930 research outputs found

    An adaptive framework for combating advanced persistent threats

    Get PDF
    Advanced persistent threats (APTs) pose a significant risk to nearly every organization. Due to the sophistication of these attacks, they can bypass existing security systems and largely infiltrate the target network. The prevention and detection of APT are challenging because attackers constantly change and evolve their attacking techniques and methods to stay undetected. As a result, APT often successfully compromises companies, organizations, or public authorities. This paper developed an adaptive security framework that continuously investigates the behavior of users of a network to protect it against threats. The framework constitutes of three main sections namely; Intrusion prevention, Intrusion detection, and Response to intrusions. The design model comprises the front end, middleware, and back end. The front end is implemented using HTML and Cascading Style Sheet (CSS) in Netbeans Integrated Development Environment (IDE) version 8.0.2. The middleware is implemented using Java Web of NetBeans IDE while the back end is implemented using MySQL server. The results show that the runtime security of the system is adapted according to the behavior patterns exhibited by the user hence, our system can detect zero-day attacks which signature-based intrusion detection systems cannot detect, thus protecting against these attacks. The work is recommended as a countermeasure against emerging persistent attacks

    A Survey on Security Threats and Countermeasures in IEEE Test Standards

    Get PDF
    International audienceEditor's note: Test infrastructure has been shown to be a portal for hackers. This article reviews the threats and countermeasures for IEEE test infrastructure standards

    Security Risk Management for the IoT systems

    Get PDF
    Alates 2012. aastast on ülemaailmne infastruktuuri üksuste arv (The Internet of Things) jõudsalt kasvanud üle kahe korra. Koos selle numbriga on ka kasvanud ka võimalikud riskid ning ohud, mis mõjutavad süsteemi turvalisust. Tulemuseks on suur hulk isiklikke andmeid kas varastatud või kahjustatud. Vastavalt allikatele "Third Quarter, 2016 State of the Internet / Security Report" ja "Akamai Intelligent Platform", on DdoS Q3 rünnakute arv suurenenud 2016 aastal 71% võrreldes aastaga 2015. Kõige suurem DdoS fikseeritud rünnakutest oli 623 Gbps rünnak. Kõik need faktid tõestavad, et Iot süsteemis on veel siiamaani probleeme isikuandmete turvalisusega. Isklikud andmed on ohtude suhtes haavatavad. Käesolev töö ühendab Iot raamastikus turvalisuse riskijuhtimine teadmised olemasoleva praktikaga. Raamastiku eesmärgiks on tugevdada Iot süsteemi nõrku osi ning kaitsta isiklikke andmeid. Pakume välja esialgse igakülgse võrdlusmudeli juhtkontrolli turvariskideks IoT süsteemides hallatavate ja kontrollitavate info- ja andmevarade jaoks. Infosüsteemide turvalisuse riskijuhtimise valdkonna domeeni mudeli põhjal uurime, kuidas avatud veebirakenduse turvalisuse projektis määratletud turvaauke ja nende vastumeetmeid võiks vaadelda IoT kontekstis. Selleks, et illustreerida etalonmudeli rakendamist, katsetatakse raamistikku IoT-süsteemil. Sellesse süsteemi kuuluvad Raspberry Pi 3, sensorid ning kaugandmete ladustamine.Since 2012 the number of units in global infrastructure for the information society (The Internet of Things) has grown twice. With this number also has grown the number of possible threats and risks, which influence security on all levels of the system. As a result, a huge amount of users' data was stolen or damaged. According to Third Quarter, 2016 State of the Internet / Security Report based on data gathered from the Akamai Intelligent Platform the total number of DDoS attacks in Q3 2016 increased in 71\\% compared to Q3 2015. With 623 Gbps data transfer attack it was largest DDoS ever and this fact will only increase the number of future attack events. All these facts reveal a problem that a lot of IoT systems are still unsecured and users' data or personal information stay vulnerable to threats. The thesis combines knowledge of Security Risk Management with existing practice in securing in IoT into a framework, which aim is to cover vulnerabilities in IoT systems in order to protect users' data. We propose an initial comprehensive reference model to management security risks to the information and data assets managed and controlled in the IoT systems. Based on the domain model for the information systems security risk management, we explore how the vulnerabilities and their countermeasures defined in the open Web application security project could be considered in the IoT context. To illustrate the applicability of the reference model we test the framework on self-developed IoT system represented by Raspberry Pi 3 interconnected with sensors and remote data storage

    Revision of Security Risk-oriented Patterns for Distributed Systems

    Get PDF
    Turvariskide haldamine on oluline osa tarkvara arendusest. Arvestades, et enamik tänapäeva ettevõtetest sõltuvad suuresti infosüsteemidest, on turvalisusel oluline roll sujuvalt toimivate äriprotsesside tagamisel. Paljud inimesed kasutavad e-teenuseid, mida pakuvad näiteks pangad ja haigekassa. Ebapiisavatel turvameetmetel infosüsteemides võivad olla soovimatud tagajärjed nii ettevõtte mainele kui ka inimeste eludele.\n\rTarkvara turvalisusega tuleb tavaliselt tegeleda kogu tarkvara arendusperioodi ja tarkvara eluea jooksul. Uuringute andmetel tegeletakse tarkvara turvaküsimustega alles tarkvara arenduse ja hooldus etappidel. Kuna turvariskide vähendamine kaasneb tavaliselt muudatustena informatsioonisüsteemi spetsifikatsioonis, on turvaanalüüsi mõistlikum teha tarkvara väljatöötamise algusjärgus. See võimaldab varakult välistada ebasobivad lahendused. Lisaks aitab see vältida hilisemaid kulukaid muudatusi tarkvara arhitektuuris.\n\rKäesolevas töös käsitleme turvalise tarkvara arendamise probleemi, pakkudes lahendusena välja turvariskidele orienteeritud mustreid. Need mustrid aitavad leida turvariske äriprotsessides ja pakuvad välja turvariske vähendavaid lahendusi. Turvamustrid pakuvad analüütikutele vahendit turvanõuete koostamiseks äriprotsessidele. Samuti vähendavad nad riskianalüüsiks vajalikku töömahtu. Oma töös joondame me turvariskidele orienteeritud mustrid vastu hajussüsteemide turvaohtude mustreid. See võimaldab meil täiustada olemasolevaid turvariski mustreid ja võtta kasutusele täiendavaid mustreid turvariskide vähendamiseks hajussüsteemides.\n\rTurvariskidele orienteeritud mustrite kasutatavust on kontrollitud lennunduse äriprotsessides. Tulemused näitavad, et turvariskidele orienteeritud mustreid saab kasutada turvariskide vähendamiseks hajussüsteemides.Security risk management is an important part of software development. Given that majority of modern organizations rely heavily on information systems, security plays a big part in ensuring smooth operation of business processes. Many people rely on e-services offered by banks and medical establishments. Inadequate security measures in information systems could have unwanted effects on an organization’s reputation and on people’s lives. Security concerns usually need to be addressed throughout the development and lifetime of a software system. Literature reports however, that security is often considered during implementation and maintenance stages of software development. Since security risk mitigation usually results with changes to an IS’s specification, security analysis is best done at an early phase of the development process. This allows an early exclusion of inadequate system designs. Additionally, it helps prevent the need for fundamental and expensive design changes later in the development process. In this thesis, we target the secure system development problem by suggesting application of security risk-oriented patterns. These patterns help find security risk occurrences in business processes and present mitigations for these risks. They provide business analysts with means to elicit and introduce security requirements to business processes. At the same time, they reduce the efforts needed for risk analysis. We confront the security risk-oriented patterns against threat patterns for distributed systems. This allows us to refine the collection of existing patterns and introduce additional patterns to mitigate security risks in processes of distributed systems. The applicability of these security risk-oriented patterns is validated on business processes from aviation turnaround system. The validation results show that the security risk-oriented patterns can be used to mitigate security risks in distributed systems

    Data security in European healthcare information systems

    Get PDF
    This thesis considers the current requirements for data security in European healthcare systems and establishments. Information technology is being increasingly used in all areas of healthcare operation, from administration to direct care delivery, with a resulting dependence upon it by healthcare staff. Systems routinely store and communicate a wide variety of potentially sensitive data, much of which may also be critical to patient safety. There is consequently a significant requirement for protection in many cases. The thesis presents an assessment of healthcare security requirements at the European level, with a critical examination of how the issue has been addressed to date in operational systems. It is recognised that many systems were originally implemented without security needs being properly addressed, with a consequence that protection is often weak and inconsistent between establishments. The overall aim of the research has been to determine appropriate means by which security may be added or enhanced in these cases. The realisation of this objective has included the development of a common baseline standard for security in healthcare systems and environments. The underlying guidelines in this approach cover all of the principal protection issues, from physical and environmental measures to logical system access controls. Further to this, the work has encompassed the development of a new protection methodology by which establishments may determine their additional security requirements (by classifying aspects of their systems, environments and data). Both the guidelines and the methodology represent work submitted to the Commission of European Communities SEISMED (Secure Environment for Information Systems in MEDicine) project, with which the research programme was closely linked. The thesis also establishes that healthcare systems can present significant targets for both internal and external abuse, highlighting a requirement for improved logical controls. However, it is also shown that the issues of easy integration and convenience are of paramount importance if security is to be accepted and viable in practice. Unfortunately, many traditional methods do not offer these advantages, necessitating the need for a different approach. To this end, the conceptual design for a new intrusion monitoring system was developed, combining the key aspects of authentication and auditing into an advanced framework for real-time user supervision. A principal feature of the approach is the use of behaviour profiles, against which user activities may be continuously compared to determine potential system intrusions and anomalous events. The effectiveness of real-time monitoring was evaluated in an experimental study of keystroke analysis -a behavioural biometric technique that allows an assessment of user identity from their typing style. This technique was found to have significant potential for discriminating between impostors and legitimate users and was subsequently incorporated into a fully functional security system, which demonstrated further aspects of the conceptual design and showed how transparent supervision could be realised in practice. The thesis also examines how the intrusion monitoring concept may be integrated into a wider security architecture, allowing more comprehensive protection within both the local healthcare establishment and between remote domains.Commission of European Communities SEISMED proje

    A Security Advisory System for Healthcare Environments

    Get PDF
    This thesis considers the current requirements for security in European healthcare establishments. Information Technology is being used increasingly by all areas of healthcare, from administration to clinical treatment and this has resulted in increased dependence upon computer systems by healthcare staff. The thesis looks at healthcare security requirements from the European perspective. An aim of the research was to develop security guidelines that could be used by healthcare establishments to implement a common baseline standard for security. These guidelines represent work submitted to the Commission of European Communities SEISMED (Secure Environment for Information Systems in Medicine) project, with which the research programme was closely linked. The guidelines were validated by implementing them with the Plymouth and Torbay Health Trust. The thesis also describes the development of a new management methodology and this was developed to allow the smooth implementation of security within healthcare establishments. The methodology was validated by actually using it within the Plymouth and Torbay Health Authority to implement security countermeasures. A major area of the research was looking at the use of risk analysis and reviewing all the known risk analysis methodologies. The use of risk analysis within healthcare was also considered and the main risk analysis methods used by UK healthcare establishments were reviewed. The thesis explains why there is a need for a risk analysis method specially developed for healthcare. As part of the research a new risk analysis method was developed, this allows healthcare establishments to determine their own security requirements. The method was also combined with the new management methodology that would determine any implementional problems. The risk analysis methodology was developed into a computerised prototype, which demonstrated the different stages of the methodology.Plymouth and Torbay Health Authorit
    corecore