60,953 research outputs found

    Toward Explainable Fashion Recommendation

    Full text link
    Many studies have been conducted so far to build systems for recommending fashion items and outfits. Although they achieve good performances in their respective tasks, most of them cannot explain their judgments to the users, which compromises their usefulness. Toward explainable fashion recommendation, this study proposes a system that is able not only to provide a goodness score for an outfit but also to explain the score by providing reason behind it. For this purpose, we propose a method for quantifying how influential each feature of each item is to the score. Using this influence value, we can identify which item and what feature make the outfit good or bad. We represent the image of each item with a combination of human-interpretable features, and thereby the identification of the most influential item-feature pair gives useful explanation of the output score. To evaluate the performance of this approach, we design an experiment that can be performed without human annotation; we replace a single item-feature pair in an outfit so that the score will decrease, and then we test if the proposed method can detect the replaced item correctly using the above influence values. The experimental results show that the proposed method can accurately detect bad items in outfits lowering their scores

    Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks

    Get PDF
    Ā© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hopkinson, B. M., King, A. C., Owen, D. P., Johnson-Roberson, M., Long, M. H., & Bhandarkar, S. M. Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks. PLoS One, 15(3), (2020): e0230671, doi: 10.1371/journal.pone.0230671.Coral reefs are biologically diverse and structurally complex ecosystems, which have been severally affected by human actions. Consequently, there is a need for rapid ecological assessment of coral reefs, but current approaches require time consuming manual analysis, either during a dive survey or on images collected during a survey. Reef structural complexity is essential for ecological function but is challenging to measure and often relegated to simple metrics such as rugosity. Recent advances in computer vision and machine learning offer the potential to alleviate some of these limitations. We developed an approach to automatically classify 3D reconstructions of reef sections and assessed the accuracy of this approach. 3D reconstructions of reef sections were generated using commercial Structure-from-Motion software with images extracted from video surveys. To generate a 3D classified map, locations on the 3D reconstruction were mapped back into the original images to extract multiple views of the location. Several approaches were tested to merge information from multiple views of a point into a single classification, all of which used convolutional neural networks to classify or extract features from the images, but differ in the strategy employed for merging information. Approaches to merging information entailed voting, probability averaging, and a learned neural-network layer. All approaches performed similarly achieving overall classification accuracies of ~96% and >90% accuracy on most classes. With this high classification accuracy, these approaches are suitable for many ecological applications.This study was funded by grants from the Alfred P. Sloan Foundation (BMH, BR2014-049; https://sloan.org), and the National Science Foundation (MHL, OCE-1657727; https://www.nsf.gov). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Visible and near infrared spectroscopy in soil science

    Get PDF
    This chapter provides a review on the state of soil visibleā€“near infrared (visā€“NIR) spectroscopy. Our intention is for the review to serve as a source of up-to date information on the past and current role of visā€“NIR spectroscopy in soil science. It should also provide critical discussion on issues surrounding the use of visā€“NIR for soil analysis and on future directions. To this end, we describe the fundamentals of visible and infrared diffuse reflectance spectroscopy and spectroscopic multivariate calibrations. A review of the past and current role of visā€“NIR spectroscopy in soil analysis is provided, focusing on important soil attributes such as soil organic matter (SOM), minerals, texture, nutrients, water, pH, and heavy metals. We then discuss the performance and generalization capacity of visā€“NIR calibrations, with particular attention on sample pre-tratments, co-variations in data sets, and mathematical data preprocessing. Field analyses and strategies for the practical use of visā€“NIR are considered. We conclude that the technique is useful to measure soil water and mineral composition and to derive robust calibrations for SOM and clay content. Many studies show that we also can predict properties such as pH and nutrients, although their robustness may be questioned. For future work we recommend that research should focus on: (i) moving forward with more theoretical calibrations, (ii) better understanding of the complexity of soil and the physical basis for soil reflection, and (iii) applications and the use of spectra for soil mapping and monitoring, and for making inferences about soils quality, fertility and function. To do this, research in soil spectroscopy needs to be more collaborative and strategic. The development of the Global Soil Spectral Library might be a step in the right direction

    Estimation of secondary soil properties by fusion of laboratory and on-line measured vis-NIR spectra

    Get PDF
    Visible and near infrared (vis-NIR) diffuse reflectance spectroscopy has made invaluable contributions to the accurate estimation of soil properties having direct and indirect spectral responses in NIR spectroscopy with measurements made in laboratory, in situ or using on-line (while the sensor is moving) platforms. Measurement accuracies vary with measurement type, for example, accuracy is higher for laboratory than on-line modes. On-line measurement accuracy deteriorates further for secondary (having indirect spectral response) soil properties. Therefore, the aim of this study is to improve on-line measurement accuracy of secondary properties by fusion of laboratory and on-line scanned spectra. Six arable fields were scanned using an on-line sensing platform coupled with a vis-NIR spectrophotometer (CompactSpec by Tec5 Technology for spectroscopy, Germany), with a spectral range of 305-1700 nm. A total of 138 soil samples were collected and used to develop five calibration models: (i) standard, using 100 laboratory scanned samples; (ii) hybrid-1, using 75 laboratory and 25 on-line samples; (iii) hybrid-2, using 50 laboratory and 50 on-line samples; (iv) hybrid-3, using 25 laboratory and 75 on-line samples, and (v) real-time using 100 on-line samples. Partial least squares regression (PLSR) models were developed for soil pH, available potassium (K), magnesium (Mg), calcium (Ca), and sodium (Na) and quality of models were validated using an independent prediction dataset (38 samples). Validation results showed that the standard models with laboratory scanned spectra provided poor to moderate accuracy for on-line prediction, and the hybrid-3 and real-time models provided the best prediction results, although hybrid-2 model with 50% on-line spectra provided equally good results for all properties except for pH and Na. These results suggest that either the real-time model with exclusively on-line spectra or the hybrid model with fusion up to 50% (except for pH and Na) and 75% on-line scanned spectra allows significant improvement of on-line prediction accuracy for secondary soil properties using vis-NIR spectroscopy
    • ā€¦
    corecore