482 research outputs found

    Deterministic Digital Clustering of Wireless Ad Hoc Networks

    Full text link
    We consider deterministic distributed communication in wireless ad hoc networks of identical weak devices under the SINR model without predefined infrastructure. Most algorithmic results in this model rely on various additional features or capabilities, e.g., randomization, access to geographic coordinates, power control, carrier sensing with various precision of measurements, and/or interference cancellation. We study a pure scenario, when no such properties are available. As a general tool, we develop a deterministic distributed clustering algorithm. Our solution relies on a new type of combinatorial structures (selectors), which might be of independent interest. Using the clustering, we develop a deterministic distributed local broadcast algorithm accomplishing this task in O(ΔlogNlogN)O(\Delta \log^*N \log N) rounds, where Δ\Delta is the density of the network. To the best of our knowledge, this is the first solution in pure scenario which is only polylog(n)(n) away from the universal lower bound Ω(Δ)\Omega(\Delta), valid also for scenarios with randomization and other features. Therefore, none of these features substantially helps in performing the local broadcast task. Using clustering, we also build a deterministic global broadcast algorithm that terminates within O(D(Δ+logN)logN)O(D(\Delta + \log^* N) \log N) rounds, where DD is the diameter of the network. This result is complemented by a lower bound Ω(DΔ11/α)\Omega(D \Delta^{1-1/\alpha}), where α>2\alpha > 2 is the path-loss parameter of the environment. This lower bound shows that randomization or knowledge of own location substantially help (by a factor polynomial in Δ\Delta) in the global broadcast. Therefore, unlike in the case of local broadcast, some additional model features may help in global broadcast

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus für eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird

    Tactile sensing chips with POSFET array and integrated interface electronics

    Get PDF
    This work presents the advanced version of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. The new version of the tactile sensing chip presented here comprises of a 4 x 4 array of POSFET touch sensing devices and integrated interface electronics (i.e. multiplexers, high compliance current sinks and voltage output buffers). The chip also includes four temperature diodes for the measurement of contact temperature. Various components on the chip have been characterized systematically and the overall operation of the tactile sensing system has been evaluated. With new design the POSFET devices have improved performance (i.e. linear response in the dynamic contact forces range of 0.01–3N and sensitivity (without amplification) of 102.4 mV/N), which is more than twice the performance of their previous implementations. The integrated interface electronics result in reduced interconnections which otherwise would be needed to connect the POSFET array with off-chip interface electronic circuitry. This research paves the way for CMOS (Complementary Metal Oxide Semiconductor) implementation of full on-chip tactile sensing systems based on POSFETs

    Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks

    Full text link
    Development of many futuristic technologies, such as MANET, VANET, iThings, nano-devices, depend on efficient distributed communication protocols in multi-hop ad hoc networks. A vast majority of research in this area focus on design heuristic protocols, and analyze their performance by simulations on networks generated randomly or obtained in practical measurements of some (usually small-size) wireless networks. %some library. Moreover, they often assume access to truly random sources, which is often not reasonable in case of wireless devices. In this work we use a formal framework to study the problem of broadcasting and its time complexity in any two dimensional Euclidean wireless network with uniform transmission powers. For the analysis, we consider two popular models of ad hoc networks based on the Signal-to-Interference-and-Noise Ratio (SINR): one with opportunistic links, and the other with randomly disturbed SINR. In the former model, we show that one of our algorithms accomplishes broadcasting in O(Dlog2n)O(D\log^2 n) rounds, where nn is the number of nodes and DD is the diameter of the network. If nodes know a priori the granularity gg of the network, i.e., the inverse of the maximum transmission range over the minimum distance between any two stations, a modification of this algorithm accomplishes broadcasting in O(Dlogg)O(D\log g) rounds. Finally, we modify both algorithms to make them efficient in the latter model with randomly disturbed SINR, with only logarithmic growth of performance. Ours are the first provably efficient and well-scalable, under the two models, distributed deterministic solutions for the broadcast task.Comment: arXiv admin note: substantial text overlap with arXiv:1207.673

    Mining subjectively interesting patterns in rich data

    Get PDF

    Optimal Networks from Error Correcting Codes

    Full text link
    To address growth challenges facing large Data Centers and supercomputing clusters a new construction is presented for scalable, high throughput, low latency networks. The resulting networks require 1.5-5 times fewer switches, 2-6 times fewer cables, have 1.2-2 times lower latency and correspondingly lower congestion and packet losses than the best present or proposed networks providing the same number of ports at the same total bisection. These advantage ratios increase with network size. The key new ingredient is the exact equivalence discovered between the problem of maximizing network bisection for large classes of practically interesting Cayley graphs and the problem of maximizing codeword distance for linear error correcting codes. Resulting translation recipe converts existent optimal error correcting codes into optimal throughput networks.Comment: 14 pages, accepted at ANCS 2013 conferenc

    Resource Allocation in Heterogeneous Networks

    Get PDF

    HORNET: High-speed Onion Routing at the Network Layer

    Get PDF
    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as required, adding minimal processing overhead per additional anonymous channel. We discuss design and implementation details, as well as a performance and security evaluation.Comment: 14 pages, 5 figure
    corecore