1,169 research outputs found

    Investigating and extending the methods in automated opinion analysis through improvements in phrase based analysis

    Get PDF
    Opinion analysis is an area of research which deals with the computational treatment of opinion statement and subjectivity in textual data. Opinion analysis has emerged over the past couple of decades as an active area of research, as it provides solutions to the issues raised by information overload. The problem of information overload has emerged with the advancements in communication technologies which gave rise to an exponential growth in user generated subjective data available online. Opinion analysis has a rich set of applications which are used to enable opportunities for organisations such as tracking user opinions about products, social issues in communities through to engagement in political participation etc.The opinion analysis area shows hyperactivity in recent years and research at different levels of granularity has, and is being undertaken. However it is observed that there are limitations in the state-of-the-art, especially as dealing with the level of granularities on their own does not solve current research issues. Therefore a novel sentence level opinion analysis approach utilising clause and phrase level analysis is proposed. This approach uses linguistic and syntactic analysis of sentences to understand the interdependence of words within sentences, and further uses rule based analysis for phrase level analysis to calculate the opinion at each hierarchical structure of a sentence. The proposed opinion analysis approach requires lexical and contextual resources for implementation. In the context of this Thesis the approach is further presented as part of an extended unifying framework for opinion analysis resulting in the design and construction of a novel corpus. The above contributions to the field (approach, framework and corpus) are evaluated within the Thesis and are found to make improvements on existing limitations in the field, particularly with regards to opinion analysis automation. Further work is required in integrating a mechanism for greater word sense disambiguation and in lexical resource development

    Predictive Analysis on Twitter: Techniques and Applications

    Full text link
    Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities

    FINE-GRAINED EMOTION DETECTION IN MICROBLOG TEXT

    Get PDF
    Automatic emotion detection in text is concerned with using natural language processing techniques to recognize emotions expressed in written discourse. Endowing computers with the ability to recognize emotions in a particular kind of text, microblogs, has important applications in sentiment analysis and affective computing. In order to build computational models that can recognize the emotions represented in tweets we need to identify a set of suitable emotion categories. Prior work has mainly focused on building computational models for only a small set of six basic emotions (happiness, sadness, fear, anger, disgust, and surprise). This thesis describes a taxonomy of 28 emotion categories, an expansion of these six basic emotions, developed inductively from data. This set of 28 emotion categories represents a set of fine-grained emotion categories that are representative of the range of emotions expressed in tweets, microblog posts on Twitter. The ability of humans to recognize these fine-grained emotion categories is characterized using inter-annotator reliability measures based on annotations provided by expert and novice annotators. A set of 15,553 human-annotated tweets form a gold standard corpus, EmoTweet-28. For each emotion category, we have extracted a set of linguistic cues (i.e., punctuation marks, emoticons, emojis, abbreviated forms, interjections, lemmas, hashtags and collocations) that can serve as salient indicators for that emotion category. We evaluated the performance of automatic classification techniques on the set of 28 emotion categories through a series of experiments using several classifier and feature combinations. Our results shows that it is feasible to extend machine learning classification to fine-grained emotion detection in tweets (i.e., as many as 28 emotion categories) with results that are comparable to state-of-the-art classifiers that detect six to eight basic emotions in text. Classifiers using features extracted from the linguistic cues associated with each category equal or better the performance of conventional corpus-based and lexicon-based features for fine-grained emotion classification. This thesis makes an important theoretical contribution in the development of a taxonomy of emotion in text. In addition, this research also makes several practical contributions, particularly in the creation of language resources (i.e., corpus and lexicon) and machine learning models for fine-grained emotion detection in text

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Content Recommendation Through Linked Data

    Get PDF
    Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia

    An analysis and comparison of predominant word sense disambiguation algorithms

    Get PDF
    This thesis investigates research performed in the area of natural language processing. It is the aim of this research to compare a selection of predominant word sense disambiguation algorithms, and also determine if they can be optimised by small changes to the parameters used by the algorithms. To perform this research, several word sense disambiguation algorithms will be implemented in Java, and run on a range of test corpora. The algorithms will be judged on metrics such as speed and accuracy, and any other results obtained; while an algorithm may be fast and accurate, there may be other factors making it less desirable. Finally, to demonstrate the purpose and usefulness of using better algorithms, the algorithms will be used in conjunction with a real world application. Five algorithms were used in this research: The standard Lesk algorithm, the simplified Lesk algorithm, a Lesk algorithm variant using hypernyms, a Lesk algorithm variant using synonyms, and a baseline performance algorithm. While the baseline algorithm should have been less accurate than the other algorithms, testing found that it could disambiguate words more accurately than any of the other algorithms, seemingly because the baseline makes use of statistical data in WordNet, the machine readable dictionary used for testing; data unable to be used by the other algorithms. However, with a few modifications, the Simplified Lesk algorithm was able to reach performance just a few percent lower than that of the baseline algorithm. It is the aim of this research to apply word sense disambiguation to automatic concept mapping, to determine if more accurate algorithms are able to display noticeably better results in a real world application. It was found in testing, that the overall accuracy of the algorithm had little effect on the quality of concept maps produced, but rather depended on the text being examined
    corecore