3,039 research outputs found

    On converse bounds for classical communication over quantum channels

    Full text link
    We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regimes. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently computable meta-converse on the amount of classical information unassisted codes can transmit over a single use of a quantum channel. As applications, we provide a finite resource analysis of classical communication over quantum erasure channels, including the second-order and moderate deviation asymptotics. Third, we explore the asymptotic analogue of our new meta-converse, the Υ\Upsilon-information of the channel. We show that its regularization is an upper bound on the classical capacity, which is generally tighter than the entanglement-assisted capacity and other known efficiently computable strong converse bounds. For covariant channels we show that the Υ\Upsilon-information is a strong converse bound.Comment: v3: published version; v2: 18 pages, presentation and results improve

    Semidefinite programming converse bounds for quantum communication

    Full text link
    We derive several efficiently computable converse bounds for quantum communication over quantum channels in both the one-shot and asymptotic regime. First, we derive one-shot semidefinite programming (SDP) converse bounds on the amount of quantum information that can be transmitted over a single use of a quantum channel, which improve the previous bound from [Tomamichel/Berta/Renes, Nat. Commun. 7, 2016]. As applications, we study quantum communication over depolarizing channels and amplitude damping channels with finite resources. Second, we find an SDP strong converse bound for the quantum capacity of an arbitrary quantum channel, which means the fidelity of any sequence of codes with a rate exceeding this bound will vanish exponentially fast as the number of channel uses increases. Furthermore, we prove that the SDP strong converse bound improves the partial transposition bound introduced by Holevo and Werner. Third, we prove that this SDP strong converse bound is equal to the so-called max-Rains information, which is an analog to the Rains information introduced in [Tomamichel/Wilde/Winter, IEEE Trans. Inf. Theory 63:715, 2017]. Our SDP strong converse bound is weaker than the Rains information, but it is efficiently computable for general quantum channels.Comment: 17 pages, extended version of arXiv:1601.06888. v3 is closed to the published version, IEEE Transactions on Information Theory, 201

    Converse bounds for private communication over quantum channels

    Get PDF
    This paper establishes several converse bounds on the private transmission capabilities of a quantum channel. The main conceptual development builds firmly on the notion of a private state, which is a powerful, uniquely quantum method for simplifying the tripartite picture of privacy involving local operations and public classical communication to a bipartite picture of quantum privacy involving local operations and classical communication. This approach has previously led to some of the strongest upper bounds on secret key rates, including the squashed entanglement and the relative entropy of entanglement. Here we use this approach along with a "privacy test" to establish a general meta-converse bound for private communication, which has a number of applications. The meta-converse allows for proving that any quantum channel's relative entropy of entanglement is a strong converse rate for private communication. For covariant channels, the meta-converse also leads to second-order expansions of relative entropy of entanglement bounds for private communication rates. For such channels, the bounds also apply to the private communication setting in which the sender and receiver are assisted by unlimited public classical communication, and as such, they are relevant for establishing various converse bounds for quantum key distribution protocols conducted over these channels. We find precise characterizations for several channels of interest and apply the methods to establish several converse bounds on the private transmission capabilities of all phase-insensitive bosonic channels.Comment: v3: 53 pages, 3 figures, final version accepted for publication in IEEE Transactions on Information Theor

    Second-Order Coding Rates for Channels with State

    Full text link
    We study the performance limits of state-dependent discrete memoryless channels with a discrete state available at both the encoder and the decoder. We establish the epsilon-capacity as well as necessary and sufficient conditions for the strong converse property for such channels when the sequence of channel states is not necessarily stationary, memoryless or ergodic. We then seek a finer characterization of these capacities in terms of second-order coding rates. The general results are supplemented by several examples including i.i.d. and Markov states and mixed channels

    Strong converse for the classical capacity of optical quantum communication channels

    Get PDF
    We establish the classical capacity of optical quantum channels as a sharp transition between two regimes---one which is an error-free regime for communication rates below the capacity, and the other in which the probability of correctly decoding a classical message converges exponentially fast to zero if the communication rate exceeds the classical capacity. This result is obtained by proving a strong converse theorem for the classical capacity of all phase-insensitive bosonic Gaussian channels, a well-established model of optical quantum communication channels, such as lossy optical fibers, amplifier and free-space communication. The theorem holds under a particular photon-number occupation constraint, which we describe in detail in the paper. Our result bolsters the understanding of the classical capacity of these channels and opens the path to applications, such as proving the security of noisy quantum storage models of cryptography with optical links.Comment: 15 pages, final version accepted into IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:1312.328

    A smooth entropy approach to quantum hypothesis testing and the classical capacity of quantum channels

    Get PDF
    We use the smooth entropy approach to treat the problems of binary quantum hypothesis testing and the transmission of classical information through a quantum channel. We provide lower and upper bounds on the optimal type II error of quantum hypothesis testing in terms of the smooth max-relative entropy of the two states representing the two hypotheses. Using then a relative entropy version of the Quantum Asymptotic Equipartition Property (QAEP), we can recover the strong converse rate of the i.i.d. hypothesis testing problem in the asymptotics. On the other hand, combining Stein's lemma with our bounds, we obtain a stronger (\ep-independent) version of the relative entropy-QAEP. Similarly, we provide bounds on the one-shot \ep-error classical capacity of a quantum channel in terms of a smooth max-relative entropy variant of its Holevo capacity. Using these bounds and the \ep-independent version of the relative entropy-QAEP, we can recover both the Holevo-Schumacher-Westmoreland theorem about the optimal direct rate of a memoryless quantum channel with product state encoding, as well as its strong converse counterpart.Comment: v4: Title changed, improved bounds, both direct and strong converse rates are covered, a new Discussion section added. 20 page

    Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices

    Get PDF
    A bipartite quantum interaction corresponds to the most general quantum interaction that can occur between two quantum systems in the presence of a bath. In this work, we determine bounds on the capacities of bipartite interactions for entanglement generation and secret key agreement between two quantum systems. Our upper bound on the entanglement generation capacity of a bipartite quantum interaction is given by a quantity called the bidirectional max-Rains information. Our upper bound on the secret-key-agreement capacity of a bipartite quantum interaction is given by a related quantity called the bidirectional max-relative entropy of entanglement. We also derive tighter upper bounds on the capacities of bipartite interactions obeying certain symmetries. Observing that reading of a memory device is a particular kind of bipartite quantum interaction, we leverage our bounds from the bidirectional setting to deliver bounds on the capacity of a task that we introduce, called private reading of a wiretap memory cell. Given a set of point-to-point quantum wiretap channels, the goal of private reading is for an encoder to form codewords from these channels, in order to establish secret key with a party who controls one input and one output of the channels, while a passive eavesdropper has access to one output of the channels. We derive both lower and upper bounds on the private reading capacities of a wiretap memory cell. We then extend these results to determine achievable rates for the generation of entanglement between two distant parties who have coherent access to a controlled point-to-point channel, which is a particular kind of bipartite interaction.Comment: v3: 34 pages, 3 figures, accepted for publication in Physical Review

    Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels

    Full text link
    We study non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of classical information that can be transmitted when a quantum channel is used a finite number of times and a fixed, non-vanishing average error is permissible. We consider the classical capacity of quantum channels that are image-additive, including all classical to quantum channels, as well as the product state capacity of arbitrary quantum channels. In both cases we show that the non-asymptotic fundamental limit admits a second-order approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the blocklength tends to infinity. The behavior is governed by a new channel parameter, called channel dispersion, for which we provide a geometrical interpretation.Comment: v2: main results significantly generalized and improved; v3: extended to image-additive channels, change of title, journal versio

    Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy

    Get PDF
    A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a "sandwiched" Renyi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results.Comment: 33 pages; v4: minor changes throughout, accepted for publication in Communications in Mathematical Physic

    Quantum reading capacity: General definition and bounds

    Get PDF
    Quantum reading refers to the task of reading out classical information stored in a read-only memory device. In any such protocol, the transmitter and receiver are in the same physical location, and the goal of such a protocol is to use these devices (modeled by independent quantum channels), coupled with a quantum strategy, to read out as much information as possible from a memory device, such as a CD or DVD. As a consequence of the physical setup of quantum reading, the most natural and general definition for quantum reading capacity should allow for an adaptive operation after each call to the channel, and this is how we define quantum reading capacity in this paper. We also establish several bounds on quantum reading capacity, and we introduce an environment-parametrized memory cell with associated environment states, delivering second-order and strong converse bounds for its quantum reading capacity. We calculate the quantum reading capacities for some exemplary memory cells, including a thermal memory cell, a qudit erasure memory cell, and a qudit depolarizing memory cell. We finally provide an explicit example to illustrate the advantage of using an adaptive strategy in the context of zero-error quantum reading capacity.Comment: v3: 17 pages, 2 figures, final version published in IEEE Transactions on Information Theor
    • …
    corecore