is in AdS5×S5. It is almost certain to us that BPS hairy black

holes will be playing prominent roles. The mildly singular nature of BPS hairy

black holes, studied in [111,112], might be a clue for better understanding their

differences from the previous analytic solutions of [83–86]. It may be helpful to

get a better notion on the near-horizon distinction of these two classes of black

holes. From the QFT dual side, it will be nice to develop a sharper criterion

for the hairiness of the deconfining saddle points. The condensations of certain

modes in the bulk force their dual operators to assume expectation values at

nonzero BPS chemical potentials. Within the simple consistent truncation of

[116], further studied in [111,112,117], the dual operator is easy to identify. With

no guarantee that the deconfining saddle points of this chapter and of [75] will

be within this truncation ansatz, one should figure out what kind of operators

should be considered. Technically, it is also interesting to see whether one can

find supersymmetric operators that can be inserted in the index.

It has been found in [75] that the large charge limits of non-hairy black

holes [83–86] are counted by the index. This presumably means that they are

likely to be the dominant saddle points in the large charge limit. It will be inter-

esting to clarify how this happens: for instance, whether there are further phase

transitions to non-hairy black holes, or whether hairy black holes asymptoti-

cally become indistinguishable with non-hairy ones. For instance, we find some

studies on large rotating AdS black holes [251], which can be made hairy only

at very low Hawking temperature. Although these are non-BPS black holes,

they may give lessons to large BPS black holes.
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Appendix A

Asymptotic behavior and
identities of special functions

The q-Pochhammer symbol (|q| < 1) is defined as

(a; q)n :=

n−1∏
i=0

(1− aqi), n > 0,

(a; q)0 := 1,

(a; q)n :=
1

(aqn; q)−n
, n < 0.

(A.0.1)

The Cardy limit (q → 1−) of the infinite q-Pochhammer symbol is given by

(aqm; q2) ≡ (aqm; q2)∞ =

∞∏
i=0

(1− aqm+2i) , q = e−β ,

lim
β→0+

(aqm; q2)∞ = (1− aqm)1/2 exp
[
− 1

2β
Li2(aq

m)
](
1 +O(β)

)
= exp

[
− 1

2β
Li2(aq

m−1)
](
1 +O(β)

)
, a ∈ C & a /∈ [1,∞) ,

lim
β→0+

(qm; q2)∞ =

√
2π

Γ(m/2)
(2β)−(m−1)/2 exp

[
− 1

2β
Li2(1)

](
1 +O(β)

)
.

(A.0.2)
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These asymptotic formulae (A.0.2) are well-known for |a| ≤ 1 [252]. To extend

it to whole complex plane C, we used the modular property of the Jacobi

theta function and the Dedekind eta function. Also note that these asymptotic

formulae (A.0.2) have a branch cut along (1,+∞). For further details, refer to

appendix A of [79].

We can extend the definition of the infinite q-Pochhammer symbol to |q| > 1

region using the plethystic exponential function as following:

(a; q2)∞ = PE

[
− a

1− q2

]
= PE

[
aq−2

1− q−2

]
= PE

[
− aq−2

1− q−2

]−1

=
1

(aq−2; q−2)∞
.

(A.0.3)

Using this formula, one can easily check that the q → 1+ limit of the infinite

q-Pochhammer symbol is given by

lim
β→0−

(aqm; q2)∞ = exp
[
− 1

2β
Li2(aq

m−1)
](
1 +O(β)

)
, a ∈ C & a /∈ [1,∞) ,

(A.0.4)

i.e. the same as the q → 1− limit.

In addition, q-Pochhammer symbol satisfies the following infinite q-binomial

theorem;
∞∑
n=0

(a; q2)n
(q2; q2)n

xn =
(ax; q2)∞
(x; q2)∞

. (A.0.5)

The polylogarithm function is defined by a power series in a when |a| < 1

as

Lin(a) =

∞∑
k=1

ak

kn
, (A.0.6)

and can be extended to |a| ≥ 1 by the process of analytic continuation. Note that

the polylogarithm function is multi-valued. It has a branch point at a = 1, and

we take the principal branch with a branch cut along (1,+∞) and the principal

value range [0, 2π). Accordingly, we set the branch cut of the logarithm function

as (0,−∞), i.e. its principal value range is (−π,+π].
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The polylogarithm function satisfies the following inversion formula involv-

ing Bernoulli polynomials Bn(x) (n ∈ Z):

Lin(a) + (−1)nLin(1/a) = −(2πi)n

n!
Bn

(
log a

2πi
− p

)
, 2πp ≤ Im(log a) < 2π(p+ 1) & |a| ≤ 1 ,

B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x, · · · .

(A.0.7)

Also, the polylogarithm function exhibits the following limiting behavior:

lim
|a|→0

Lin(a) = a , (A.0.8)

which gives the asymptotic formula of the polylogarithm function when |a| → ∞

from A.0.7.

We also use the theta function defined as following:

θ(a; q2) ≡ (a; q2)∞(a−1q2; q2)∞ , (A.0.9)

whose Cardy limit β → 0 is given by

lim
β→0

θ(aqm; q2) = exp

[
− 1

2β

(
−1

2
log2(âqm−1) + πi log(âqm−1) +

π2

3

)]
(1 +O(β)) ,

(A.0.10)

where

â ≡ ae−2πip ⇒ log â = log a− 2πip . (A.0.11)

Here, we used (A.0.2) and (A.0.7).
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초록

이 논문은 안티 드 지터 시공간의 블랙홀을 등각장론을 이용한 홀로그래피 방

식으로 연구하는 것에 목표를 둔다. 먼저, 3,4,5,6차원 초등각장론의 초등각지표

가 Cardy 그리고 large N 극한에서 탈속박을 나타냄을 보인다. 이의 엔트로피는

4,5,6,7차원 안티 드 지터 시공간 블랙홀의 Bekenstein-Hawking 엔트로피와 정확

하게 일치한다. 즉, 블랙홀의 미시상태를 탈속박된 쿼크-글루온 플라즈마를 통해

홀로그래피 방식으로 설명한 것이다.

또한, 3차원, 5차원 게이지 이론의 높은 온도에서의 독특한 형태의 탈속박에

관해서 연구한다. 먼저, M2-막 위의 초등각장론의 N3/2 탈속박 자유도를 자기홀

극의 응축을 통해 명확하게 설명한다. 5차원 초등각장론의 N5/2 탈속박 자유도와

이에 대한 인스탄톤 솔리톤의 역할도 논의될 것이다.

더하여, 4차원 N = 4 초대칭-양-밀스 이론의 초등각지표를 수치적으로 연

구하여, 이 지표의 빠른 진동이 Legendre 변환의 복소 화학 퍼텐셜 극점을 통해

구현됨을 보인다. 마지막으로, 초등각지표에서의 탈속박 상전이에 관해 논의할

것이다.

이 논문은 안디 드 지터 시공간의 블랙홀 및 양자중력에 대한 미시적인 연구에

체계적이고 보편적인 체계를 제공하였다는 점에도 그 의의가 있다.

주요어: 홀로그래피, 블랙홀, 등각장론, 탈속박

학번: 2016-20321
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