232 research outputs found

    Testing Cluster Structure of Graphs

    Full text link
    We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε\varepsilon, a dd-bounded degree graph is defined to be (k,ϕ)(k, \phi)-clusterable, if it can be partitioned into no more than kk parts, such that the (inner) conductance of the induced subgraph on each part is at least ϕ\phi and the (outer) conductance of each part is at most cd,kε4ϕ2c_{d,k}\varepsilon^4\phi^2, where cd,kc_{d,k} depends only on d,kd,k. Our main result is a sublinear algorithm with the running time O~(npoly(ϕ,k,1/ε))\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon)) that takes as input a graph with maximum degree bounded by dd, parameters kk, ϕ\phi, ε\varepsilon, and with probability at least 23\frac23, accepts the graph if it is (k,ϕ)(k,\phi)-clusterable and rejects the graph if it is ε\varepsilon-far from (k,ϕ)(k, \phi^*)-clusterable for ϕ=cd,kϕ2ε4logn\phi^* = c'_{d,k}\frac{\phi^2 \varepsilon^4}{\log n}, where cd,kc'_{d,k} depends only on d,kd,k. By the lower bound of Ω(n)\Omega(\sqrt{n}) on the number of queries needed for testing graph expansion, which corresponds to k=1k=1 in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.Comment: Full version of STOC 201

    Helly-Type Theorems in Property Testing

    Full text link
    Helly's theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If SS is a set of nn points in RdR^d, we say that SS is (k,G)(k,G)-clusterable if it can be partitioned into kk clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object GG. In this paper, as an application of Helly's theorem, by taking a constant size sample from SS, we present a testing algorithm for (k,G)(k,G)-clustering, i.e., to distinguish between two cases: when SS is (k,G)(k,G)-clusterable, and when it is ϵ\epsilon-far from being (k,G)(k,G)-clusterable. A set SS is ϵ\epsilon-far (0<ϵ1)(0<\epsilon\leq1) from being (k,G)(k,G)-clusterable if at least ϵn\epsilon n points need to be removed from SS to make it (k,G)(k,G)-clusterable. We solve this problem for k=1k=1 and when GG is a symmetric convex object. For k>1k>1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability

    Six signed Petersen graphs, and their automorphisms

    Get PDF
    Up to switching isomorphism there are six ways to put signs on the edges of the Petersen graph. We prove this by computing switching invariants, especially frustration indices and frustration numbers, switching automorphism groups, chromatic numbers, and numbers of proper 1-colorations, thereby illustrating some of the ideas and methods of signed graph theory. We also calculate automorphism groups and clusterability indices, which are not invariant under switching. In the process we develop new properties of signed graphs, especially of their switching automorphism groups.Comment: 39 pp., 7 fi
    corecore