823,712 research outputs found

    2-Resonant fullerenes

    Full text link
    A fullerene graph FF is a planar cubic graph with exactly 12 pentagonal faces and other hexagonal faces. A set H\mathcal{H} of disjoint hexagons of FF is called a resonant pattern (or sextet pattern) if FF has a perfect matching MM such that every hexagon in H\mathcal{H} is MM-alternating. FF is said to be kk-resonant if any ii (0≤i≤k0\leq i\leq k) disjoint hexagons of FF form a resonant pattern. It was known that each fullerene graph is 1-resonant and all 3-resonant fullerenes are only the nine graphs. In this paper, we show that the fullerene graphs which do not contain the subgraph LL or RR as illustrated in Fig. 1 are 2-resonant except for the specific eleven graphs. This result implies that each IPR fullerene is 2-resonant.Comment: 34 pages, 25 figure

    Distance Magic Graphs - a Survey

    Full text link
    Let <i>G = (V;E)</i> be a graph of order n. A bijection <i>f : V → {1, 2,...,n} </i>is called <i>a distance magic labeling </i>of G if there exists a positive integer k such that <i>Σ f(u) = k </i> for all <i>v ε V</i>, where <i>N(v)</i> is the open neighborhood of v. The constant k is called the magic constant of the labeling f. Any graph which admits <i>a distance magic labeling </i>is called a distance magic graph. In this paper we present a survey of existing results on distance magic graphs along with our recent results,open problems and conjectures.DOI : http://dx.doi.org/10.22342/jims.0.0.15.11-2

    Densities of Minor-Closed Graph Families

    Full text link
    We define the limiting density of a minor-closed family of simple graphs F to be the smallest number k such that every n-vertex graph in F has at most kn(1+o(1)) edges, and we investigate the set of numbers that can be limiting densities. This set of numbers is countable, well-ordered, and closed; its order type is at least {\omega}^{\omega}. It is the closure of the set of densities of density-minimal graphs, graphs for which no minor has a greater ratio of edges to vertices. By analyzing density-minimal graphs of low densities, we find all limiting densities up to the first two cluster points of the set of limiting densities, 1 and 3/2. For multigraphs, the only possible limiting densities are the integers and the superparticular ratios i/(i+1).Comment: 19 pages, 4 figure
    • …
    corecore