5 research outputs found

    Mobile Robot Navigation in Indoor Environments: Geometric, Topological, and Semantic Navigation

    Get PDF
    The objective of the chapter is to show current trends in robot navigation systems related to indoor environments. Navigation systems depend on the level of abstraction of the environment representation. The three main techniques for representing the environment will be described: geometric, topological, and semantic. The geometric representation of the environment is closer to the sensor and actuator world and it is the best one to perform local navigation. Topological representation of the environment uses graphs to model the environment and it is used in large navigation tasks. The semantic representation is the most abstract representation model and adds concepts such as utilities or meanings of the environment elements in the map representation. In addition, regardless of the representation used for navigation, perception plays a significant role in terms of understanding and moving through the environment

    The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications

    Choreographing the extended agent : performance graphics for dance theater

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (v. 2, leaves 448-458).The marriage of dance and interactive image has been a persistent dream over the past decades, but reality has fallen far short of potential for both technical and conceptual reasons. This thesis proposes a new approach to the problem and lays out the theoretical, technical and aesthetic framework for the innovative art form of digitally augmented human movement. I will use as example works a series of installations, digital projections and compositions each of which contains a choreographic component - either through collaboration with a choreographer directly or by the creation of artworks that automatically organize and understand purely virtual movement. These works lead up to two unprecedented collaborations with two of the greatest choreographers working today; new pieces that combine dance and interactive projected light using real-time motion capture live on stage. The existing field of"dance technology" is one with many problems. This is a domain with many practitioners, few techniques and almost no theory; a field that is generating "experimental" productions with every passing week, has literally hundreds of citable pieces and no canonical works; a field that is oddly disconnected from modern dance's history, pulled between the practical realities of the body and those of computer art, and has no influence on the prevailing digital art paradigms that it consumes.(cont.) This thesis will seek to address each of these problems: by providing techniques and a basis for "practical theory"; by building artworks with resources and people that have never previously been brought together, in theaters and in front of audiences previously inaccessible to the field; and by proving through demonstration that a profitable and important dialogue between digital art and the pioneers of modern dance can in fact occur. The methodological perspective of this thesis is that of biologically inspired, agent-based artificial intelligence, taken to a high degree of technical depth. The representations, algorithms and techniques behind such agent architectures are extended and pushed into new territory for both interactive art and artificial intelligence. In particular, this thesis ill focus on the control structures and the rendering of the extended agents' bodies, the tools for creating complex agent-based artworks in intense collaborative situations, and the creation of agent structures that can span live image and interactive sound production. Each of these parts becomes an element of what it means to "choreograph" an extended agent for live performance.Marc Downie.Ph.D

    ENVRIZ: A Methodology for Resolving Conflicts between Product Functionality and Environmental Impact

    Get PDF
    Product development organizations are facing more pressure now than ever before to become sustainable. However, organizations are reluctant to compromise product functionality in order to create products that have less environmental impact than that required by regulations. Thus, engineers may face a conflict between improving product functionality and reducing environmental impact. The design for environment (DfE) tools currently available are inadequate with respect to helping engineers determine how to resolve this conflict during the conceptual design phase. The Theory of Inventive Problem Solving (TRIZ) which is based on Design by Analogy provides a promising conceptual design approach for this problem. Examples of products that simultaneously reduce environmental impact and improve product functionality can inspire engineers to do likewise. This research consists of 1.) Finding products and patents that overcome a contradiction between product functionality and environmental impact; 2.) Analyzing and determining the functionality parameter, environmental parameter, and TRIZ principle demonstrated by each example; 3.) Organizing this knowledge into an accessible DfE tool (matrices); and 4.) Developing a methodology for using the tool. The combination of the tool and methodology is named ENVRIZ, a merge of environment and TRIZ. After ENVRIZ was complete, an effectiveness study was completed to understand whether the new tool provided better solutions than TRIZ. Results of the study support that utilizing specific product examples from ENVRIZ provides better solutions compared to utilizing engineering principles from either ENVRIZ and TRIZ. Although the use of the tool on its own does not guarantee a reduction in a product's overall sustainability, the ENVRIZ methodology provides design engineers with a useful conceptual design tool to help overcome contradictions between improving product functionality and reducing environmental impact. Moreover, despite the limited number of examples identified to date, this research provides a framework and prototype that can be extended to incorporate new solutions to these contradictions

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions
    corecore