2,720 research outputs found

    Key Generation in Wireless Sensor Networks Based on Frequency-selective Channels - Design, Implementation, and Analysis

    Full text link
    Key management in wireless sensor networks faces several new challenges. The scale, resource limitations, and new threats such as node capture necessitate the use of an on-line key generation by the nodes themselves. However, the cost of such schemes is high since their secrecy is based on computational complexity. Recently, several research contributions justified that the wireless channel itself can be used to generate information-theoretic secure keys. By exchanging sampling messages during movement, a bit string can be derived that is only known to the involved entities. Yet, movement is not the only possibility to generate randomness. The channel response is also strongly dependent on the frequency of the transmitted signal. In our work, we introduce a protocol for key generation based on the frequency-selectivity of channel fading. The practical advantage of this approach is that we do not require node movement. Thus, the frequent case of a sensor network with static motes is supported. Furthermore, the error correction property of the protocol mitigates the effects of measurement errors and other temporal effects, giving rise to an agreement rate of over 97%. We show the applicability of our protocol by implementing it on MICAz motes, and evaluate its robustness and secrecy through experiments and analysis.Comment: Submitted to IEEE Transactions on Dependable and Secure Computin

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Secret-key generation from wireless channels: Mind the reflections

    Full text link
    Secret-key generation in a wireless environment exploiting the randomness and reciprocity of the channel gains is considered. A new channel model is proposed which takes into account the effect of reflections (or re-radiations) from receive antenna elements, thus capturing an physical property of practical antennas. It turns out that the reflections have a deteriorating effect on the achievable secret-key rate between the legitimate nodes at high signal-to-noise-power-ratio (SNR). The insights provide guidelines in the design and operation of communication systems using the properties of the wireless channel to prevent eavesdropping.Comment: 6 pages, 9 figure

    Secure key design approaches using entropy harvesting in wireless sensor network: A survey

    Get PDF
    Physical layer based security design in wireless sensor networks have gained much importance since the past decade. The various constraints associated with such networks coupled with other factors such as their deployment mainly in remote areas, nature of communication etc. are responsible for development of research works where the focus is secured key generation, extraction, and sharing. Keeping the importance of such works in mind, this survey is undertaken that provides a vivid description of the different mechanisms adopted for securely generating the key as well its randomness extraction and also sharing. This survey work not only concentrates on the more common methods, like received signal strength based but also goes on to describe other uncommon strategies such as accelerometer based. We first discuss the three fundamental steps viz. randomness extraction, key generation and sharing and their importance in physical layer based security design. We then review existing secure key generation, extraction, and sharing mechanisms and also discuss their pros and cons. In addition, we present a comprehensive comparative study of the recent advancements in secure key generation, sharing, and randomness extraction approaches on the basis of adversary, secret bit generation rate, energy efficiency etc. Finally, the survey wraps up with some promising future research directions in this area

    Securing Cyber-Physical Social Interactions on Wrist-worn Devices

    Get PDF
    Since ancient Greece, handshaking has been commonly practiced between two people as a friendly gesture to express trust and respect, or form a mutual agreement. In this article, we show that such physical contact can be used to bootstrap secure cyber contact between the smart devices worn by users. The key observation is that during handshaking, although belonged to two different users, the two hands involved in the shaking events are often rigidly connected, and therefore exhibit very similar motion patterns. We propose a novel key generation system, which harvests motion data during user handshaking from the wrist-worn smart devices such as smartwatches or fitness bands, and exploits the matching motion patterns to generate symmetric keys on both parties. The generated keys can be then used to establish a secure communication channel for exchanging data between devices. This provides a much more natural and user-friendly alternative for many applications, e.g., exchanging/sharing contact details, friending on social networks, or even making payments, since it doesn’t involve extra bespoke hardware, nor require the users to perform pre-defined gestures. We implement the proposed key generation system on off-the-shelf smartwatches, and extensive evaluation shows that it can reliably generate 128-bit symmetric keys just after around 1s of handshaking (with success rate >99%), and is resilient to different types of attacks including impersonate mimicking attacks, impersonate passive attacks, or eavesdropping attacks. Specifically, for real-time impersonate mimicking attacks, in our experiments, the Equal Error Rate (EER) is only 1.6% on average. We also show that the proposed key generation system can be extremely lightweight and is able to run in-situ on the resource-constrained smartwatches without incurring excessive resource consumption

    A Survey on Secret Key Extraction Using Received Signal Strength in Wireless Networks

    Get PDF
    Secure wireless communications typically rely on secret keys, which are difficult to establish in an ad hoc network without a key management infrastructure. The channel reciprocity and spatial decorrelation properties can be used to extract secret key, especially in a Rayleigh fading channel. But the intervention of intermediate objects between the communication nodes reduces the strength of the secret key generated through such methods. Furthermore, the impact of small fluctuations also reduces the bit matching rate of such key agreement methods. This paper is based on the survey conducted on secret key generation from Received Signal Strength (RSS). By consider ing uniqueness property of RSS as base, various authors have proposed different methods for secret key extraction. Due to use of RSS for key extraction the existing systems suffer from predictable filter response at random period. The existing system also faces signal fading and drop in RSS because of intermediate object. By this survey we specify that even after generating high entropy bits for key extraction, there are considerable drawbacks in extracted key du e to intervention of intermediate objects and remarkable fading and drop in RSS
    corecore