116,204 research outputs found

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Via a connection to composite hypothesis testing, a new converse that tightens previously known converses for Slepian-Wolf source coding is established. Asymptotic results include a third-order characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order-optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third-order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders.Comment: 42 pages, 10 figures. Part of this work was presented at ISIT'1

    Partition Information and its Transmission over Boolean Multi-Access Channels

    Full text link
    In this paper, we propose a novel partition reservation system to study the partition information and its transmission over a noise-free Boolean multi-access channel. The objective of transmission is not message restoration, but to partition active users into distinct groups so that they can, subsequently, transmit their messages without collision. We first calculate (by mutual information) the amount of information needed for the partitioning without channel effects, and then propose two different coding schemes to obtain achievable transmission rates over the channel. The first one is the brute force method, where the codebook design is based on centralized source coding; the second method uses random coding where the codebook is generated randomly and optimal Bayesian decoding is employed to reconstruct the partition. Both methods shed light on the internal structure of the partition problem. A novel hypergraph formulation is proposed for the random coding scheme, which intuitively describes the information in terms of a strong coloring of a hypergraph induced by a sequence of channel operations and interactions between active users. An extended Fibonacci structure is found for a simple, but non-trivial, case with two active users. A comparison between these methods and group testing is conducted to demonstrate the uniqueness of our problem.Comment: Submitted to IEEE Transactions on Information Theory, major revisio

    Sign-Compute-Resolve for Tree Splitting Random Access

    Get PDF
    We present a framework for random access that is based on three elements: physical-layer network coding (PLNC), signature codes and tree splitting. In presence of a collision, physical-layer network coding enables the receiver to decode, i.e. compute, the sum of the packets that were transmitted by the individual users. For each user, the packet consists of the user's signature, as well as the data that the user wants to communicate. As long as no more than K users collide, their identities can be recovered from the sum of their signatures. This framework for creating and transmitting packets can be used as a fundamental building block in random access algorithms, since it helps to deal efficiently with the uncertainty of the set of contending terminals. In this paper we show how to apply the framework in conjunction with a tree-splitting algorithm, which is required to deal with the case that more than K users collide. We demonstrate that our approach achieves throughput that tends to 1 rapidly as K increases. We also present results on net data-rate of the system, showing the impact of the overheads of the constituent elements of the proposed protocol. We compare the performance of our scheme with an upper bound that is obtained under the assumption that the active users are a priori known. Also, we consider an upper bound on the net data-rate for any PLNC based strategy in which one linear equation per slot is decoded. We show that already at modest packet lengths, the net data-rate of our scheme becomes close to the second upper bound, i.e. the overhead of the contention resolution algorithm and the signature codes vanishes.Comment: This is an extended version of arXiv:1409.6902. Accepted for publication in the IEEE Transactions on Information Theor

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Nash Region of the Linear Deterministic Interference Channel with Noisy Output Feedback

    Get PDF
    In this paper, the η\eta-Nash equilibrium (η\eta-NE) region of the two-user linear deterministic interference channel (IC) with noisy channel-output feedback is characterized for all η>0\eta > 0. The η\eta-NE region, a subset of the capacity region, contains the set of all achievable information rate pairs that are stable in the sense of an η\eta-NE. More specifically, given an η\eta-NE coding scheme, there does not exist an alternative coding scheme for either transmitter-receiver pair that increases the individual rate by more than η\eta bits per channel use. Existing results such as the η\eta-NE region of the linear deterministic IC without feedback and with perfect output feedback are obtained as particular cases of the result presented in this paper.Comment: 5 pages, 2 figures, to appear in ISIT 201

    Polar codes for the two-user multiple-access channel

    Full text link
    Arikan's polar coding method is extended to two-user multiple-access channels. It is shown that if the two users of the channel use the Arikan construction, the resulting channels will polarize to one of five possible extremals, on each of which uncoded transmission is optimal. The sum rate achieved by this coding technique is the one that correponds to uniform input distributions. The encoding and decoding complexities and the error performance of these codes are as in the single-user case: O(nlogn)O(n\log n) for encoding and decoding, and o(exp(n1/2ϵ))o(\exp(-n^{1/2-\epsilon})) for block error probability, where nn is the block length.Comment: 12 pages. Submitted to the IEEE Transactions on Information Theor
    corecore