1,064 research outputs found

    Broadcasting Competitively Against Adaptive Adversary in Multi-Channel Radio Networks

    Get PDF

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Robust and Listening-Efficient Contention Resolution

    Full text link
    This paper shows how to achieve contention resolution on a shared communication channel using only a small number of channel accesses -- both for listening and sending -- and the resulting algorithm is resistant to adversarial noise. The shared channel operates over a sequence of synchronized time slots, and in any slot agents may attempt to broadcast a packet. An agent's broadcast succeeds if no other agent broadcasts during that slot. If two or more agents broadcast in the same slot, then the broadcasts collide and both broadcasts fail. An agent listening on the channel during a slot receives ternary feedback, learning whether that slot had silence, a successful broadcast, or a collision. Agents are (adversarially) injected into the system over time. The goal is to coordinate the agents so that each is able to successfully broadcast its packet. A contention-resolution protocol is measured both in terms of its throughput and the number of slots during which an agent broadcasts or listens. Most prior work assumes that listening is free and only tries to minimize the number of broadcasts. This paper answers two foundational questions. First, is constant throughput achievable when using polylogarithmic channel accesses per agent, both for listening and broadcasting? Second, is constant throughput still achievable when an adversary jams some slots by broadcasting noise in them? Specifically, for NN packets arriving over time and JJ jammed slots, we give an algorithm that with high probability in N+JN+J guarantees Θ(1)\Theta(1) throughput and achieves on average O(polylog(N+J))O(\texttt{polylog}(N+J)) channel accesses against an adaptive adversary. We also have per-agent high-probability guarantees on the number of channel accesses -- either O(polylog(N+J))O(\texttt{polylog}(N+J)) or O((J+1)polylog(N))O((J+1) \texttt{polylog}(N)), depending on how quickly the adversary can react to what is being broadcast
    • …
    corecore