4 research outputs found

    CONSTANS–FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis

    Get PDF
    Flowering time is a key process in plant development. Photoperiodic signals play a crucial role in the floral transition in Arabidopsis thaliana, and the protein CONSTANS (CO) has a central regulatory function that is tightly regulated at the transcriptional and post-translational levels. The stability of CO protein depends on a light-driven proteasome process that optimizes its accumulation in the evening to promote the production of the florigen FLOWERING LOCUS T (FT) and induce seasonal flowering. To further investigate the post-translational regulation of CO protein we have dissected its interactome network employing in vivo and in vitro assays and molecular genetics approaches. The immunophilin FKBP12 has been identified in Arabidopsis as a CO interactor that regulates its accumulation and activity. FKBP12 and CO interact through the CCT domain, affecting the stability and function of CO. fkbp12 insertion mutants show a delay in flowering time, while FKBP12 overexpression accelerates flowering, and these phenotypes can be directly related to a change in accumulation of FT protein. The interaction is conserved between the Chlamydomonas algal orthologs CrCO–CrFKBP12, revealing an ancient regulatory step in photoperiod regulation of plant development.Ministerio de Ciencia BIO2014-52425-P, BIO2017-83629-RJunta de Andalucía P08-AGR-03582, BIO-281European Union GA83831

    CONSTANS–FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis

    Get PDF
    Flowering time is a key process in plant development. Photoperiodic signals play a crucial role in the floral transition in Arabidopsis thaliana, and the protein CONSTANS (CO) has a central regulatory function that is tightly regulated at the transcriptional and post-translational levels. The stability of CO protein depends on a light-driven proteasome process that optimizes its accumulation in the evening to promote the production of the florigen FLOWERING LOCUS T (FT) and induce seasonal flowering. To further investigate the post-translational regulation of CO protein we have dissected its interactome network employing in vivo and in vitro assays and molecular genetics approaches. The immunophilin FKBP12 has been identified in Arabidopsis as a CO interactor that regulates its accumulation and activity. FKBP12 and CO interact through the CCT domain, affecting the stability and function of CO. fkbp12 insertion mutants show a delay in flowering time, while FKBP12 overexpression accelerates flowering, and these phenotypes can be directly related to a change in accumulation of FT protein. The interaction is conserved between the Chlamydomonas algal orthologs CrCO–CrFKBP12, revealing an ancient regulatory step in photoperiod regulation of plant development

    Photoperiodic control of carbon distribution during the floral transition in Arabidopsis

    Get PDF
    Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering processPeer reviewe

    Evolution of the Flowering Pathways

    No full text
    Flowering plants are some of the most successful organisms on Earth, particularly those used in agriculture due to the widespread distribution produced by farming activities. The correct moment of the year to flower is a crucial decision as it strongly compromises the success of the progeny and is thus strictly controlled. Crops have been artificially selected to flower in those conditions better adapted for human production, and many genes related to flowering time are selected as targets for breeding programs. These characteristics reflect a complex regulatory pathway that has to respond both to predictable and unexpected changes in the environment. This plasticity confers the flowering plants with a genetic toolkit to adapt to varied habitats and changing environmental conditions. Recent advances in massive acquisition of data from many different species belonging to the green eukaryotic lineage allow us to make an evolutionary approach to the main mechanisms that influence the floral transition and how flowers are formed in modern plants. This work will review some of these aspects from the floral transition to the floral organogenesis
    corecore