10 research outputs found

    On the Influence of Explainable AI on Automation Bias

    Get PDF
    Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems

    Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI Systems

    Full text link
    Explainable artificially intelligent (XAI) systems form part of sociotechnical systems, e.g., human+AI teams tasked with making decisions. Yet, current XAI systems are rarely evaluated by measuring the performance of human+AI teams on actual decision-making tasks. We conducted two online experiments and one in-person think-aloud study to evaluate two currently common techniques for evaluating XAI systems: (1) using proxy, artificial tasks such as how well humans predict the AI's decision from the given explanations, and (2) using subjective measures of trust and preference as predictors of actual performance. The results of our experiments demonstrate that evaluations with proxy tasks did not predict the results of the evaluations with the actual decision-making tasks. Further, the subjective measures on evaluations with actual decision-making tasks did not predict the objective performance on those same tasks. Our results suggest that by employing misleading evaluation methods, our field may be inadvertently slowing its progress toward developing human+AI teams that can reliably perform better than humans or AIs alone

    Trust in AutoML: Exploring Information Needs for Establishing Trust in Automated Machine Learning Systems

    Full text link
    We explore trust in a relatively new area of data science: Automated Machine Learning (AutoML). In AutoML, AI methods are used to generate and optimize machine learning models by automatically engineering features, selecting models, and optimizing hyperparameters. In this paper, we seek to understand what kinds of information influence data scientists' trust in the models produced by AutoML? We operationalize trust as a willingness to deploy a model produced using automated methods. We report results from three studies -- qualitative interviews, a controlled experiment, and a card-sorting task -- to understand the information needs of data scientists for establishing trust in AutoML systems. We find that including transparency features in an AutoML tool increased user trust and understandability in the tool; and out of all proposed features, model performance metrics and visualizations are the most important information to data scientists when establishing their trust with an AutoML tool.Comment: IUI 202

    To whom to explain and what? : Systematic literature review on empirical studies on Explainable Artificial Intelligence (XAI)

    Get PDF
    Expectations towards artificial intelligence (AI) have risen continuously because of machine learning models’ evolution. However, the models’ decisions are often not intuitively understandable. For this reason, the field of Explainable AI (XAI) has emerged, which tries to create different techniques to help users understand AI better. As AI’s use spreads more broadly in society, it becomes like a co-worker that people need to understand. For this reason, AI-human interaction in research is of broad and current interest. This thesis outlines the current empirical XAI research literature themes from the human-computer interaction (HCI) perspective. This study's method is an explorative, systematic literature review carried out following the PRISMA (Preferred Research Items for Systematic Reviews) method. In total, 29 articles that concluded an empirical study into XAI from the HCI perspective were included in the review. The material was collected based on database searches and snowball sampling. The articles were analyzed based on their descriptive statistics, stakeholder groups, research questions, and theoretical approaches. This study aims to determine what factors made users consider XAI transparent, explainable, or trustworthy and to whom the XAI research was intended. Based on the analysis, three stakeholder groups to whom the current XAI literature was aimed for emerged: end-users, domain experts, and developers. This study’s findings show that domain experts’ needs towards XAI vary greatly between domains, whereas developers need better tools to create XAI systems. The end-users, on their part, considered case-based explanations unfair and wanted to have explanations that “speak their language”. Also, the results indicate that the effect of current XAI solutions on users’ trust towards AI systems is relatively small or even non-existing. The studies’ direct theoretical contributions and the number of theoretical lenses used were both found out to be relatively low. This thesis’s most immense contribution is to provide a synthesis of the extant empirical XAI literature from the HCI perspective, which previous studies have rarely brought together. Continuing this thesis, researchers can further investigate research avenues such as explanation quality methodologies, algorithm auditing methods, users’ mental models, and prior conceptions about AI.Odotukset tekoälyä kohtaan ovat kohonneet jatkuvasti koneoppimismallien kehittymisen vuoksi. Mallien tekemät päätökset eivät usein ole ihmiskäyttäjälle vaistonvaraisesti ymmärrettävissä. Tätä ongelmaa ratkomaan on syntynyt selittävän tekoälyn tutkimuskenttä, joka luo erilaisia tekniikoita käyttäjien ymmärryksen tueksi. Kun tekoälyn käyttö yhteiskunnassa yleistyy laajemmin, tulee siitä ikään kuin työkaveri, jota ihmisten tulee ymmärtää. Tästä syystä tekoälyn ja ihmisen välisen vuorovaikutuksen tutkiminen on nyt laajan mielenkiinnon kohteena. Tässä pro gradu -tutkielmassa hahmotellaan selittävän tekoälyn tutkimuskentän ajankohtaisia teemoja, ihmisen ja tietokoneen välisen vuorovaikutuksen näkökulmasta. Tutkielman metodi on tutkiva, systemaattinen kirjallisuuskatsaus, ja se suoritettiin seuraten PRISMA-ohjeistusta. Katsaukseen valikoitui yhteensä 29 ihmisen ja tietokoneen vuorovaikutuksen näkökulmasta selittävää tekoälyä empiirisesti tutkinutta artikkelia. Aineisto kerättiin tietokantahakujen ja lumipallo-otannan avulla. Tutkimuksia eriteltiin artikkeleja kuvailevien tietojen, niiden kohdeyleisön, tutkimuskysymysten sekä teoreettisten lähestymistapojen kautta. Tutkielman tarkoituksena on selvittää, millaiset tekijät saivat käyttäjät pitämään tekoälyä läpinäkyvänä, selitettävissä olevana tai luotettavana, sekä kenelle aihepiirin tutkimus oli suunnattu. Analyysin perusteella löytyi kolme ryhmää, joille nykyistä kirjallisuutta on suunnattu: loppukäyttäjät, toimialojen asiantuntijat sekä tekoälyn kehittäjät. Tutkielman tulokset osoittavat, että asiantuntijoiden tarpeet selittävää tekoälyä kohtaan vaihtelevat laajasti toimialojen välillä, kun taas sen kehittäjät kaipaisivat parempia työkaluja tuekseen. Loppukäyttäjien havaittiin pitävän tekoälyn antamia tapauskohtaisia esimerkkejä epäreiluina, ja haluavan juuri heitä puhuttelevia selityksiä. Tulokset ilmaisevat, että nykyisten selittävien tekoälytekniikoiden vaikutukset käyttäjien luottamukseen tekoälyä kohtaan ovat vähäisiä. Tutkimusten tieteellisen panosten ja niiden käyttämien teoreettisten näkökulmien määrän havaittiin olevan suhteellisen pieniä. Tämän tutkielman suurin tieteellinen panos on luoda yhteenveto empiiriseen, selittävän tekoälyn tutkimuskirjallisuuteen, ihmisen ja tietokoneen välisen vuorovaikutuksen näkökulmasta. Tätä näkökulmaa aiempi kirjallisuus on vain harvoin saattanut kokoon. Tutkielma avaa useita näkymiä jatkotutkimukselle, esimerkiksi selitysten laatumetodien, algoritmien auditointimenetelmien, käyttäjien ajatusmallien sekä aiempien käsitysten vaikutusten näkökulmista

    Explanation matters:An experimental study on explainable AI

    Get PDF
    Explainable artificial intelligence (XAI) is an important advance in the field of machine learning to shed light on black box algorithms and thus a promising approach to improving artificial intelligence (AI) adoption. While previous literature has already addressed the technological benefits of XAI, there has been little research on XAI from the user’s perspective. Building upon the theory of trust, we propose a model that hypothesizes that post hoc explainability (using Shapley Additive Explanations) has a significant impact on use-related variables in this context. To test our model, we designed an experiment using a randomized controlled trial design where participants compare signatures and detect forged signatures. Surprisingly, our study shows that XAI only has a small but significant impact on perceived explainability. Nevertheless, we demonstrate that a high level of perceived explainability has a strong impact on important constructs including trust and perceived usefulness. A post hoc analysis shows that hedonic factors are significantly related to perceived explainability and require more attention in future research. We conclude with important directions for academia and for organizations.</p

    Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics

    Full text link
    The most successful Machine Learning (ML) systems remain complex black boxes to end-users, and even experts are often unable to understand the rationale behind their decisions. The lack of transparency of such systems can have severe consequences or poor uses of limited valuable resources in medical diagnosis, financial decision-making, and in other high-stake domains. Therefore, the issue of ML explanation has experienced a surge in interest from the research community to application domains. While numerous explanation methods have been explored, there is a need for evaluations to quantify the quality of explanation methods to determine whether and to what extent the offered explainability achieves the defined objective, and compare available explanation methods and suggest the best explanation from the comparison for a specific task. This survey paper presents a comprehensive overview of methods proposed in the current literature for the evaluation of ML explanations. We identify properties of explainability from the review of definitions of explainability. The identified properties of explainability are used as objectives that evaluation metrics should achieve. The survey found that the quantitative metrics for both model-based and example-based explanations are primarily used to evaluate the parsimony/simplicity of interpretability, while the quantitative metrics for attribution-based explanations are primarily used to evaluate the soundness of fidelity of explainability. The survey also demonstrated that subjective measures, such as trust and confidence, have been embraced as the focal point for the human-centered evaluation of explainable systems. The paper concludes that the evaluation of ML explanations is a multidisciplinary research topic. It is also not possible to define an implementation of evaluation metrics, which can be applied to all explanation methods.</jats:p

    Explainable Artificial Intelligence (XAI) from a user perspective- A synthesis of prior literature and problematizing avenues for future research

    Full text link
    The final search query for the Systematic Literature Review (SLR) was conducted on 15th July 2022. Initially, we extracted 1707 journal and conference articles from the Scopus and Web of Science databases. Inclusion and exclusion criteria were then applied, and 58 articles were selected for the SLR. The findings show four dimensions that shape the AI explanation, which are format (explanation representation format), completeness (explanation should contain all required information, including the supplementary information), accuracy (information regarding the accuracy of the explanation), and currency (explanation should contain recent information). Moreover, along with the automatic representation of the explanation, the users can request additional information if needed. We have also found five dimensions of XAI effects: trust, transparency, understandability, usability, and fairness. In addition, we investigated current knowledge from selected articles to problematize future research agendas as research questions along with possible research paths. Consequently, a comprehensive framework of XAI and its possible effects on user behavior has been developed
    corecore