9 research outputs found

    Online Data-driven Control Against False Data Injection Attacks

    Full text link
    The rise of cyber-security concerns has brought significant attention to the analysis and design of cyber-physical systems (CPSs). Among the various types of cyberattacks, denial-of-service (DoS) attacks and false data injection (FDI) attacks can be easily launched and have become prominent threats. While resilient control against DoS attacks has received substantial research efforts, countermeasures developed against FDI attacks have been relatively limited, particularly when explicit system models are not available. To address this gap, the present paper focuses on the design of data-driven controllers for unknown linear systems subject to FDI attacks on the actuators, utilizing input-state data. To this end, a general FDI attack model is presented, which imposes minimally constraints on the switching frequency of attack channels and the magnitude of attack matrices. A dynamic state feedback control law is designed based on offline and online input-state data, which adapts to the channel switching of FDI attacks. This is achieved by solving two data-based semi-definite programs (SDPs) on-the-fly to yield a tight approximation of the set of subsystems consistent with both offline clean data and online attack-corrupted data. It is shown that under mild conditions on the attack, the proposed SDPs are recursively feasible and controller achieves exponential stability. Numerical examples showcase its effectiveness in mitigating the impact of FDI attacks

    Learning Robust Data-based LQG Controllers from Noisy Data

    Full text link
    This paper addresses the joint state estimation and control problems for unknown linear time-invariant systems subject to both process and measurement noise. The aim is to redesign the linear quadratic Gaussian (LQG) controller based solely on data. The LQG controller comprises a linear quadratic regulator (LQR) and a steady-state Kalman observer; while the data-based LQR design problem has been previously studied, constructing the Kalman gain and the LQG controller from noisy data presents a novel challenge. In this work, a data-based formulation for computing the steady-state Kalman gain is proposed based on semi-definite programming (SDP) using some noise-free input-state-output data. Additionally, a data-based LQG controller is developed, which is shown to be equivalent to the model-based LQG controller. For cases where offline data are corrupted by noise, a robust data-based observer gain is constructed by tackling a relaxed SDP. The proposed controllers are proven to achieve robust global exponential stability (RGES) for state estimation and input-to-state practical stability (ISpS) under standard conditions. Finally, numerical tests are conducted to validate the proposed controllers' correctness and effectiveness

    ドライバ個性を反映したAdaptive Cruise Controlに関する研究

    Get PDF
    自動運転機能の一つに人間機械協調型の制御であるAdaptive Cruise Control(ACC)がある.このACC搭載車両を複数台繋げたプラトゥーン走行という技術がある.自動運転にすることで安心や快適さを感じるドライバがいる一方で,自身の想定する操作と自動運転の操作のずれから自動運転を快適に思わないドライバ もいる.この状況は 安全性がドライバの快適性とは別の評価軸にあることを意味するACCとドライバで評価軸が別軸ならば,その両立も可能なはずである.これに対して本修士研究では「ドライバがACCを気にせずに操作介入を行ってもACC機能が達成されるのがドライバ個性の反映(快適性)と安全性の両立なのではないか」を研究動機とするものである.修士論文の目的はドライバ個性を反映したACCの構築指針の設計である.目的を達成するための1つ目の研究課題はACCの制御性能に対するドライバ個性の評価方法,つまり,ドライバモデルの設計方法である.二つ目の研究課題は ACCが複数台繋がったプラトゥーン走行時におけるドライバ個性と安全性の評価方法である.1つ目の課題であるドライバモデルの設計には,主双対勾配アルゴリズムを用いる.ドライバ個性を制御に反映させる為, Human-In-The-Loop System(HITLS)の枠組みでACCシステムを設計する.HITLSは制御器,人の意思決定,制御対象で構成され,人は制御器の出力の範囲内で意思決定を行う.この意思決定を主双対勾配アルゴリズムでモデル化する.2つ目の課題であるプラトゥーンの安全性評価には完全自動運転の時と同様にString Stabilityを用いるString Stabilityの条件式を完全自動運転のプラトゥーン走行車群が満たす時,先行車両の車両挙動の遅れは後続車に伝播されず,安全な走行が達成される.このString Stabilityの条件式に 1つ目の課題のドライバモデルを反映させることで,ドライバ個性を考慮したプラトゥーン走行の安全性を評価できるようにする.修士研究の1つ目の成果はACC単体におけるドライバ個性が安全に反映できているかの評価方法の提案である.作成したドライバモデルは伝達関数表現で表され,フィードバック項(ドライバのACCを気にする操作介入)とフィードフォワード項(ドライバのACCを気にしない操作介入)から構成される前者はACCシステムに対しての不確かさ,後者はACCシステムに対する外乱として現れる.つまり,ACCシステムに対するドライバモデルの影響は「外乱と不確かさがあるフィードバックシステムのロバスト安定性」で評価できることを意味する本論文はスモールゲイン定理に基づくロバスト安定性を利用することで,ドライバ個性を反映した ACCシステムの安全性を評価することができた.ドライバモデルのフィードフォワード項がACCシステムの過渡特性にドライバ個性として影響を与えつつも,フィードバックループがロバスト安定ならば安全性と個性の両立が達成されることが明らかになった.修士研究の2つ目の成果はプラトゥーンにおけるドライバ個性が安全に反映されているかの評価方法の提案である.String Stabilityの条件式にはシステムモデルが必要である.修士研究において作成したドライバモデルは伝達関数表現で表せる為,ドライバ個性が反映されたACC群のString Stabilityの条件式を求めることができた数値実験ではACCシステム5台からなるプラトゥーンにおいて先頭車両が急ブレーキをかけた際,ドライバ個性により安全な車間距離を保てる場合と保てない場合を検証した結果として,完全自動運転の時と同様にString Stabilityを満たす範囲内であれば,ドライバ がACCを気にせずに操作介入を行ってもACC機能が達成される,つまり個性と安全性が両立することがわかった.電気通信大学202

    Risk identification and assessment of human-machine conflict

    Get PDF
    The process industries are fully embracing digitalization and artificial intelligence (AI). Industry 4.0 has also transformed the production structures in the process industries to increase productivity and profitability; however, this has also led to emerging risks. The rapid growth and transformation have created gaps and challenges in various aspects, for example, information technology (IT) vs. operation technology (OT), human vs. AI, and traditional statistical analysis vs. machine learning. A notable issue is the apparent differences in decision-making between humans and machines, primarily when they work together. Contradictory observations, states, goals, and actions may lead to conflict between these two decision-makers. Such conflicts have triggered numerous catastrophes in recent years. Moreover, conflicts may become even more elusive and confusing under external forces, e.g., cyberattacks. Therefore, this thesis focuses on human-machine conflict. Five research tasks are conducted to explore the risk of human-machine conflict. More specifically, the thesis presents a systematic literature review on the impact of digitalization on process safety, highlights the myths and misconceptions of data modeling on process safety analysis, and attempts to clarify associated concepts in the area of human-machine conflict. In addition, the thesis summarizes the causes of conflicts and generalizes the mathematical expressions of the causes. It illustrates the evolutional process of conflicts, proposes the measurement of conflicts, develops the risk assessment model of conflicts, and explores the condition of conflict convergence, divergence, and resolution. The thesis also iii demonstrates the proposed methodology and risk models in process systems, for example, the two-phase separator and the Continuous Stirred Tank Reactor (CSTR). It verifies the conflict between manual and automated control (e.g., proportional-integral-derivative control (PID) and model predictive control (MPC)). This thesis proves that conflict is another more profound and implicit phenomenon that raises risks more rapidly and severely. Conflicts are highly associated with faults and failures. Various factors can trigger human-machine conflict, including sensor faults, cyberattacks, human errors, and sabotage. This thesis attempts to provide the readers with a clear picture of the human-machine conflict, alerts the industry and academia about the risk of human-machine conflict, and emphasizes human-centered design

    Stock Management Optimization In Hospital Pharmacy

    Get PDF
    La adquisición y el almacenamiento de aquellos medicamentos necesarios para cubrir las actividades clínicas incluidas en la cartera de servicios de un hospital son dos de las principales tareas de gestión que realiza un Servicio de Farmacia Hospitalaria. Debido a las restricciones de espacio y a la limitación de recursos económicos existentes en la mayoría de centros, hoy en día se considera prioritario que la gestión del stock de estos productos se dirija por estrategias de compra que permitan el almacenaje de la mínima cantidad de cada producto para asegurar, con cierto grado de certeza, que se podrá responder a su demanda en la clínica en un periodo determinado. La gestión de stocks es, por tanto, un problema complejo que requiere establecer un equilibrio entre criterios diferentes y contrapuestos, y cuya complejidad se ve incrementada por factores externos como retrasos en las entregas o la variabilidad de la demanda. Es importante establecer una política de stocks eficiente en la utilización de recursos en términos humanos y económicos, que determine qué pedir, cuánto y con qué frecuencia, que tenga en cuenta todas las limitaciones con las que desarrollan su labor los Servicios de Farmacia de hospital. El presente proyecto de investigación propone el desarrollo y aplicación de técnicas avanzadas de estimación y control orientadas a la problemática particular existente en la gestión del stock de los Servicios de Farmacia de hospitales. En definitiva, el objetivo final del estudio es la implantación de nuevos sistemas que mejoren la eficiencia de la gestión en los Servicios de Farmacia Hospitalaria. METODOLOGÍA Las dificultades que presenta la gestión de stocks son fácilmente modelables en el marco de las técnicas de control predictivo basado en modelo (Model Predictive Control o MPC). Estas técnicas explotan directamente datos para optimizar las acciones futuras, en este caso, los niveles de stock, a lo largo de un horizonte de tiempo dado. En primer lugar, a partir de la información almacenada en las bases de datos de hospitales y de los históricos disponibles sobre medicamentos (stock inventariado, pedidos, consumos, roturas de stock, etc.), se han establecido las correlaciones correspondientes con el consumo esperado de medicamentos. Se han estudiado qué técnicas de estimación son las más apropiadas para la problemática de los Servicios de Farmacia. A continuación esta mejora en la estimación de la demanda se ha utilizado para hacer previsiones y se aplica al estudio de nuevas políticas de gestión en Farmacia Hospitalaria. Por último, se diseña un sistema de soporte a la decisión del farmacéutico para la gestión del stock que ha sido validado en un entorno real con 2 pruebas piloto. RESULTADOS La aplicación de estas técnicas en este campo ha resultado ser prometedora y fácil de implementar. Ha demostrado optimizar la gestión a todos los niveles garantizando el abastecimiento y proporcionando importantes beneficios como la disminución del volumen inventariado con la consiguiente liberación de espacio y reducción del dinero inmovilizado, y la disminución de la carga de trabajo mediante la reducción del número de pedidos. CONCLUSIONES En definitiva, este método podría considerarse un soporte de gran valor y una herramienta perfectamente aplicable a un Servicio de Farmacia en el que la gestión suele estar rodeada en el día a día de un alto grado de incertidumbre

    Predictive Control of Cyber-Physical Systems

    Full text link
    [EN] Predictive control encompasses a family of controllers that continually replan the system inputs during a certain time horizon to optimize their expected evolution according to a given criterion. This methodology has among its current challenges the adaptation to the paradigm of the so-called cyber-physical systems, which are composed of computers, sensors, actuators and physical entities of various kinds, including robots and even human beings who exchange information to control physical processes. This tutorial introduces the core concepts for the application of predictive control to cyber-physical systems by reviewing a series of examples that exploit the versatility of this design framework so as to solve the challenges presented by 21st century applications.[ES] El control predictivo engloba a una familia de controladores que replanifican continuamente las entradas del sistema durante un cierto horizonte temporal con el fin de optimizar su evolución esperada conforme a un criterio dado. Esta metodología tiene entre sus retos actuales la adaptación al paradigma de los llamados sistemas ciberfísicos, que están compuestos por computadoras, sensores, actuadores y entidades físicas de diversa índole entre las que se incluyen robots e incluso seres humanos que intercambian información con el objetivo de controlar procesos físicos. Este tutorial presenta los conceptos centrales de la integración del control predictivo en este tipo de sistemas mediante el repaso a una serie de ejemplos que explotan la versatilidad de este marco de diseño de controladores para resolver los desafíos que presentan las aplicaciones del siglo XXI.Este trabajo ha sido financiado por el European Research Council (ERC) en el marco del programa de investigación e innovación Horizonte 2020 de la Unión Europea [OCONTSOLAR, ref. 789051], por el Ministerio de Economía con el proyecto C3PO [ref. DPI2017-86918-R], por el Ministerio de Ciencia, Innovación y Universidades en el marco del programa de Formación de Profesorado Universitario (FPU) [FPU17/02653 y FPU18/04476] y por la Consejería Transformación Económica, Industria, Conocimiento y Universidades en el marco del programa de Ayudas a los agentes públicos del Sistema Andaluz del Conocimiento, para la realización de proyectos de I+D+i (PAIDI 2020) [Ampliación Aquacollect, ref. P18-HO-4713].Maestre, JM.; Chanfreut, P.; García Martín, J.; Masero, E.; Inoue, M.; Camacho, EF. (2021). Control predictivo de sistemas ciberfísicos. Revista Iberoamericana de Automática e Informática industrial. 19(1):1-12. https://doi.org/10.4995/riai.2021.15771OJS112191Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. Wireless Sensor Networks: A Survey. Computer Networks 38 (4), 393-422.Angulo, A., Nachtmann, H., Waller, M. A., 2004. Supply Chain Information Sharing in a Vendor Managed Inventory Partnership. Journal of Business Logistics 25 (1), 101-120.Badal, F. R., Das, P., Sarker, S. K., Das, S. K., 2019. A Survey on Control Issues in Renewable Energy Integration and Microgrid. Protection and Control of Modern Power Systems 4 (1), 1-27.Bordons, C., García Torres, F., Valverde, L., 2015. Gestión óptima de la energía en microrredes con generación renovable. Revista Iberoamericana de Automática e Informática Industrial 12 (2), 117-132.Camacho, E. F., Berenguel, M., 2012. Control of Solar Energy Systems. IFAC Proceedings Volumes 45 (15), 848-855.Camacho, E. F., Berenguel, M., Rubio, F. R., 1997. Advanced Control of Solar Plants. Springer Berlin.Camacho, E. F., Bordons, C., 1999. Model Predictive Control. Springer, Berlin Heidelberg.Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., PortilloGuisado, R. C., Prats, M. M., Le'on, J. I., Moreno-Alfonso, N., 2006. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics 53 (4), 1002-1016.Castilla, M., Álvarez, J. D., Berenguel, M., Pérez, M., Rodríguez, F., Guzmán, J. L., 2010. Técnicas de control del confort en edificios. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 5-24.Chanfreut, P., Maestre, J. M., Camacho, E. F., 2021. A Survey on Clustering Methods for Distributed and Networked Control Systems. Annual Reviews in Control.DOI: https://doi.org/10.1016/j.arcontrol.2021.08.002Conde, G., Quijano, N., Ocampo-Martínez, C., 2021. Modeling and Control in Open-Channel Irrigation Systems: A Review. Annual Reviews in Control.DOI: https://doi.org/10.1016/j.arcontrol.2021.01.003Dey, N., Ashour, A. S., Shi, F., Fong, S. J., Tavares, J. M., 2018. Medical Cyber-Physical Systems: A Survey. Journal of medical systems 42 (4), 1-13.Fele, F., Maestre, J. M., Camacho, E. F., 2017. Coalitional Control: Cooperative Game Theory and Control. IEEE Control Systems Magazine 37 (1), 53-69.Fele, F., Maestre, J. M., Hashemy, M., Mu˜noz de la Pe˜na, D., Camacho, E. F., 2014. Coalitional Model Predictive Control of an Irrigation Canal. Journal of Process Control 24 (4), 314-325.DOI: https://doi.org/10.1016/j.jprocont.2014.02.005Fernández García, I., Chanfreut, P., Jurado, I., Maestre, J. M., 2021. A Data-Based Model Predictive Decision Support System for Inventory Management in Hospitals. IEEE Journal of Biomedical and Health Informatics 25 (6), 2227-2236.DOI: https://doi.org/10.1109/JBHI.2020.3039692Frejo, J. R. D., Camacho, E. F., 2020. Centralized and Distributed Model Predictive Control for the Maximization of the Thermal Power of Solar Parabolic-Trough Plants. Solar Energy 204, 190-199.Gil, J., Roca, L., Berenguel, M., 2020. Modelado y control automático en destilación por membranas solar: fundamentos y propuestas para su desarrollo tecnológico. Revista Iberoamericana de Automática e Informática industrial 17 (4), 329-343.Guzmán, J., Acién, F., Berenguel, M., 2020. Modelado y control de la producción de microalgas en fotobiorreactores industriales. Revista Iberoamericana de Automática e Informática industrial 18 (1), 1-18.Hara, K., Inoue, M., Maestre, J. M., 2020. Data-Driven Human Modeling: Quantifying Personal Tendency Toward Laziness. IEEE Control Systems Letters 5 (4), 1219-1224.DOI: https://doi.org/10.1109/LCSYS.2020.3023337Hatanaka, T., Chopra, N., Fujita, M., 2015. Passivity-Based Bilateral Human-Swarm-Interactions for Cooperative Robotic Networks and Human Passivity Analysis. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp. 1033-1039.DOI: https://doi.org/10.1109/CDC.2015.7402008Inoue, M., Gupta, V., 2019. "Weak" Control for Human-in-the-Loop Systems. IEEE Control Systems Letters 3 (2), 440-445.Jain, A., Chakrabortty, A., Biyik, E., 2018. Distributed Wide-Area Control of Power System Oscillations under Communication and Actuation Constraints. Control Engineering Practice 74, 132-143.Jianjun, S., Xu, W., Jizhen, G., Yangzhou, C., 2013. The Analysis of Traffic Control Cyber-Physical Systems. Procedia-Social and Behavioral Sciences 96, 2487-2496.Jurado, I., Maestre, J. M., Velarde, P., Ocampo-Martínez, C., Fernández, I., Tejera, B. I., del Prado, J. R., 2016. Stock Management in Hospital Pharmacy Using Chance-Constrained Model Predictive Control. Computers in Biology and Medicine 72, 248-255.Khamis, A., Hussein, A., Elmogy, A., 2015. Multi-robot Task Allocation: A Review of the State-of-the-art. In: Cooperative Robots and Sensor Networks. Springer, pp. 31-51.Koubâa, A., Khelil, A., 2014. Cooperative Robots and Sensor Networks. Springer.La Bella, A., Klaus, P., Ferrari-Trecate, G., Scattolini, R., 2021. Supervised Model Predictive Control of Large-Scale Electricity Networks via Clustering Methods. Optimal Control Applications and Methods.Lee, J., Bagheri, B., Kao, H.-A., 2015. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manufacturing letters 3, 18-23.Liang, X., 2016. Emerging Power Quality Challenges due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications 53 (2), 855-866.Maestre, J. M., Fernández, M. I., Jurado, I., 2018. An application of economic model predictive control to inventory management in hospitals. Control Engineering Practice 71, 120-128.Maestre, J. M., Negenborn, R. R. (Eds.), 2014. Distributed Model Predictive Control Made Easy. Vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering. Springer.Maestre, J. M., van Overloop, P. J., Hashemy, M., Sadowska, A., Camacho, E. F., 2014. Human in the Loop Model Predictive Control: An Irrigation Canal Case Study. In: 53rd IEEE Conference on Decision and Control. IEEE, pp. 4881-4886.DOI: https://doi.org/10.1109/CDC.2014.7040151Maestre, J. M., Zafra Cabeza, A., Fernández Garcáa, M. I., Isla Tejera, B., del Prado, J. R., Camacho, E. F., 2013. Control predictivo aplicado a la gestión de stocks en farmacia hospitalaria: un enfoque orientado a la minimización del riesgo. Revista Iberoamericana de Automática e Informática industrial 10 (2), 149-158.DOI: https://doi.org/10.1016/j.riai.2013.03.005Martín, J. G., Frejo, J. R. D., García, R. A., Camacho, E. F., 2021a. Multi-Robot Task Allocation Problem with Multiple Non-Linear Criteria Using Branch and Bound and Genetic Algorithms. Intelligent Service Robotics.Martín, J. G., García, R. A., Camacho, E. F., 2021b. Event-MILP-Based Task Allocation for Heterogeneous Robotic Sensor Network for Thermosolar Plants. Journal of Intelligent & Robotic Systems 102 (1), 1.DOI: https://doi.org/10.1007/s10846-021-01346-wMartín, J. G., Maestre, J. M., Camacho, E. F., 2021c. Spatial Irradiance Estimation in a Thermosolar Power Plant by a Mobile Robot Sensor Network. Solar Energy 220, 735-744.DOI: https://doi.org/10.1016/j.solener.2021.03.038Martínez, O. E. B., 2004. Evolución de una idea: de la cibernética a la cibercultura la filosofía griega y la cibernética. Cuadernos de Filosofía Latinoamericana 25 (91), 1.Masero, E., Frejo, J. R. D., Maestre, J. M., Camacho, E. F., 2020. A Light Clustering Model Predictive Control Approach to Maximize Thermal Power in Solar Parabolic-Trough Plants. Solar Energy 214, 531-541.Masero, E., Maestre, J. M., Camacho, E. F., 2022. Market-based clustering of model predictive controllers for maximizing collected energy by parabolictrough solar collector fields. Applied Energy 306, 117936.Nagahara, M., Quevedo, D. E., Nesi'c, D., 2015. Maximum Hands-Off Control: A Paradigm of Control Effort Minimization. IEEE Transactions on Automatic Control 61 (3), 735-747.DOI: https://doi.org/10.1109/TAC.2015.2452831Negenborn, R. R., Maestre, J. M., 2014. Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities. IEEE Control Systems Magazine 34 (4), 87-97.Negenborn, R. R., van Overloop, P. J., Keviczky, T., De Schutter, B., 2009. Distributed Model Predictive Control of Irrigation Canals. Network and Heterogeneus Media 4 (2), 359-380.Priess, M. C., Conway, R., Choi, J., Popovich, J. M., Radcliffe, C., 2014. Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis. IEEE Transactions on Control Systems Technology 23 (2), 770-777.Protte, M., Fahr, R., Quevedo, D. E., 2020. Behavioral Economics for Humanin-the-Loop Control Systems Design: Overconfidence and the Hot Hand Fallacy. IEEE Control Systems Magazine 40 (6), 57-76.DOI: https://doi.org/10.1109/MCS.2020.3019723Qin, S. J., Badgwell, T. A., 2003. A Survey of Industrial Model Predictive Control Technology. Control Engineering Practice 11 (7), 733-764.DOI: https://doi.org/10.1016/S0967-0661(02)00186-7Ramadan, A., Choi, J., Radcliffe, C. J., 2016. Inferring Human Subject Motor Control Intent Using Inverse MPC. In: 2016 American Control Conference (ACC). IEEE, pp. 5791-5796.Ramadan, A., Choi, J., Radcliffe, C. J., Popovich, J. M., Reeves, N. P., 2018. Inferring Control Intent During Seated Balance Using Inverse Model Predictive Control. IEEE Robotics and Automation Letters 4 (2), 224-230.Ramírez-Arias, A., Rodríguez, F., Guzmán, J. L., Berenguel, M., 2012. Multiobjective Hierarchical Control Architecture for Greenhouse Crop Growth. Automatica 48 (3), 490-498.Sadowska, A., van Overloop, P. J., Maestre, J. M., De Schutter, B., 2015. Human-in-the-Loop Control of an Irrigation Canal Using Time Instant Optimization Model Predictive Control. In: Proceedings of the 2015 European Control Conference (ECC). IEEE, pp. 3274-3279.DOI: https://doi.org/10.1109/ECC.2015.7331039Sánchez, A. J., Gallego, A. J., Escaño, J. M., Camacho, E. F., 2018. Temperature Homogenization of a Solar Trough Field for Performance Improvement. Solar Energy 165, 1-9.Schmidt, M., Åhlund, C., 2018. Smart Buildings as Cyber-Physical Systems: Data-Driven Predictive Control Strategies for Energy Efficiency. Renewable and Sustainable Energy Reviews 90, 742-756.Shibasaki, S., Inoue, M., Arahata, M., Gupta, V., 2020. Weak Control Approach to Consumer-Preferred Energy Management. IFAC-PapersOnLine 53 (2), 17083-17088.Sun, C., Puig, V., Cembrano, G., 2020. Real-Time Control of Urban Water Cycle under Cyber-Physical Systems Framework. Water 12 (2), 406.Van Overloop, P. J., Maestre, J. M., Sadowska, A. D., Camacho, E. F., De Schutter, B., 2015. Human-in-the-Loop Model Predictive Control of an Irrigation Canal [Applications of Control]. IEEE Control Systems Magazine 35 (4),19-29.DOI: https://doi.org/10.1109/MCS.2015.2427040Wang, G., Gunasekaran, A., Ngai, E. W., Papadopoulos, T., 2016. Big Data Analytics in Logistics and Supply Chain Management: Certain Investigations for Research and Applications. International Journal of Production Economics 176, 98-110.Wiener, N., 1948. Cybernetics or Control and Communication in the Animal and the Machine.Wolf, W., 2009. Cyber-physical systems. IEEE Annals of the History of Computing 42 (03), 88-89.Wu, F.-J., Kao, Y.-F., Tseng, Y.-C., 2011. From Wireless Sensor Networks Towards Cyber Physical Systems. Pervasive and Mobile computing 7 (4), 397-413.Zafra-Cabeza, A., Maestre, J. M., Ridao, M. A., Camacho, E. F., Sánchez, L.,2011. A Hierarchical Distributed Model Predictive Control Approach in Irrigation Canals: A Risk Mitigation Perspective. Journal of Process Control 21 (5), 787-799.DOI: https://doi.org/10.1016/j.jprocont.2010.12.012Zhong, R. Y., Newman, S. T., Huang, G. Q., Lan, S., 2016. Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives. Computers & Industrial Engineering 101, 572-591

    “Weak” Control for Human-in-the-Loop Systems

    No full text
    corecore