99 research outputs found

    Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping

    Get PDF
    We introduce a special type of dissipative Ermakov-Pinney equations of the form v_{\zeta \zeta}+g(v)v_{\zeta}+h(v)=0, where h(v)=h_0(v)+cv^{-3} and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h_0(v) is a linear function, h_0(v)=\lambda^2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h_0(v)=\Omega_0^2(v-v^2) and show that it leads to an integrable hyperelliptic caseComment: 15 pages, 5 figures, 1 appendix, 21 references, published versio

    Dissipative periodic and chaotic patterns to the KdV--Burgers and Gardner equations

    Get PDF
    We investigate the KdV-Burgers and Gardner equations with dissipation and external perturbation terms by the approach of dynamical systems and Shil'nikov's analysis. The stability of the equilibrium point is considered, and Hopf bifurcations are investigated after a certain scaling that reduces the parameter space of a three-mode dynamical system which now depends only on two parameters. The Hopf curve divides the two-dimensional space into two regions. On the left region the equilibrium point is stable leading to dissapative periodic orbits. While changing the bifurcation parameter given by the velocity of the traveling waves, the equilibrium point becomes unstable and a unique stable limit cycle bifurcates from the origin. This limit cycle is the result of a supercritical Hopf bifurcation which is proved using the Lyapunov coefficient together with the Routh-Hurwitz criterion. On the right side of the Hopf curve, in the case of the KdV-Burgers, we find homoclinic chaos by using Shil'nikov's theorem which requires the construction of a homoclinic orbit, while for the Gardner equation the supercritical Hopf bifurcation leads only to a stable periodic orbit.Comment: 13 pages, 12 figure

    Ermakov-Lewis Invariants and Reid Systems

    Get PDF
    Reid's m'th-order generalized Ermakov systems of nonlinear coupling constant alpha are equivalent to an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m\geq 3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden-Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energyComment: 8 pages, published versio

    Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Get PDF
    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in its first kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers-Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second-order nonlinear equationsComment: 6 pages, 7 figures, published versio

    Integrable Abel equations and Vein's Abel equation

    Get PDF
    We first reformulate and expand with several novel findings some of the basic results in the integrability of Abel equations. Next, these results are applied to Vein's Abel equation whose solutions are expressed in terms of the third order hyperbolic functions and a phase space analysis of the corresponding nonlinear oscillator is also providedComment: 12 pages, 4 figures, 17 references, online at Math. Meth. Appl. Sci. since 7/28/2015, published 4/201

    Traveling Wave Solutions to Kawahara and Related Equations

    Get PDF
    Traveling wave solutions to Kawahara equation (KE), transmission line (TL), and Korteweg-de Vries (KdV) equation are found by using an elliptic function method which is more general than the tanh-method. The method works by assuming that a polynomial ansatz satisfies a Weierstrass equation, and has two advantages: first, it reduces the number of terms in the ansatz by an order of two, and second, it uses Weierstrass functions which satisfy an elliptic equation for the dependent variable instead of the hyperbolic tangent functions which only satisfy the Riccati equation with constant coefficients. When the polynomial ansatz in the traveling wave variable is of first order, the equation reduces to the KdV equation with only a cubic dispersion term, while for the KE which includes a fifth order dispersion term the polynomial ansatz must necessary be of quadratic type. By solving the elliptic equation with coefficients that depend on the boundary conditions, velocity of the traveling waves, nonlinear strength, and dispersion coefficients, in the case of KdV equation we find the well-known solitary waves (solitons) for zero boundary conditions, as well as wave-trains of cnoidal waves for nonzero boundary conditions. Both solutions are either compressive (bright) or rarefactive (dark), and either propagate to the left or right with arbitrary velocity. In the case of KE with nonzero boundary conditions and zero cubic dispersion, we obtain cnoidal wave-trains which represent solutions to the TL equation. For KE with zero boundary conditions and all the dispersion terms present, we obtain again solitary waves, while for KE with all coefficients present and nonzero boundary condition, the solutions are written in terms of Weierstrass elliptic functions. For all cases of the KE we only find bright waves that are propagating to the right with velocity that is a function of both dispersion coefficients
    • …