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Abstract 
Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many 
areas, such as medicine and banking, is continuously rising. However, insights on the effective 
collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by 
addressing human limitations. However, it may also evoke human bias, especially in the form of 
automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence 
automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our 
study design. Subsequentially, we conduct an online experiment with regard to hotel review 
classifications and discuss first results. We expect our research to contribute to the design and 
development of safe hybrid intelligence systems. 
 
Keywords: Automation bias, explainable artificial intelligence, human-AI collaboration, hybrid 
intelligence. 
 

1 Introduction 
Over the last years, artificial intelligence (AI) has made significant progress (Lecun et al. 2015) and is 
being more and more integrated into standard applications and, thus, is becoming commoditized. 
However, especially in high-stake decision-making environments—such as medicine or banking—fully 
autonomous AI may be neither desirable nor (legally) possible. Additionally, AI capabilities are often 
limited to narrowly defined application contexts as the utilized algorithms often struggle to handle 
instances that differ from the patterns learned during training (D’Amour et al. 2020). In these cases, 
humans can contribute and leverage their unique capabilities such as intuition, creativity, and common 
sense. This line of thought gives rise to the vision of so-called hybrid intelligence (Dellermann et al. 
2019), proposing to combine the complementary capabilities of humans and AI.  
While AI has many advantages (like the capability to process significant data volumes), it may evoke 
human bias that negatively affects the outcome of hybrid intelligence (Challen et al. 2019). Specifically, 
automation bias (AB) is the “tendency to use automated cues as a heuristic replacement for vigilant 
information seeking and processing” (Mosier and Skitka 1999)—essentially representing an over-
reliance on AI advice. Automation bias may trigger severe consequences as illustrated by human drivers 
directing their cars into rivers when blindly adopting erroneous routing advice (Santiago 2019). 
Similarly, Alberdi et al. (Alberdi et al. 2004) report that oncologists interpreting mammograms are 
accepting incorrect system advice in 33% to 40% of all cases—with serious impacts for their patients. 
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Research on AB in AI-based decision-making is still rare in IS research (Jussupow et al. 2021). This is 
plausible for two reasons: First, in the nascent, rather explorative phase of AI with often low AI 
performance, under-reliance was the more prominent issue. Second, prior work in IS often just assumed 
system advice to be perfectly correct (Jussupow et al. 2021). Thus, humans should always agree with 
the AI, and an issue of over-reliance could not arise per definition. However, with the increasing 
commoditization of AI and its application in more high-stake areas both have upped its performance as 
well as the realization of its imperfection. So, both understanding AB and design mechanisms to avoid 
it enjoy increasing research interest and practical relevance (Jussupow et al. 2021; Liel and Zalmanson 
2020). 
To address AB, humans should be enabled to have a basic understanding of the data, algorithms, and 
capabilities that determine the AI advice (Dzindolet et al. 2003). These insights would help them to 
identify incorrect AI advice (Arora 2020). The emerging research stream of explainable AI (XAI) (Bauer 
et al. 2021) aims to equip human users with such insight into AI decisions. This might help the human 
decision-maker to better judge the quality of an AI advice. An analogy would be the interaction between 
a management consultant, who provides advice, and his client as the decision-maker. To assess the 
quality of the recommendation, the decision-maker will ask the consultant to describe the reasoning. 
Based on the explanations, the decision-maker should be able to determine whether the advice can be 
relied upon or not. The same logic should hold for an “AI consultant”. Explanations, thus, can also be 
seen as discrimination support for the decision-maker to assess whether to rely on the AI. 
On the other hand, experimental studies indicate that explanations in human-AI collaboration can lead 
to “blind trust”, i.e. following the AI advice without any evaluation of its trustworthiness (Bansal et al. 
2021; Zhang et al. 2020). Research shows that explanations are sometimes interpreted more as a general 
sign of competence (Buçinca et al. 2021) and have a persuasive character (Bussone et al. 2015). This is 
supported by psychology literature which has shown that human explanations cause listeners to agree 
even in the presence of wrong explanations (Koehler 1991). The same effect could occur when the 
explanations are generated by AI. This potential effect of explanations on AB has severe consequences 
for the design of human-AI systems, especially if status-quo explanations are mostly seen as meaningful. 
The ambiguous tradeoff between enabling the humans to discriminate the AI’s advice, thereby reducing 
AB, and on the other hand, the tendency that the sole existence of an explanation could increase the 
reliance of the human on the AI which increases AB needs to be studied thoroughly. We, therefore, 
intend to shed light on the opposing effects that XAI may exert on AB by asking: 

RQ: How does explainable artificial intelligence affect automation bias? 
To answer this question, we propose a research model, including five hypotheses, and design an online 
experiment to test our hypotheses. In a between-subject study, participants classify whether hotel 
reviews are genuine or fake, with the support of an AI—once without and once with explanations. First 
results of our pre-test with a limited number of participants indicate that explanations tend to increase 
AB. In the next step of our work, we intend to run our main study with sufficient participants to derive 
more insights. While certainly concrete tradeoffs of explanation effects on AB hinge on the domain and 
type of explanations, even our preliminary results hint towards the popular (and often undisputed) call 
that XAI may come at a price—the over-reliance on AI-based decisions. 
With our work, we take a new perspective on XAI affecting automation bias. By providing initial 
insights into XAI and AB, we contribute to advancing the research field of hybrid intelligence. We 
expect our work to have concrete managerial implications informing the design of hybrid intelligence 
systems, especially for critical scenarios, such as medical diagnoses. 

2 Related Work and Foundations 
In the following, we briefly present the foundations of our work hybrid intelligence, AB, and XAI and 
subsequentially outline related work.  
Dellermann et al. (2019) define hybrid intelligence as the ability to achieve goals by pairing humans 
and AI, thereby reaching superior results to those each of them could have accomplished individually. 
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Generally, the idea of hybrid intelligence is the combination of different, but complementary 
capabilities. While humans can rely on their senses, perceptions, emotional intelligence, and social skills 
(Braga and Logan 2017), AI excels at detecting patterns or calculating probabilities (Dellermann et al. 
2019). These different skill set should in theory allow for superior complementary team performance in 
specific tasks (Hemmer et al. 2021). 
Hybrid intelligence is dampened if AB prevents an effective human-AI collaboration. Traditionally, AB 
was studied in aviation automation. However, it can also be explicitly applied to human-AI collaboration 
(Challen et al. 2019). In their recent work, Jussupow et al. (2021) highlight the gap of AB coverage in 
IS research since most prior work has assumed that system advice is correct and, therefore, AB would 
not be an issue. 
Goddard et al. (2012) state that the most rigorous form to quantitatively measure AB is the proportion 
of negative consultations, i.e., switches from a correct human decision to an erroneous one after 
incorrect AI advice. Negative consultations can be further distinguished into omission and commission 
errors—traditionally defined for binary monitoring tasks characterized by a default state (e.g., a patient 
is healthy) and a state of interest (e.g., the patient has a disease). Omission errors refer to instances 
where decision-makers fail to act despite their initial opinion because the AI did not indicate the state 
of interest (Skitka et al. 1999). An omission error in disease detection would mean that the AI fails to 
detect the disease and leads the doctor to not further pursue his initial diagnosis (Lyell and Coiera 2017). 
Commission errors, on the other hand, refer to cases in which humans follow flawed AI 
recommendations (Skitka et al. 1999): A doctor may act on the erroneous recommendation—e.g., 
believe the patient to have cancer and make him undergo chemotherapy or surgery. To measure negative 
consultations, an empirical study needs a sequential human-AI collaboration setup with two steps of 
human decision-making. Table 1 gives an overview of the different metrics based on a binary decision 
task. Note that for the sake of simplicity we use a binary decision task, but this could also be extended 
to multi-class and regression problems. Ground truth refers hereby to the correct decision, which needs 
to be known for the experimental setup. The sequential decision process can be described as follows: 
Initially, the human makes a decision, then he receives AI advice before finally the human is asked to 
update his decision. Other outcomes of sequential human-AI collaboration are possible, for example, in 
cases where all three choices are identical and correct. However, in this work, we focus on negative 
consultations as AB-related metrics. 

Ground Truth Human choice 
before AI advice 

AI advice Human choice 
after AI advice 

Metric 

1 1 0 0 
Negative 
consultation 

Omission 
error 

0 0 1 1 Commission 
error 

Table 1.  Metrics of automation bias for a binary decision task. 

Explainability is a concept with a long tradition in Information Systems (IS) (Gregor and Benbasat 
1999; Khasawneh and Kornreich 2014). With the rise of knowledge-based systems, expert systems, and 
intelligent agents in the 1980s and 1990s, the IS community laid the basis for research on explainability 
(Meske et al. 2020). The term XAI was first used by Van Lent et al. (2004) to describe the ability of 
their system to explain the behavior of agents. The current rise of XAI is driven by the need to improve 
the interpretability of complex models (Wanner et al. 2020). In comparison to interpretable linear 
models, more complex models can achieve higher performance (Briscoe and Feldman 2011). However, 
their inner workings are hard to grasp for humans.  
XAI encompasses a wide spectrum of algorithms. In general, they can be differentiated by their 
complexity, their scope, and their level of dependency (Adadi and Berrada 2018). Wanner et al. (2020) 
cluster different types of complexity in white, grey, and black-box models. They define white-box 
models as models with perfect transparency, such as linear regressions. These models do not need 
additional explainability techniques but are intrinsically explainable. Black-box models, on the other 
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hand, tend to achieve higher performance but lack interpretability. Lastly, grey-box models are not 
inherently interpretable but are made interpretable with the help of additional explanation techniques. 
These techniques can be differentiated in terms of their scope, i.e., being global or local explanations 
(Adadi and Berrada 2018). Global XAI techniques address holistic explanations of the models as a 
whole. In contrast, local explanations work on an individual instance basis. Besides the scope, XAI 
techniques can also be differentiated with regards to being model specific or model agnostic, i.e., can 
be used with all kinds of models (Adadi and Berrada 2018). 
In terms of related work on XAI and AB, the studies of Buçinca et al., 2021 and Nourani et al., 2021 
represent relevant work: Buçinca et al., 2021 investigate the impact of cognitive forcing functions to 
reduce over-reliance on XAI. Nourani et al., 2021 specifically investigate the anchoring effect and its 
relationship to AB. However, to the best of our knowledge, there exists no current research that studies 
how XAI influences AB by deriving and testing a research model. 

3 Research Model 
This pre-test aims to investigate the influence of XAI on AB. Accordingly, the dependent variables in 
our research model are measures of AB, i.e., negative consultations in general and omission and 
commission errors in particular. AB essentially describes the situation where a human would alone be 
able to solve a task but receives erroneous AI advice and follows this advice.  
In our research, we not only want to analyze the direct impact of XAI on AB but additionally investigate 
the effect of mediators. Therefore, we systematically identify constructs from the literature that should 
influence AB. This approach highlights two important constructs that have historically shown an 
empirically strong effect on AB and are also influenced by XAI—trust and the human mental model 
(MM) (Bansal et al. 2021; Goddard et al. 2012). Trust is best conceptualized as an attitude towards AI 
(Lee and See 2004). Trust guides human decision-making when complexity makes a complete 
understanding of the AI not possible (Lee and See 2004). The concept of MMs has its roots in 
psychology (Craik 1943) and is characterized by the phenomenon that humans build small-scale models 
of how the world works. MMs are “representations of objects, events, and processes that people 
construct through interaction with their environment” (Savage-Knepshield 2001, p. 2). MMs enable 
individuals to understand a system’s behaviors in terms of its “purpose (why the system exists)”, 
“function (how the system operates)”, “state (what the system is doing)”, and “form (what the system 
looks like)” (Rouse and Morris 1986, p. 351). People create MMs for any system they interact with, 
including AI (Kulesza et al. 2012). In the following, we discuss the influence of XAI on the two 
mediators, trust and MM, and subsequentially their influence on AB (the resulting hypotheses and their 
relationships are depicted in Figure 1). 

 

Figure 1. Research Model 

In recent work, Bansal et al. (2020) found that some explanations increased human's “blind” trust 
rather than calibrated it in a meaningful way. Psychological research shows that in general, 

Automation Bias

= Treatment

= Dependent variable

= Mediating variable
= Latent variable

= Observed variable

Explanation

Trust

Mental
Model

H3 (+)

H1 (+) H2 (+)

H4 (-)

H5 



Schemmer et al. /Explainable AI and Automation Bias 

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 5 

explanations of humans increase trust (Koehler 1991). Sometimes explanations are more interpreted as 
a general sign of competence and thereby increase trust (Buçinca et al. 2021). Similar, research on 
human-AI interaction showed an increase in trust due to XAI (Weitz et al. 2019). We therefore 
hypothesize: 
H1: Providing explanations of the AI's reasoning increases trust in the AI. 
Trust is one of the most substantial reasons for AB (Goddard et al. 2012) as indicated by research in 
aviation automation that shows that humans with more trust are more likely to over-rely (Bailey and 
Scerbo 2007).  In theory, trust should be calibrated and match the AI’s capabilities  (Lee and See 2004). 
Too low trust is called distrust and if the trust exceeds the capabilities it is called overtrust (Lee and See 
2004). The most extreme level of trust might be “blind” trust, where the human does not evaluate the 
trustworthiness of the AI anymore (Bansal et al. 2020). While there is a tendency that trust in general 
will influence AB, especially overtrust and “blind” trust should influence AB. Thus, we hypothesize: 
H2: Increasing trust in the AI increases automation bias. 
Effective development of a MM includes the AI's background knowledge, capabilities, and preferences 
(Grosz 2012). AI explanations provide humans with indirect information on the AI’s capabilities (Bansal 
et al. 2019) and should, therefore, improve the MM (Weld and Bansal 2019). Consequently, we 
hypothesize: 
H3: Providing explanations of AI's reasoning positively influences the reported human mental model 
of the AI. 
A recent paper by Hoffman et al. (2018) hypothesizes that forming a good MM of the AI is key to 
appropriate usage of AI. A MM of the AI model essentially represents an understanding of the AI's error 
boundaries, i.e., knowing when the AI will err (Bansal et al. 2019). Humans can then use this 
understanding of the error boundaries to contrast it with their own perceived capabilities and should 
thereby be able to detect erroneous advice. This is one possibility to reduce AB, as humans then simply 
reject the detected erroneous advice. An improved MM should improve the detection of erroneous AI 
advice. Thus, we hypothesize: 
H4: Positively influencing the reported human mental model of the AI decreases automation bias. 
Regarding the total effect of XAI on AB, we see several possible opposing effects. First, research on 
XAI has often hypothesized that explanations, in general, should improve the case-by-case evaluation 
of AI advice leading to an appropriate reliance on AI (Bansal et al. 2021; Schemmer et al. 2022; Zhang 
et al. 2020). For example, Bansal et al. (2021) hypothesize that if explanations do not “make sense”, 
humans will reject the AI advice. Additionally, explanations should improve the MM (H3) and thereby 
further increase the potential of detecting erroneous AI advice. Rejecting erroneous AI advice, 
consequentially, reduces AB. However, on the other hand, explanations might also increase trust in AI 
(H1) which might result in an increase of AB (H2). Which effect exceeds the other is unclear. Thus, we 
hypothesize without the direction the total effect of XAI on AB: 
H5:  Providing explanations of the AI’s reasoning influences automation bias. 
We test the research model in an online experiment, which we describe in the following section. 

4 Experimental Design 
The research model is tested in an online experiment with a between-subject design. As an experimental 
task, we have chosen a deceptive hotel review classification task that is widely accepted in XAI research 
(Lai et al. 2020; Liu et al. 2021). Ott et al. (2011, 2013) provide the research community with a data set 
of 400 deceptive and 400 genuine hotel reviews. The deceptive ones were created by crowd-workers 
through MTurk. This setup allows for a clear ground truth. The dataset is highly used and well accepted 
in AI and specifically in deceptive review research (Lai et al. 2020). 
We test two conditions, one in which the human is provided with the mere AI recommendation and one 
in which additional explanations are provided. The implemented AI is based on a Support Vector 
Machine with an accuracy of 86%, which is a performance that is similar to the performance in related 
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literature (Lai et al. 2020). For the XAI condition, we use a state-of-the-art explanation technique, 
namely LIME feature importance explanations (Ribeiro et al. 2016). Feature importance means that the 
influence of a variable on the AI's decision is displayed with a numerical value. Since we are working 
with text data, a common technique to display the values is to highlight the respective words (Lai and 
Tan 2019). We additionally provide information on the direction of the effect and differentiate the values 
into three effect sizes following the implementation of (Lai et al. 2020; Lai and Tan 2019; Liu et al. 
2021) (cf. Figure 2). 

Figure 2. Online experiment graphical user interface for the XAI treatment. The ground truth of 
the displayed hotel review is “fake”. 

In each treatment, participants are provided with 16 reviews. We incorporate an advanced sampling 
strategy to ensure a significant number of possible negative consultations. We have a test set of 32 
reviews to which we apply stratified sampling and select four reviews of each class of a confusion matrix 
(True Positive, False Positive, True Negative, False Negative), two with a positive sentiment and two 
with a negative sentiment. This approach allows us to ensure a high-performing AI that should provide 
good explanations but also the potential for AB since half of the reviews provide wrong 
recommendations.  
The participants for this study are recruited using the platform Prolific.co. The online experiment is 
initiated with an attention control question that asked participants to state the color of grass. To control 
for internal validity, participants are randomly assigned to the treatment groups, as suggested by 
Loewenstein (1999). Afterward, both treatment groups get an introduction to the task. Then, the 
participants conduct two training tasks to familiarize them with the task and the AI and, depending on 
the treatment, with its explanations. Additionally, the participants receive feedback on the training tasks. 
After the two training tasks, the participants are provided with the 16 main tasks. The participants did 
not receive feedback between the tasks on their performance or the ground truth of the reviews since we 
were interested in the isolated effect of XAI on AB. To incentivize the participants, they were informed 
that for every correct decision, they get an additional 12 Cent. Hereby, the two training classifications 
do not count for the final evaluation. The base payment is 5.83 Euro. After classifying the hotel reviews, 
we collect data on trust, MM, and demographic variables (age, gender, AI experience1). Lastly, we asked 
them an open question regarding their usage of the AI advice. 
Trust is measured with the validated construct of  Gefen et al. (2003). We exclude two items that are not 
applicable for our use case as they are specifically targeted toward online shopping. As a measurement 
for MM, we relate to the validated subconstructs of Vitharana et al. (2016)—goal, process, task, and 
information. In this pre-test, we focus on the sub-construct MM goal. All items are measured on a seven-
point Likert scale.  

 
1 Measured with the following item: “How would you describe your knowledge in the field of Artificial Intelligence?” 
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5 Preliminary Results 

In this research-in-progress article, we report qualitative feedback from the experiment participants and 
quantitative differences between the AI and XAI treatment from the results of our pre-test. Additionally, 
we perform a power analysis to calculate a valid sample size for the main study. To run the pre-test, we 
recruit 44 participants. We implement three attention checks and filter out all participants that fail more 
than one attention check, which leads to a final data set of 41 participants (21 for the XAI treatment and 
20 for the AI treatment).  
In a first step, we analyze the qualitative feedback of our study. In total, we received six comments (3 
AI, 3 XAI). In the AI treatment, two comments are clearly positive towards the study setup and state 
they find the task interesting and have no issues. One comment raises an interesting aspect: "I felt 
troubled with the reviews that I thought were genuine, but the AI told me were fake". This comment 
indicates that there may be differences in how the two different recommendations (fake or genuine) are 
perceived by participants. In the XAI setting, the participants commented three times on their uncertainty 
in their decision process: "My decisions were based on gut reactions to the texts presented rather than 
any real insight into whether the reviews were genuine or fake. I felt like I had limited information to 
make an informed decision and the AI's input seemed arbitrary and not trustworthy." These statements 
indicate that the participants might have problems understanding the explanations of the AI.  
Next, we calculate the proportion of negative consultations, omission, and commission errors over all 
cases where the participants received incorrect AI advice. For the two constructs, we calculate the 
average of the respective items. We then test for significance with a two-sided t-test for the two 
mediators and a Mann-Whitney U test for negative consultations, omission, and commission errors since 
the assumption of a normal distribution is rejected for the AB measures. It must be noted that our data 
set for this pre-test is limited and only provides first insights. Table 2 visualizes our results.  
In terms of behavioral constructs, trust does not seem to differ between both settings (MAI = 4.44, MXAI 

= 4.37) (H1).  However, our pre-test indicates a difference of the MM goal (MAI = 5.1, MXAI = 4.37), 
i.e., participants in the AI treatment indicated a higher understanding of the goals of the AI (H2). In 
terms of H3 and H4, we evaluated the Spearman correlation between trust and negative consultations 
(r(42) = 0.13, p = 0.42) and the MM goal and negative consultations (r(42) = -0.14, p = 0.4). Current 
results are not significant. However, we can see a trend in terms of the direction of the correlation which 
is in line with our hypotheses.  
With regards to the overall effect of XAI on AB, due to the low sample size in the pre-test our results 
are not significant, we can still see some early indications. Especially, commission errors are higher in 
the XAI setting (MXAI = 21%) than in the AI setting (MAI = 10%). While we cannot explicitly test our 
hypotheses, we still can identify a tendency that XAI increases AB (H5). 

 AI XAI  
 Mean SD  Mean  SD  P-value 
Negative consultations 11% 17% 17% 19% 0.19 (Mann-Whitney U test) 
Omission error 13% 22% 12% 27% 0.37 (T-test) 
Commission error 10% 21% 21% 30% 0.09 (T-test) 
Trust 4.44 0.84 4.37 0.93 0.44 (T-test) 
Mental model goal 5.1 1.1 4.73 1.05 0.07 (T-test) 

Table 2. Differences in the mean of both treatments. 

Additionally, we evaluated the influence of our demographic variables (age, gender, AI experience) on 
negative consultations by calculating Spearman correlations with no significant results.  

For our main study, we plan to study our research model by conducting a structured equation model. 
We conduct a power analysis to calculate the necessary sample size. Since AB, and consequently 
negative consultations, is our dependent variable, we calculate the power analysis based on negative 
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consultations in the pre-test. Based on the calculated effect size of 0.29 and a target power of 0.95, a 
minimum of 257 participants per treatment will be required. 

6 Discussion and Expected Contribution 
In this article, we describe a first pre-test regarding the influence of XAI on automation bias, an over-
reliance on AI. To investigate the effect in-depth, we first derive a research model, including hypotheses, 
and then conduct an online experiment. In the online experiment, we let participants classify hotel 
reviews as fake and genuine. The results of our study indicate that explanations of AI increase 
automation bias.  
Studies have shown that, in particular cases, significant differences exist between the occurrence of 
commission and omission errors (Lyell and Coiera 2017). In line with these studies, we find differences 
between AI and XAI commission errors (still not significant), but no differences in terms of omission 
errors. One interpretation would be that humans are more likely to classify a review erroneous as fake, 
i.e., humans tend to believe the AI more if the recommendation detects a state of interest.   
Although certainly effects of explanation on automation bias depend on the domain and type of 
explanations, our results illustrate that XAI may increase over-reliance on AI advice. While one could 
argue that this is because of confusing state-of-the-art explanations , which is indicated by the qualitative 
feedback, we believe the underlying reason is far more complex. If the explanations are confusing, it is 
imminent that humans would have a hard time detecting when the AI is correct. However, it is not 
intrinsically logical that a confusing explanation increases automation bias. Confusing explanations 
could also lead to an aversion. Therefore, the underlying mediators of automation bias need to be 
rigorously examined to understand the relationship between explanations and automation bias. 
In terms of the mediators of automation bias in our current study, we do not find any differences between 
trust in the AI and XAI setting within our limited pre-test. However, we find a non-significant difference 
in terms of MM. Participants in the AI treatment have reported a higher MM goal. This could mean that 
humans find it challenging to build a MM of the AI, due to the confusing explanations. Additionally, 
we conducted a correlation analysis to provide first insights on how XAI influences automation bias. 
We find no significant results but an indication of the direction of the effects. Trust seems to increase 
automation bias while a positively influenced MM seems to decrease automation bias which is both in 
line with our hypotheses. Thus the negative effect of XAI on automation bias in our study could be 
caused by a negative influence of XAI on the human MM. 
In future work, we plan to analyze the influence of explanations on automation bias in-depth. More 
specificially, in our main study, we plan to investigate the mediation effects more in depth by conducting 
mediaton analysis (MacKinnon et al. 2007) and structural equation modeling (Ullman and Bentler 
2012). By analyzing the mediators of automation bias, we aim to develop further insights into 
automation bias and thereby create the best possible human-AI collaboration. Despite being a first pre-
test, we already contribute to the body of knowledge. We derive a research model and an experimental 
design to investigate the influence of XAI on automation bias and report as well as discuss first 
preliminary results. With the commoditization of AI, automation bias will become a serious issue that 
needs to be analyzed. It must be emphasized that currently explanations of AI always have a positive 
connotation and are even anchored in law, such as in the European right of explainability (Bauer et al. 
2021). Our research indicates that explanations could lead to over-reliance and thus have serious 
consequences.  
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