1,135 research outputs found

    Bayesian graph edit distance

    Get PDF
    This paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate matches using MAP label updates. We compare the resulting graph-matching algorithm with that recently reported by Wilson and Hancock. The use of edit-distance offers an elegant alternative to the exhaustive compilation of label dictionaries. Moreover, the method is polynomial rather than exponential in its worst-case complexity. We support our approach with an experimental study on synthetic data and illustrate its effectiveness on an uncalibrated stereo correspondence problem. This demonstrates experimentally that the gain in efficiency is not at the expense of quality of match

    Supersymmetric and Kappa-invariant Coincident D0-Branes

    Full text link
    We propose a generic supersymmetric and kappa-invariant action for describing coincident D0-branes with non-abelian matter fields on their worldline. The action is shown to be in agreement with the Matrix Theory limit of the ND0-brane effective action.Comment: JHEP style, 1+8 page

    Circuit complexity in quantum field theory

    Get PDF

    Circuit complexity in quantum field theory

    Get PDF

    Comments on Multiple M2-branes

    Full text link
    Recently a three-dimensional field theory was derived that is consistent with all the symmetries expected of the worldvolume action for multiple M2-branes. In this note we examine several physical predictions of this model and show that they are in agreement with expected M2-brane dynamics. In particular, we discuss the quantization of the Chern-Simons coefficient, the vacuum moduli space, a massive deformation leading to fuzzy three-sphere vacua, and a possible large n limit. In this large n limit, the fuzzy funnel solution correctly reproduces the mass of an M5-brane.Comment: 18 pages. Published versio

    Multi giant graviton systems, SUSY breaking and CFT

    Full text link
    In this article, we describe giant gravitons in AdS_5 x S^5 moving along generic trajectories in AdS_5. The giant graviton dynamics is solved by proving that the D3-brane effective action reduces to that of a massive point particle in AdS_5 and therefore the solutions are in one to one correspondence with timelike geodesics of AdS_5. All these configurations are related via isometries of the background, which induce target space symmetries in the world volume theory of the D-brane. Hence, all these configurations preserve the same amount of supersymmetry as the original giant graviton, i.e. half of the maximal supersymmetry. Multiparticle configurations of two or more giant gravitons are also considered. In particular, a binary system preserving one quarter of the supersymmetries is found, providing a non trivial time-dependent supersymmetric solution. A short study on the dual CFT description of all the above states is given, including a derivation of the exact induced isometry map in the CFT side of the correspondence.Comment: latex, 27+1 pages. v2: comment on mixing of states in section 4.3 added, reference added, typos corrected, final versio

    D--branes and Spinning Black Holes

    Get PDF
    We obtain a new class of spinning charged extremal black holes in five dimensions, considered both as classical configurations and in the Dirichlet(D)--brane representation. The degeneracy of states is computed from the D--brane side and the entropy agrees perfectly with that obtained from the black hole side.Comment: 10 pages, harvmac ``b'' mode (minor changes

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde
    • 

    corecore