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29 SUMMARY

30 Flowering time is a key process in plant development. Photoperiodic signals play a 

31 crucial role in the floral transition in Arabidopsis thaliana and CONSTANS (CO) protein 

32 has a central regulatory function that is tightly regulated at the transcriptional and post-

33 translational levels. CO protein stability depends on a light-driven proteasome process 

34 that optimizes its accumulation in the evening to promote the production of the florigen 

35 FLOWERING LOCUS T (FT) and induce seasonal flowering. To further investigate the 

36 posttranslational regulation of CO protein we have dissected its interactome network 

37 employing in vivo and in vitro assays and molecular genetics approaches. The 

38 immunophilin FKBP12 has been identified as a CO interactor in Arabidopsis that 

39 regulates its accumulation and activity. FKBP12-CO interact through the CCT domain, 

40 affecting CO stability and function. fkbp12 insertion mutants show a delay in flowering 

41 time, while FKBP12 overexpression accelerates flowering, and these phenotypes can be 

42 directly related to a change in FT protein accumulation. The interaction is conserved 

43 between the Chlamydomonas algal orthologues CrCO-CrFKBP12, revealing an ancient 

44 regulatory step in photoperiod regulation of plant development.

45

46
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47 INTRODUCTION

48 The precise timing of the floral transition is a key decision for a plant, as it is directly 

49 related to the success of its offspring (Austen et al., 2017). The floral transition is 

50 influenced by internal and external cues that determine the correct time of the year to 

51 flower (Levin, 2009). In recent literature, an intricate network of genes involved in the 

52 floral transition in the model plant Arabidopsis thaliana has been unveiled (Pajoro et al., 

53 2014). The vernalization (Song et al., 2012), photoperiodic and internal (Andrés & 

54 Coupland, 2012) pathways define well-delimited, but still interconnected pathways that 

55 control the floral transition in Arabidopsis (Blümel et al., 2015). 

56 The photoperiod pathway involves the response of the plant to the length of the 

57 day and the way they will flower in response to changes in light-driven circadian rhythms 

58 (Shim et al., 2017). Thus, A. thaliana is a facultative long-day (LD) plant that will flower 

59 earlier under a 16 h light: 8 h dark day than in a short day (SD) of 8 h light: 16 h dark. 

60 However, other plants, such as rice, will respond differently by flowering when daylight 

61 recedes, or even will not respond to day length, as some wild tomato species (Jackson, 

62 2008). The gene CONSTANS (CO) plays a pivotal role as CO protein binds in a complex to 

63 the promoter of the florigenic gene FLOWERING LOCUS T (FT) (Wenkel et al., 2006; 

64 Tiwari et al., 2010; Gnesutta et al., 2017) inducing its expression under LD conditions in 

65 the phloem companion cells (An et al., 2004). Then, FT protein will move through the 

66 phloem to the shoot apical meristem (SAM) to induce the activation of the flower 

67 developmental program (Mathieu et al., 2007).

68 CO will also activate the expression of several genes involved in the transmission 

69 of this flowering signal such as the starch synthase GBSS, that promotes a temporal 

70 increase in the concentration of soluble sugars during the floral transition (Ortiz-

71 Marchena et al., 2014) or proline synthesis (Mattioli et al., 2009). Thus, the photoperiod 

72 pathway also controls signals, such as an increase in mobile sugars from starch (Ortiz-

73 Marchena et al., 2015) that would systemically coordinate this transition.

74 Most of the information accumulated around flowering time control takes place 

75 at the transcriptional level (Guo et al., 2017) but important posttranslational steps are 

76 also pivotal to this process (Swiezewski et al., 2009; Posé et al., 2013). CO protein is 
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77 particularly sensitive to posttranslational modifications as both phosphorylation (Sarid-

78 Krebs et al., 2015) and ubiquitination (Valverde et al., 2004) play an important role in its 

79 stability. In these signaling processes the RING finger E3 ubiquitin ligases CONSTITUTIVE 

80 PHOTOMORPHOGENIC 1 (COP1) and HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE 

81 GENE 1 (HOS1) act in a stepwise manner to control the nocturnal (COP1) and early 

82 morning (HOS1) proteasome-mediated degradation of CO, limiting its presence to LD 

83 evenings (Jang et al, 2008; Lazaro et al., 2012). Also, blue light through Cryptochrome 2 

84 (CRY2), affecting COP1 (Valverde et al, 2004), and red light through Phytochrome B 

85 (PHYB), affecting HOS1 (Lazaro et al., 2015), are important in the process. 

86 The small immunophilin FKBP12 (FK506 Binding Protein 12 kD) has been 

87 thoroughly characterized in animals as an immunorepressor due to its capacity to bind 

88 and inhibit the phosphatase calcineurin through the drug K506 (tacrolimus) (Kang et al., 

89 2008). FKBP12 can also bind TOR (Target Of Rapamycin) kinase by forming a covalent 

90 bond rapamycin-FKBP12-TOR that inactivates this essential kinase (Loewith et al., 2002). 

91 Although algae, such as Chlamydomonas, are sensitive to rapamycin (Crespo et al., 

92 2005), higher plants are mostly insensitive to the drug because plant FKBP12 lacks the 

93 key amino acid residues that mediate the interaction with TOR (Menand et al., 2002). 

94 This has been proposed to be an evolutionary acquisition of spermatophytes in response 

95 to the long cohabitation with rapamycin-producing bacteria in soil (Xiong & Sheen, 

96 2012). Arabidopsis FKBP12 has the prolyl isomerase activity that characterizes all FKBPs 

97 family members, which are able to alter the state of proline residues within a 

98 polypeptide chain from cis to trans forms (Gollan et al., 2012), thus having a crucial role 

99 in protein structure. FKBPs have also been involved in supramolecular complexes that 

100 help partners modify its structure, identify substrates and move through cellular 

101 compartments (Kim & Chen, 2000). Although some fkbps mutants display a strong 

102 developmental phenotype, plant fkbp12 mutants have not been described in detail and 

103 no phenotypic description of its mutation or developmental defects has been defined. 

104 In fact, only a single partner of FKBP12, (FKBP12 INTERACTING PROTEIN 37) AtFIP37 

105 (Faure et al., 1998) has been identified in plants, and a role in trichome 

106 endoreduplication proposed (Vespa et al., 2004). 
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107 In this work, we describe an alternative role for FKBP12 in the posttranslational 

108 modification of CO in Arabidopsis. The interaction with FKBP12 influences CO stability 

109 and promotes its activity. Therefore, not only CO activity is compromised by the action 

110 of photoreceptors, ubiquitin ligases and protein kinases but also through the interaction 

111 with the small chaperone-like FKBP12. CO-FKBP12 interaction involves the same domain 

112 that mediates COP1 and HOS1 interaction and, therefore, could also interfere in CO 

113 stability. Both mutant and overexpression lines show a slight but consistent floral 

114 phenotype that can be traced to small changes in FT, but not CO, expression patterns. 

115 The interaction is conserved between the C. reinhardtii homologous proteins CrCO 

116 (Serrano et al., 2009) and CrFKBP12 (Crespo et al., 2005) providing a clue to the 

117 evolutionary importance of the complex. Therefore, this work unveils a different role for 

118 CO activity modification at the posttranslational level that could be important to 

119 understand and modify flowering time in other plant species like crops.

120 RESULTS

121 Identification of FKBP12 as a CONSTANS-interacting protein

122 In order to identify other binding partners involved in CONSTANS posttranslational 

123 regulation, the yeast-based Split-Ubiquitin-System (SUS) approach was used (Johnsson 

124 & Varshavsky, 1999; Pusch et al., 2012). As CO can self-activate transcription in 

125 traditional Y2H screenings (Ben-Naim et al., 2006), an assay exclusively based on protein 

126 interactions was chosen. A library constructed from 4-weeks-old plants grown in LD and 

127 harvested during daylight (I. Ottenschläger and F. Santos, K. Palme laboratory) was 

128 screened. In this SUS version, prey vector includes Arabidopsis cDNA library clones fused 

129 to the N-terminal part of ubiquitin attached to URA3 gene. URA3 codes for the enzyme 

130 R-URA, which catalyses the synthesis of the toxin 5-fluorouracil from the protoxin 5-FOA 

131 (5-Fluoroorotic acid). In Bait vector, CO ORF is fused to ubiquitin C-terminal part. 

132 Reconstitution of ubiquitin, meaning interaction between prey and bait, degrades the 

133 R-URA protein by the proteasome, allowing the growth of colonies in the presence of 5-

134 FOA and the selection of clones expressing the interacting proteins (Dünnwald et al., 

135 1999). This allowed to use the whole CO protein rather than isolated domains (Wenkel 
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136 et al., 2006) or artificial fusions (Ben-Naim et al., 2006) and opened the possibility to 

137 describe different interactions. 

138 Conducting five independent SUS experiments, more than 25,000 independent 

139 interactions were tested and 42 positive clones, representing 31 different putative CO 

140 binding partners, identified (Table 1). The putative CO interactors were grouped 

141 according to functional terms using the agriGO and TAIR tools (Figure S1a, b). Gene 

142 Ontology (GO) terms significantly enriched among these interactors were related with 

143 macromolecular interactions (DNA/RNA and proteins), transferase/hydrolase activity 

144 and stress/biotic/abiotic stimulants. Fifteen of the proteins were predicted as nuclear, 

145 but others were allocated to organelles or cytosol, reflecting the wide range of possible 

146 interactions allowed by the SUS protocol. Even considering that some of them might be 

147 artifactual, cytosolic interactors have been described as important regulators of 

148 transcription factors (TFs) before (Cyert, 2001; Igarashi et al., 2001; Wilson et al., 2016). 

149 Among these interactors, clones including the small immunophilin FKBP12 

150 (At5g64350) (Table 1, highlighted in grey) were repeatedly rescued in the SUS screening. 

151 In fact, tomato FKBP12 had been previously identified in Y2H screening as a putative 

152 interactor of a CO homologue (SlCOL1) using a tomato cDNA library (Ben-Naim et al., 

153 2006). As FKBPs are mainly cytosolic proteins and several reports had shown that they 

154 could act as chaperones involved in protein folding and cellular transport (Geisler & 

155 Bailly, 2007; Gollan et al., 2012), they were excellent candidates for CO posttranslational 

156 regulators.

157 Interaction between CO and FKBP12 

158 CO-FKBP12 interaction was confirmed by experiments in bacteria, yeast and plants. 

159 First, CO and FKBP12 complete ORFs were expressed in E. coli under the same inducible 

160 promoter (pETDuet-1, Experimental procedures) so that upon IPTG induction both 

161 proteins were produced with a similar stoichiometry (Figure S3a). To identify the 

162 polypeptides, CO was S·tagged (S·CO) and FKBP12 His·tagged (H·FK) (Figure 1a-b and 

163 S3a). When the extracts were incubated with TALON (GE Healthcare) His-affinity resin 

164 and washed, immunoblots using His (Sigma Aldrich) showed that H·FK was retained in 

165 the beads (Figure 1a, lanes Ft, W) and was eluted by rising imidazole concentration 
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166 (Figure 1a, lane El). When the same blot was restriped and tested with a specific CO 

167 antibody (CO, Experimental procedures) it showed that S·CO was effectively co-

168 expressed with H·FK (Figure 1a, In lane), but further, the interaction was confirmed by 

169 showing that S·CO was retained (Figure 1a, lanes Ft, W) and co-eluted in the same 

170 fraction as H·FK (Figure 1a, El lane). Controls in which S·CO alone were expressed in E 

171 coli showed that CO presented a very low affinity to the TALON resin (Figure 1b).

172 To further test CO-FKBP12 interaction, a transient interaction assay in Nicotiana 

173 benthamiana cells, was used. CO ORF was fused at the carboxyl end to the Yellow 

174 Fluorescent Protein (CO-YFP) and FKBP12 to the cyan fluorescent protein (FK-CFP). The 

175 fluorescents constructs were transiently expressed in Nicotiana via Agrobacterium 

176 transformation (Voinnet et al., 2003) and observed under the confocal microscope 

177 (Figures 1c and S2). While FK-CFP alone showed a mainly cytosolic localization in 

178 Nicotiana cells (Figure S2a) and CO-YFP, as expected, was nuclear (Figure S2b), 

179 surprisingly, co-expression of both constructs showed a nuclear-cytosolic signal in 

180 Nicotiana in both yellow and blue light when excited at their corresponding exciting light 

181 wavelengths (Figure S2c). When the same plants were excited with specific CFP exciting 

182 lights and detected at the YFP emission window, the nuclear-cytosolic signal (Figure 1c) 

183 indicated a FRET effect. This effect was quantified with an efficiency of 10-20 % higher 

184 than the control including FK-CFP and the yellow protein alone (Figure 1c, right and S2e). 

185 The FRET effect strongly supported the direct in vivo interaction between both proteins. 

186 A co-expression experiment was repeated in onion epidermal cells by transient assays 

187 particle bombardment, showing a clear co-localization signal (Figure S2d). The 

188 interaction in Nicotiana was also tested by co-immunoprecipitation experiments. In this 

189 experiment we used the same CO-YFP plants and plants FK-TAP that fused FKBP12 to 

190 the TAP tag at the carboxyl end from vector cTapi.289.gw (Rohila et al., 2004). When 

191 both constructs were co-expressed in Nicotiana cells and protein extracts incubated 

192 with a GFP nanobody fused to magnetic beads (chromotek), the eluting solution 

193 included both CO and FKBP12 (Figure S2b, ELUTION FK-TAP/CO-YFP lane) while all other 

194 controls did not show a positive result (Figure S2b, ELUTION) using specific CO and 

195 FKBP12 (FK) antibodies (experimental procedures).
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196 In the confocal images and co-IP experiments in Nicotiana we had observed that 

197 YFPCO protein abundance seemed to be enhanced in the presence of TAP-tagged 

198 FKBP12, while the stability of YFP-tagged version of CO expressed alone, was drastically 

199 reduced (Figure S3b). Therefore, it was interesting to test if altering the native ratio of 

200 the proteins modified their stability, so we analyzed the presence of FKBP12 in total 

201 protein extracts from Arabidopsis Col-0, plants overexpressing CO (35S:CO) (Onouchi et 

202 al., 2000) and T-DNA null mutant co-10 (Sail collection) (Laubinger et al., 2006) 

203 employing FK in immunoblots (Figure 1d). While FKBP12 presence was not altered in 

204 co-10 mutant plants compared to WT Col-0 (Figure 1d), an increase in the 12 kD 

205 immunophilin band could be detected in protein extracts from plants overexpressing 

206 CO. Similarly, nuclear CO presence was augmented in Arabidopsis plants overexpressing 

207 FKBP12 (see below) when compared to WT Col-0 extracts at comparable levels to that 

208 of plants overexpressing CO (Figure 1e).

209  Altered levels of FKBP12 expression promote variations in flowering time

210 Because of FKBP12-CO interaction, the enhanced stability of the proteins and the pivotal 

211 role of CO in the floral transition, we wondered if modifying the expression of the 

212 immunophilin would alter flowering time in Arabidopsis. To test this possibility, two 

213 different T-DNA insertion mutants (Col-0 background) in FKBP12 genomic region were 

214 identified: one from Salk collection (SalK_064494) named fk12-1, and another from 

215 Wisconsin collection (WiscDsLox1E10) named fk12-5. After confirming the insertion 

216 sites of the two T-DNAs (Figure S4a-b), we obtained homozygous lines with a strong 

217 reduction in FKBP12 protein levels (Figure S4c). Both mutants showed similar late 

218 flowering phenotype (see below) and were used for further experiments. 

219 We then compared the expression of FKBP12 in 24 h experiments in Col-0 and 

220 fk12-1 (Figure 2). In LD, FKBP12 mRNA expression showed a peak 4 h after dawn 

221 (ZEITGEBER TIME 4, ZT4) and a minimum expression in the middle of the day at ZT8, 

222 slowly rising through the evening and night (Figure 2a left, grey line). In SD, the pattern 

223 lacked the peak at ZT4 and showed a maximum expression at ZT12 (Figure 2a right, grey 

224 line). The expression of FKBP12 was also followed in plants grown for two weeks in LD 

225 and then transferred to either continuous light (LL) or continuous dark (DD) conditions 
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226 and mRNA accumulation was measured during the following 48 h (Figure S5). In LL 

227 conditions (Figure S5a) FKBP12 expression continued its rhythmic tendency through two 

228 consecutive days in continuous light. When this pattern was analyzed with the 

229 Bioconductor R package RAIN (Rhythmicity Analysis Incorporating Nonparametric 

230 methods) a significant (0.05 p-value) periodic wave form was obtained, indicating the 

231 circadian character of the expression of the gene in LL. However, when plants were 

232 transferred to DD, FKBP12 expression drastically decreased, and no significant (0.53 p-

233 value) periodic pattern was observed (Figure S5b). FKBP12 expression was significantly 

234 reduced in the mutant fk12-1 background in LD and SD, promoting the loss of circadian 

235 regulation of the gene (Figure 2a, S5c-d, black dotted lines). The reduced gene 

236 expression caused a drastic reduction in protein levels throughout the day as shown in 

237 the immunoblots and graphics of Figure 2b. While FKBP12 protein showed an increasing 

238 accumulation during the evening in LD (Figure 2b, grey line) the protein was almost 

239 completely absent in fk12-1 and fk12-5 mutants (Figures 2b, black dotted line and S4c).

240 To generate FKBP12 overexpression lines, the ORF was cloned behind the 35S 

241 promoter in pEG100 vector (Early et al., 2006) and transformed into Arabidopsis Col-0 

242 plants by floral dipping. BASTA selection produced herbicide-resistant plants among 

243 which, three T3 independent homozygous lines were selected. FKBP12 expression in all 

244 35S:FKBP12 (35S:FK) plants was up to seven times higher than that of WT expression 

245 during LD and SD conditions (Figure S5c-d) and this resulted in a constant and very high 

246 presence of the protein during the entire photoperiod (Figure 2b, solid black line). On 

247 the other hand, as was observed in vitro before (Figure 1d) the stability and presence of 

248 FKBP12 protein increased in plants overexpressing CO (Figure 2c), so that the amount of 

249 the immunophilin closely followed that of CO during LD in 35S:CO plants, hinting again 

250 to a close association between both proteins. 

251 In order to understand the possible effect of the FKBP12 on CO function, we 

252 analyzed the 24 h expression patterns of CO and its primary target FT, in fkbp12 mutant 

253 backgrounds. We did not detect a significant modification in CO transcript levels, which 

254 kept the same expression patterns throughout LD in WT, fk12-1 and overexpressing 

255 plants (Figure 2d, above). However, FKBP12 overexpression caused a high increase in FT 

256 mRNA levels, particularly during the morning (ZT4-ZT8) (Figure 2d, below, solid line), as 
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257 CO expression is not modified, this hinted to a posttranslational modification of CO 

258 protein activity. On the contrary, the mutant fk12-1 showed a slight decrease in FT 

259 expression particularly during the evening, when CO activates FT expression (Figure 2d, 

260 below, black dotted line), again revealing a possible posttranslational modification of CO 

261 activity. Consistent with a role of FKBP12 over CO activity, flowering time of FKBP12 

262 mutants and overexpressor were not significantly altered in SD (Figure S6a), a 

263 photoperiod condition in which CO is not expressed during the day and the protein is 

264 not detectable (Suárez-López et al., 2001, Valverde et al., 2004). Similarly, the SD 24 h 

265 mRNA expression profiles of CO in WT, fk12-1 mutant and 35S:FK plants (Figure S6b, 

266 left) did not show any significant change, and this was reflected also in a very small and 

267 low expression of FT in the same conditions (Figure S6b, right). 

268 To further characterize the effect of FKBP12 in CO protein activity, we isolated 

269 nuclei from Col-0, fk12-5 and 35S:FK plants and detected CO and FKBP12 protein levels 

270 (Figure 3a). While FKBP12 protein presence in the nucleus was low in WT and fk12-5 

271 mutant nuclei, the nuclear presence of the protein in 35S:FK was very high (Figure 3a). 

272 In the same blots, the amount of the upper band of CO, which represents the 

273 phosphorylated, active form (Sarid-Krebs et al., 2015) was clearly visible in the 35S:FK 

274 plants compared to fk12-5 mutant and Col-0 (Figure 3a, above). When these bands were 

275 quantified in three replicates and plotted (Figure 3a, below left) a significant amount of 

276 the phosphorylated band could be detected in the 35S:FK compared to Col-0 and fk12-

277 5 mutant. Furthermore, when we plotted the ratio of upper phosphorylated CO to the 

278 lower unphosphorylated form, that represents the active composition of native CO 

279 (Sarid-Krebs et al., 2015), there was a significant reduction in the mutant and an increase 

280 in the 35S:FK plants (Figure 3a, below right). Indeed, these differences were reflected in 

281 the amount of FT protein present in total extracts of these plants in LD at ZT4 (Figure 

282 3b), with fk12-1 and fk12-5 (Figure S7e) mutants showing a significant decrease in FT 

283 levels and different 35S:FK transformants showing a significant increase compared to 

284 Col-0 (Figure 3b, right and S4d). In these blots FKBP12 presence in Col-0 total extracts 

285 was always higher than in nuclei extracts indicating a preferred non-nuclear localization 

286 as shown in the confocal images of FK-CFP before (Figure S2a), while in 35S:FK plants 

287 FKBP12 was very abundant in both localizations. 
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288 At phenotypical level, we checked FKBP12 mutants and overexpressor plants in 

289 LD, for a modification of flowering time in Arabidopsis (Figure 3c). Indeed, plants 

290 overexpressing FKBP12 showed a significant small acceleration of flowering time, while 

291 fk12-1 and fk12-5 mutants showed a small but significant late flowering phenotype in 

292 LD (Figure 3c, middle). WT plants flowered in LD at an average of 15.3 leaves, while fk12-

293 1 plants flowered with 17.1 leaves, fk12-5 with 18.6 and 35S:FK with 13.0 leaves, both 

294 with a high degree of significance (Figure 3c, below). Therefore, while Col-0 plants were 

295 starting to bolt 21 days after germination (DAG), the immunophilin overexpressor was 

296 already fully bolting and the mutants had not yet flowered (Figure 2c, above).

297 To better characterize at genetic level CO and FKBP12 interaction, we crossed 

298 plants overexpressing CO (35S:CO:TAP, Ortiz et al., 2014), and fk12-1 plants. During the 

299 F1 segregation we scored the flowering time of the plants in LD and compared with the 

300 flowering time of the parental plants and Col-0 (Figure S7a). As expected for a regular 

301 Mendelian distribution, flowering time of the F1 population showed a three modal 

302 disposition showing a clear displacement of flowering time of the 35S:CO:TAP plants to 

303 the late flowering phenotype. Indeed, when we transformed 35S:CO constructs (Lucas-

304 Reina et al., 2015) into fk12-1 mutant background, selected for CO overexpression 

305 vector resistance (BASTA) and sowed in soil a mixture of six T1 independent 

306 transformant seeds, a displacement of flowering time of the T2 population plants to a 

307 late flowering phenotype was also observed (Figure S7b). This was again consistent with 

308 a delay in the early flowering phenotype of CO overexpression caused by FKBP12 

309 absence, which could also be observed in the floral phenotype of the homozygous plants 

310 in LD (Figure S7c) 35S:CO fk12-1 flowered with 14.7 leaves, fk12-1 with 19.8 leaves and 

311 35S:CO with 8.9 leaves. In fact, total protein extracts of 35S:CO fk12-1 plants showed a 

312 significant increase in CO protein when compared to the single mutant, but the 

313 distribution of phosphorylated to unphosphorylated form was lower (Figure S7d) than 

314 in 35S:CO plants (compare with Figure 1e).

315 CO protein is stabilized by FKBP12 

316 FKBP immunophilins can function as proline cis-trans isomerases and as molecular 

317 chaperones that help stabilize proteins and facilitate their intracellular movement 
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318 (Geisler & Bailly, 2007; Gollan et al., 2012). CO is strongly influenced by several different 

319 posttranslational modifications, so that its final structure is likely to be important for its 

320 function and stability (Valverde et al., 2004). To find out the effect of FKBP12 on CO 

321 stability we expressed again both proteins in E. coli using pETDuet-1 vector but this time 

322 as a His tagged CO (H·CO) and an S·tagged FKBP12 (S·FK). We observed that the lack of 

323 the immunophilin produced no effect on CO amount in total cell crude lysates (Figure 

324 4a, left), but significantly reduced the amount of CO in soluble fractions when absent 

325 (Figure 4a, right), indicating that CO solubility was enhanced by FKBP12 presence.

326 In human cells, interaction of FKBP12 with TOR kinase depends on the macrolide 

327 drug rapamycin (Sirolimus) that forms a strong molecular bridge between the 

328 immunophilin and the kinase, inhibiting its phosphorylating activity (Shimobayashi & 

329 Hall, 2014). Other drugs, such as FK506 (Tacrolimus) can strongly bind human FKBP12 

330 and influence the interaction with calcineurin phosphatase, inhibiting T-lymphocyte 

331 calcium-dependent signal transduction such as the transcription of interleukin-2 (Liu et 

332 al., 1991). It has been shown that plant rapamycin does not form a molecular bridge 

333 between TOR and FKBP12 (Menand et al., 2002) rendering plants immune to rapamycin, 

334 but no experiment with other drugs and targets has been performed. Both rapamycin 

335 (Rap) or FK506 seemed to have no effect on single H·CO retention in a cobalt column 

336 (Figure 4b, left). When we incubated protein extracts from H·CO/S·FK-producing 

337 bacteria with rapamycin, run the extract through the column, washed and eluted, again 

338 no difference in either FKBP12 retention or CO stability was detected in immunoblots 

339 (Figure 4b, middle, Rap). Nevertheless, when the same extracts were incubated with 

340 FK506, H·CO could not bind to the column with the same affinity (Figure 4b middle; right, 

341 FK506) and very little S·FK co-eluted with H·CO. In fact, S·FK was eluted in the washing 

342 steps (not shown). These results suggest that while rapamycin does not bind Arabidopsis 

343 FKBP12, and therefore, does not affect CO interaction, this is not the case with FK506 

344 that seems to bind FKBP12 and interfere with CO interaction, although a deeper 

345 biochemical characterization would be needed to confirm this point.

346 CO protein has three distinct domains (Figure S8a), the two amino terminal b-

347 boxes are involved in protein-protein interaction, the middle part in transcriptional 

348 activation and the C terminal domain (CCT) in nuclei import as well as DNA and protein 
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349 interactions (Wenkel et al., 2006; Tiwari et al., 2010). In order to identify CO domains 

350 involved in FKBP12 interaction, we performed Y2H assays. We cloned the three parts of 

351 CO in bait vector pJG4-5 and FKBP12 complete ORF in the prey vector pEG202. The 

352 resulting yeast growth and X-Gal assay (see experimental procedures) showed that 

353 FKBP12 strongly interacted with the CCT part of CO, while very weak interaction was 

354 observed with the amino and middle domains of the protein (Figure 4c). These results 

355 were repeated in transient BiFC assays in Nicotiana in which we co-transformed the 

356 amino terminal part of YFP fused to these same domains and the fusion of carboxy-

357 terminal YFP with FKBP12 (Figure 4d and S9a, c-e). As expected, a strong YFP nuclear-

358 cytosolic signal was observed under the confocal microscopy with the CCT part of CO 

359 (Figure 4d, rightmost panel) and only a weak one with the middle domain and the b-

360 boxes (Figure 4d, left and middle panels). The finding suggested that FKBP12-CO 

361 interaction occurred mainly through the carboxyl terminal domain, which has been 

362 proposed to interact with E3 ligase COP1 and DNA (Jang et al, 2008; Tiwari et al., 2010). 

363 As CO interaction with Pseudo Response Regulators (PRRs) has been also proposed to 

364 involve this domain (Hayama et al., 2017), it suggests that CO could bind in a 

365 supramolecular complex to DNA and FKBP12, affecting this complex formation or 

366 stabilization.

367 Mapping CO-FKBP12 protein interaction

368 FKBP12 belongs to a family of prolyl-cis-trans isomerases involved in modifying proline 

369 topology within the polypeptide chain (Gollan et al., 2012). CO amino acid sequence 

370 shows the conservation of three valine-proline pairs (Figure S8a, red VP, above), which 

371 are particularly well conserved into a subclade of the CO phylogenetic tree (Figure S8b, 

372 C). This clade contains CO orthologues from Chlamydomonas (CrCO), Physcomitrella 

373 patens (PpCOL1-3) and Arabidopsis (AtCOL1-5) (Serrano et al., 2009; Valverde 2011) and 

374 constitute a set of CO-like proteins (COLs) whose function has been conserved 

375 throughout the green plants phylogenetic tree (Figure S8b, red clade). Due to their high 

376 conservation in the evolutionary history of COL proteins, prolines in these VP pairs were 

377 good candidates to be targeted by FKBP12 activity in order to modify CO structure. 

378 Therefore, we produced a modified CO* with prolines 215, 266 and 371 substituted by 

379 alanines (Figure S8a, below, VA).
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380 First, when we co-expressed H·CO* with S·FK using pETDuet-1 vector in E. coli, 

381 the mutant protein showed a marked reduction in solubility compared to the native 

382 version (Figure 5a). The amount of CO protein in soluble extracts from bacteria 

383 producing the native H·CO protein and S·FK was significantly reduced (around 60%) in 

384 immunoblots when H·CO* was expressed together with S·FK compared to WT H·CO 

385 protein (Figure 5a, 2nd panel). This was not due either to a reduction of CO protein in cell 

386 crude lysates (Figure 5a, 1st panel), neither to a reduced FKBP12 presence, which was 

387 found to be equivalent in both extracts (Figure 5a, 3rd panel). Next, we performed 

388 transient BiFC assays in tobacco cells between CO* - FKBP12 and again the interaction 

389 differed to that of wild type (Figure 5b and S9a-b, g). While CO-FKBP12 interaction 

390 showed a specific nuclear localization (Figure 5b, above), the CO*-FKBP12 YFP signal was 

391 delocalized (Figure 5b, below). Nevertheless, when we tested in Y2H the interaction 

392 between FKBP12 and the VP-VA mutated form of the CCT domain at the three prolines 

393 (CTT*, Figure S10) there was no significant difference between the interaction with the 

394 wild type domain. This could indicate either that a plant specific posttranslational 

395 modification of the CCT domain is not present in yeast (for example a phosphorylation 

396 event) or that although the stability of the protein and its cellular localization are 

397 compromised in the triple VA mutant, this is not due to a direct lack of interaction 

398 between FKBP12 and the prolines of the VP pairs. 

399 FKBP12-CO interaction is conserved in microalgae

400 C. reinhardtii is a chlorophyte microalgae used as a model photosynthetic protist whose 

401 genome is fully sequenced and annotated (Merchant et al., 2007). Chlamydomonas has 

402 a single CO orthologue identified as CrCO, which is involved in the photoperiodic control 

403 of starch accumulation and synchronic reproduction, showing a nuclear localization 

404 (Serrano et al., 2009). Chlamydomonas is sensitive to rapamycin, which acts as a bridge 

405 to inhibit TOR kinase through the irreversible interaction with CrFKBP12, promoting 

406 growth arrest (Crespo et al., 2005). To test if the interaction we had found in Arabidopsis 

407 was conserved in algae, we first cloned CrFKBP12 fused to YFP behind a constitutive 

408 promoter (pRbcs/Hsp90:CrFKBP12:YFP) and transformed Chlamydomonas cells. Next, 

409 we used the nucleic acid dye (SYTO Blue 45, ThermoFisher) to report in vivo the presence 

410 of the nucleus (Lucas-Reina et al., 2015). Observation of untransformed 
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411 Chlamydomonas treated with SYTO blue 45 under the confocal microscope showed a 

412 distinct blue fluorescence signal in the nucleus (Figure 6a, above). When algae carrying 

413 the pRbcs/Hsp90:CrFKBP12:YFP construct were incubated with SYTO Blue 45 and 

414 observed under the confocal microscope both yellow and blue signals coincided, 

415 reporting the nuclear presence of FKBP12 in the alga (Figure 6a, below). 

416 Finally, to show CrCO-CrFKBP12 interaction we performed BiFC experiments in 

417 Nicotiana epidermal cells, and an intense fluorescence signal both at the cytosol and the 

418 nuclear compartments was observed (Figure 6b, left and S9a-b, h-i). Similarly, we also 

419 tested the fluorescence complementation between Arabidopsis CO and 

420 Chlamydomonas CrFKBP12 (Figure 6b, middle) and, reciprocally, between 

421 Chlamydomonas CrCO and Arabidopsis AtFKBP12 (Figure 6b, right). Both combinations 

422 reported a strong signal, hinting to a conserved interrelation between algae and plants 

423 homologues and showing the probable conservation and importance of this interaction 

424 among photosynthetic eukaryotes.

425 DISCUSSION

426 CONSTANS activity is crucial to promote photoperiod-dependent flowering in 

427 Arabidopsis and in a significant number of plants from different taxonomical families 

428 (Yano et al., 2000; Yang et al., 2014; Kurokura et al., 2017). CO is controlled at the 

429 expression level by the circadian clock through a set of clock-controlled TFs such as 

430 CYCLING DOF FACTORS (CDFs) and FLOWERING BHLHs (FBHs) that are central to its 

431 transcriptional regulation (Imaizumi et al., 2005; Ito et al., 2012). Besides, it has also 

432 been shown that control of its activity takes place at the posttranslational level (Shim et 

433 al., 2017). In this sense, the regulation through photoreceptor-dependent degradation 

434 (Valverde et al., 2004), the COP1/HOS1 E3-ubiquitin ligases stablishing the night/day 

435 degradation by the proteasome (Jang et al., 2008; Lazaro et al., 2012), the building of 

436 supramolecular complexes to bind DNA (Wenkel et al., 2006) and the phosphorylation 

437 of its active form (Sarid-Krebs et al., 2015) seem to be essential for its mechanism of 

438 action. Here, we report a different component of posttranscriptional control of CO 

439 stability mediated by the interaction with the chaperone immunophilin FKBP12. In this 

440 model (Figure 7), FKBP12 (yellow squares) would interact with CO (blue circle) stabilizing 
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441 the phosphorylated form in the nucleus. FKBP12 binding to CO CCT domain could 

442 prevent its degradation by COP1 and be directed to DNA to trigger the expression of FT 

443 (An et al., 2004) to promote flowering.

444 Although FKBP12 has been extensively studied in yeast and animals for its 

445 capacity to interact with the key growth kinase TOR through rapamycin, this interaction 

446 does not occur in plants (Gollan et al., 2012). It has been proposed that the presence of 

447 an internal disulphide bridge between two conserved Cys residues, could be responsible 

448 for the lack of interaction with plant TOR (Menand et al., 2002) and the induction of 

449 complex formation with new partners (Xu et al., 1998). FKBP12 is also the target of the 

450 immunosuppressant drug FK506 that inhibits calcineurim and blocks T-lymphocyte 

451 transduction pathway (Liu et al., 1991). In a plant scenario, we describe here a different 

452 role for FKBP12 in which its interaction with CO would have an effect on flowering time 

453 and would be disrupted by FK506. Although it has been shown that Vicia faba FKBP12 

454 cannot constitute a stable union with FK506 and calcineurim (Xu et al., 1998), in our case 

455 FK506 seemed to have an effect on CO-FK506-FKBP12 ternary complex formation 

456 (Figure 4b). Although more rigorous tests will be needed to confirm this point, we could 

457 predict a scenario in which the addition of FKBP12 inhibitors could have a use in agro 

458 industry to alter flowering time by affecting CO-FKBP12 interaction. 

459 Disrupting CO-FKBP12 interaction would have an effect on CO stability that can 

460 be also seen when we mutate key VP residues in CO sequence (Figure 5a-b). Interaction 

461 with the E3 ubiquitin ligases that promote CO degradation has been proposed to occur 

462 at the CCT domain (Lazaro et al., 2015), the same domain that binds FKBP12 (Figure 4c, 

463 d). On the other hand, the positive effect of FKBP12 overexpression on CO stability in 

464 vivo (Figure 1e) and on its capacity to activate FT expression, particularly in the morning 

465 (Figures 2d, S7e), the induction of the phosphorylated band in the 35SFK plants (Figures 

466 1e, 3a) and the reduction of this band in the single (Figure 3a) and 35S:CO fk12-1 double 

467 mutant (Figure S7d) strongly support the idea that CO-FKBP12 interaction may be 

468 affecting the E3 ubiquitin interactions and promoting CO stabilization. However, our 

469 data cannot discard a possible effect due to its prolyl isomerase activity or to the effect 

470 over other TFs affecting flowering.
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471 In Picea wilsoni, PwFKBP12 interacts with PwHAP5 (Yu et al., 2011), a homologue 

472 of CO binding partners in the HAP2/HAP3/HAP5 complex in Arabidopsis (Wenkel et al., 

473 2009). This interaction is crucial for the correct elongation of the pollen tube. 

474 Nevertheless, PwHAP5-PwFKBP12 interaction does not occur in the nucleus and must 

475 be affecting other intercellular processes. Therefore, the interaction with CO would 

476 follow a different cellular mechanism such as stability and cellular localization. In fact, 

477 the only well characterized FKBP12 interactor in Arabidopsis is AtFIP37 (FKBP12 

478 interacting protein 37 kD) whose mutation causes a strong delay in endosperm 

479 development and embryo arrest (Vespa et al., 2004). In the same work, Vespa and 

480 colleagues mention that fkbp12 mutant does not show any early developmental 

481 phenotype, but no deep description of the mutant, particularly at later stages, was 

482 shown. Therefore, we provide here a more complete developmental analysis in plant of 

483 a fkbp12 mutant, and although indeed no embryo arrest or major growth failure has 

484 been detected, a closer inspection of its life cycle shows that fk12 mutants are late 

485 flowering (Figure 3c). On the other hand, overexpression of FKBP12 under a constitutive 

486 promoter triggered early flowering. Both mutant and overexpression lines had no effect 

487 on CO mRNA accumulation (Figure 2d), but did show an effect on CO protein presence 

488 in the nucleus (Figures 1e), particularly of the phosphorylated form (Figure 3a) hinting 

489 to a possible role on the posttranslational modification of CO activity. Correspondingly, 

490 the major target of CO, FT (Samach et al., 2000), showed a clear reduced expression and 

491 abundance in fk12 mutants, while FT presence was particularly high in 35S:FK plants 

492 (Figure 2b, 3b, S4d, S7e). In fact, in all FKBP12ox transformants, which are early-

493 flowering plants, FT expression in the morning is very high, and indeed FT expression in 

494 35S:FK shows a bimodal expression pattern, with a peak in the morning and a second in 

495 the evening (Figure 3d). Higher expression of FT in the morning has recently been 

496 reported in Arabidopsis plants grown in the wild and has been explained due to a higher 

497 increase in CO activity in the morning than that observed in laboratory conditions (Song 

498 et al., 2018). Our results suggest likewise that FKBP12 overexpression helps stabilize the 

499 upper, phosphorylated and activate form of CO protein in the morning, and this is 

500 reflected in a higher production of FT and subsequent early flowering phenotype. On 

501 the contrary, lack of FKBP12 protein will produce lower abundance of nuclear active CO 
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502 protein that would promote a reduction in FT expression in the evening and eventually 

503 a late-flowering phenotype.

504 It is also remarkable that CO-FKBP12 interaction is conserved in Chlamydomonas, 

505 as shown by BiFC experiments with CrCO and CrFKBP12 orthologues, (Figure 6b). 

506 Nevertheless, the interaction between both proteins showed a widespread nuclear-

507 cytosolic distribution in Nicotiana cells, probably reflecting differences in cellular 

508 localization between algae and plants, although new nuclear import experiments would 

509 be needed to confirm this point. The confirmation of the CrCO-CrFKBP12 interaction in 

510 Chlamydomonas is in line with previous observations in which a conserved photoperiod 

511 response from algae to plants, sharing many common proteins, had been described 

512 (Serrano et al, 2009; Lucas-Reina et al., 2015). These results confirm the importance of 

513 some conserved photoperiodic regulatory tools in the evolution of photosynthetic 

514 eukaryotes (Romero & Valverde, 2009; Serrano-Bueno et al., 2017). 

515 In conclusion, as depicted in the model of Figure 7, photoperiodic flowering 

516 control mediated by CO is modulated at posttranscriptional level by the interaction with 

517 the immunophilin FKBP12, facilitating the nuclear stability of the active form and FT 

518 transcription. Although we cannot discard other effects associated with FKBP12 derived 

519 from its prolyl isomerase activity or to the effect over other TFs involved in flowering 

520 time, CO-FKBP12 interaction seems highly conserved in the green lineage, and has a 

521 measurable effect on flowering time in plants, altogether unveiling a strong evolutionary 

522 importance.

523 EXPERIMENTAL PROCEDURES

524 Plant material and growth conditions

525 Arabidopsis thaliana L. Heynh. (thale cress) wild type were from Columbia (Col-0) 

526 ecotype. The T-DNA insertion mutant fk12-1 (SALK_064494.47.85.x) was obtained from 

527 the SALK collection while the fk12-5 mutant (WiscDsLox1E10) was obtained from the 

528 Wisconsin Collection. For 35S:FK lines, full-length cDNA (RIKEN) was cloned into a 

529 pEarlyGate 100 vector (Early et al., 2006) behind the CaMV 35S promoter or in the 

530 cTapi.289.gw (Rohila et al., 2004) to obtain the FK-TAP version. For each recombinant 
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531 plant at least ten individuals were initially isolated and finally three plants, showing a 

532 homogeneous phenotype, selected for the analysis. Plants were grown in controlled 

533 cabinets on peat-based compost (for flowering time determination, FRET and BiFC 

534 Assays) or in MS plates (for qRT-PCR assays and protein determinations). Seeds were 

535 previously incubated for 4 days at 4°C in the dark before sowing under LD cycles with 

536 temperatures ranging from 22°C (day) to 18°C (night).

537 Pull-down assays in bacteria

538 Full-length CO and FKBP12 CDSs were cloned into pETDuet-1 vector (Novagen) and 

539 introduced into E. coli BL21 cells. S·tagged CO (S·CO)/His·tagged CO (H·CO) and 

540 His·tagged FKBP12 (H·FK)/S·tagged FKBP12 (S·FK) versions were induced 4 h with 1 mM 

541 isopropyl-β-thiogalactopyranoside (IPTG, Applichem) at 30˚C. S·CO was immobilized on 

542 protein A magnetic beads previously charged with S·tag antibody. For pull-down assays, 

543 H·FK was incubated with the immobilized S·CO for 2 h at 4˚C. Proteins were detected by 

544 immunoblot using CO (raised in rabbit against CO middle domain as described in 

545 Valverde et al., 2004), FKBP12 (this work, see below), FT (Agrisera) and His 

546 antibodies (Qiagen). Loading controls for nuclei extracts were histone 3 antibody 

547 (Abcam) and for cytosol extracts an antibody against recombinant non-phosphorylating 

548 GAPDH (GAPN) as described in Valverde et al., 1999.

549 Yeast-based protein interaction analysis

550 Split-Ubiquitin System (SUS) was as in Pusch et al. 2012, using a cDNA library from Filipa 

551 Santos, Iris Ottenschläger and Klaus Palme (MPIZ, Cologne, Germany). CO was cloned in 

552 bait vector pMET-Cub-R-URA and cDNA in prey vector pCU-Nub and transformed into 

553 JD53 yeast strain. Cells were plated onto minimal SD medium plates +/- URA 

554 supplemented with 25 M Met and 100 M copper sulphate for growth control, or on 

555 SD plus 1 mg/ml FOA, 25 M Met and 100 M copper sulphate for clone rescue. Cells 

556 were grown at 30°C for 3 days, surviving clones identified, DNA rescued by plasmid 

557 extraction and tested by PCR. For Yeast-Two-Hybrid (Y2H) assays, CO domains CCT, 

558 CCT*, middle and Bbox domains were cloned into bait vector pJG4-5, while full-length 

559 FKBP12 CDS was cloned into prey vector pEG202. Primers used to generate Y2H clones 

560 are listed in Table S1. EGY48 (MAT trp1 ura3 his3 LEU2::pLex Aop6-LEU2) was used as 
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561 the host strain for Y2H experiments (Gyuris et al., 1993). Positive interactions were 

562 detected by blue color on Ura-His-Trp-X-gal plates and survival on GAL-Ura-Trp-His-Leu-

563 selective plates. For quantitative assays, the transformants were grown at 30°C to 0.5–

564 0.8 OD 600 nm. The β-gal activity (U/ml) in Figure 4c was measured by OD 420 nm using 

565 o-nitrophenyl β-d-galactopyranoside (Sigma).

566 Protein Analysis

567 Arabidopsis proteins were isolated from two-week DAG seedlings grown in MS plates 

568 employing the Trizol (Invitrogen) protocol as described by the manufacturer. Nuclear-

569 enriched fractions were obtained from Col-0, 35S:CO, 35S:FK, fk12-1, fk12-5, 35S:CO 

570 fk12-1 and 35S:CO:TAP tag (Ortiz et al., 2014) seedlings grown in MS plates for two 

571 weeks as described (Lazaro et al., 2012). FKBP12, CO and CO* expressed in E. coli BL21 

572 cells were induced as above. Cells were disrupted using glass beads (0.5 mm) in an 

573 extraction buffer containing 0.33 mM sorbitol, 25 mM Tris-HCl (pH 7.5), 2 mM EDTA, 2 

574 mM DTT, 1 mM PMSF, 1 mM benzamidine, and 1 mM ϵ-aminocaproic acid and soluble 

575 fractions isolated by low speed (5 min, 500 g) followed by high speed (15 min, 20,000 g) 

576 centrifugations. Protein amount was determined by Bradford Bio-Rad assay according 

577 to the manufacturer's instructions with ovalbumin as a standard. Proteins were 

578 separated by SDS-PAGE using standard procedures, transferred to nitrocellulose or PVDF 

579 filters and probed with CO, FT or FK. FKBP12 antibodies were raised in rabbit against 

580 the synthesized (Sigma) specific Arabidopsis FKBP12 peptide (NH3-

581 MGEVIKGWDEGVAQMC-COOH) and further purified through column-bound FKBP12-

582 Histag. H3 (Abcam) was used as nuclear protein marker. Blots were developed with a 

583 chemiluminescent substrate according to the manufacturer’s instructions (Immobilon 

584 Western Chemiluminescent HRP Substrate; Millipore).

585 Co-immunoprecipitation experiments were performed by transient assays in 

586 Nicotiana cells as described in Lazaro et al. 2015. In brief, Agrobacterium transformed 

587 with 35S:FKBP12:TAP (FK-TAP), 35S:CO:YFP (CO-YFP) or combination of both, were 

588 infiltrated in young leaves of Nicotiana as described below. After three days, 1 g of 

589 infected tissue or negative control (only p19) was grinded with mortar and pestle in the 

590 presence of liquid nitrogen and resuspended in 2 ml co-IP buffer (Lazaro et al., 2015). 
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591 After centrifugation for 10 min at 5,000 rpm in a microfuge at 4°C, 0.5 ml of supernatants 

592 were incubated with 25 l washed GFP-Trap®_MA nanobody beads (Chromotek) and 

593 stirred for 2 h at 4°C in a rotor incubator. After three washes in co-IP buffer, samples 

594 were eluted by adding 5X SDS-PAGE loading buffer and incubating at 95°C for 5 min.

595 Microscopy

596 For Bi-molecular Fluorescence Complementation (BiFC) experiments, FKBP12, different 

597 domains of CO and their Chlamydomonas orthologues were cloned in pYFN43 and 

598 pYFC43 vectors (Ferrando et al., 2001) to produce N-terminal fusions of the carboxyl 

599 (pYFC43) and amino (pYFN43) parts of YFP. These constructs were introduced into A. 

600 tumefaciens strain C58 and infiltrated in Nicotiana leaves together with p19 protein 

601 (Voinnet et al., 2003). BiFC protocol was followed as previously described (Lucas-Reina 

602 et al., 2015). Amino and carboxyl domains of AKINβ and AKIN10 Sucrose-non-fermenting 

603 (Snf1)-related kinases (SnRK) were used as positive control (Ferrando et al., 2001). Co-

604 agroinfiltrations with empty vectors were used as negative controls. BiFC was visualized 

605 under a Leica TCS SP2 confocal microscopy set at 550 nm and analyzed with Leica LCSLite 

606 software. For FRET experiments, CO-YFP and FK-CFP constructs were introduced in 

607 Nicotiana leaves by agroinfiltration. 2-3 days after transfection, epidermal cells were 

608 visualized using a Leica TCS SP2/DMRE microscope equipped with a 63x objective 

609 lens.  CFP was excited with a 458 nm laser and YFP with a 514 nm laser. Band-pass filters 

610 were adjusted to 465-479 nm and 520-545 nm in the CFP and YFP detection channels, 

611 respectively. FRET was measured by the acceptor photobleaching technique, thus, 

612 regions of interest (ROIs) were bleached using the argon-ion laser at high intensity to 

613 remove fluorescence of acceptor. 10 cell nuclei were imaged to quantify the change in 

614 donor fluorescence and FRET efficiency was measured according to the formula: 

615 (pre-bleaching - post-bleaching) / (pre-bleaching). For C. reinhardtii nuclear 

616 transformation, an electroporation protocol was used (Lucas-Reina et al., 2015). CW15 

617 and several CrFKBP12:YFP transgenic lines were observed under the confocal 

618 microscope together with SYTOBlue45 Fluorescent Nucleic Acid Stain (Molecular 

619 Probes). Algae were grown in SD conditions in Sueoka medium supplemented with 10 

620 mM NO3− until lag phase (3–4 µg ml−1 Chlorophyll). 1 ml was collected by centrifugation 

621 (4 min, 5,500g) and suspended in 1 ml Tris-buffered saline (TBS) buffer. 1 µl SYTOBlue45 
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622 and 1 and 5 µl of 10% (v/v) Triton X-100 for CW15 cells and transgenic lines, respectively, 

623 were added. After incubation for 10 min, cells were centrifuged and suspended in 100 

624 µl of the same buffer. Finally, 3 µl of cells were mixed with 10 µl of 1.2% (w/v) low point 

625 fusion agarose at 30°C. Wavelengths used were 514 nm for YFP and 458 nm for 

626 SYTOBlue45.

627 RNA Extraction and qRT-PCR

628 1 g of Trizol-isolated RNA was used to synthesize cDNA with the Quantitec Reverse Kit 

629 (Qiagen) following manufacturer instructions and diluted to a final concentration of 10 

630 ng/μl. Primers for CO, FT and UBQ10 amplification (Ortiz-Marchena et al., 2014) were 

631 used in an iQTM5 multicolor real-time PCR detection system (Bio-Rad) in a 10-μl 

632 reaction: primers 0.2 µM, 10 ng cDNA, 5 μl SensiFAST TM from SYBR Fluorescein kit 

633 (Bioline). Initial concentration of candidate and reference genes was calculated by 

634 means of LingRegPCR software version 11.0 (Ruijter et al., 2009). Normalized data were 

635 calculated by dividing the average of at least three replicates of each sample from the 

636 candidate and reference genes.

637 Analysis of Flowering Time

638 Flowering time was analyzed in controlled-environment cabinets by scoring the number 

639 of rosette (excluding cotyledons) and cauline leaves. Data are from media of at least 20 

640 individuals ± s.e.

641 Site-directed mutagenesis

642 Site-directed mutagenesis was performed to replace the conserved VP pairs of CO to VA 

643 pairs according to the manufacturer’s instructions (Muta-direct™ Site-Directed 

644 Mutagenesis, iNtRON Biotechnology). All constructs were verified by DNA sequencing. 

645 Primers used are listed in table S1.

646 Statistical Analysis

647 The statistical data are marked with asterisks and are means ± s.e. of at least three 

648 biological experiments. The statistical significance between means of the different 
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649 samples was calculated using a two-tailed Student’s t test. Differences observed were 

650 considered statistically significant at P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***).
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Table 1. CONSTANS protein interactors in the Split-Ubiquitin System.
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921 Figure legends

922 Figure 1. Interaction between CO and FKBP12. (a) Co-elution of S-tagged CO (S·CO) with 

923 His-tagged FKBP12 (H·FK) in E. coli. Immunoblots showing S·CO (above) and H·FK (below) 

924 presence in soluble extract (Introduction, In), binding to S·beads (Flow through, Ft), 

925 washing with buffer (W) and elution (El). CO (above) and His-tag (below) antibodies 

926 were used. (b) Control experiment in which S·CO is expressed alone. (c) Confocal images 

927 of Nicotiana leafs co-infiltrated with 35S:FKBP2:CFP tag (FK-CFP, cyan) and 35S:YFP:CO 

928 (YFP-CO, yellow) constructs. FRET was measured by the acceptor photobleaching 

929 technique. White bar indicates 10 m. The quantified efficiency of the interaction and 

930 negative control is shown on the right. (d) Immunoblot showing FKBP12 in total soluble 

931 fractions of Col-0, 35S:CO and co-10 plants 15 DAG LD (left). 70 µg protein were loaded 

932 per lane and probed with FK (Above) or antibody against cytosolic non-

933 phosphorylating GAPDHN (GAPN, below) as loading control. FKBP12 signal was 

934 quantified compared to control in three independent experiments and plotted (right). 

935 (e) Immunoblot showing CO levels in nuclear fractions of 35S:CO, Col-0 and 35S:FK plants 

936 15 DAG LD. 100 µg of protein from nuclear lysates were probed with CO (above) and 

937 Histone3 (H3, below). CO signal was quantified compared to control in three 

938 independent experiments and plotted (right).

939

940  Figure 2. Molecular characterization of FKBP12 expression. (a) 24 h qRT-PCR analysis of 

941 FKBP12 expression in Col-0 (grey) and fk12-1 mutant (black) under LD (left) and SD 

942 (right). UBQ was used as control. Error bars indicate s.d. from three independent 

943 experiments. (b) 24 h FKBP12 presence in total protein fractions of Col-0, 35S:FK and 

944 fk12-1 plants 15 DAG LD (left) and quantification of protein levels in three replicates by 

945 Western blot using FK (right). 40 µg protein were loaded per lane. (c) 24 h immunoblot 

946 analysis of CO (CO, above, left) and FKBP12 (FK, below, left) using CO and FK in total 

947 protein fractions from 35S:CO plants 15 DAG LD. Graphic (right) represents CO and 

948 FKBP12 levels from three protein extracts compared to control. 40 µg of protein were 

949 loaded per lane. (d) 24 h qRT-PCR analysis of CO expression (above) and FT expression 
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950 (below) in Col-0, fk12-1 and 35S:FK in 15 DAG LD plants. UBQ gene was used as control. 

951 Error bars indicate s.d. from three independent experiments.

952 Figure 3. Flowering signals associated with FKBP12 levels. (a) Immunoblot showing CO 

953 and FKBP12 levels in nuclear fractions of Col-0, 35S:FK and fk12-5 plants 15 DAG (ZT16) 

954 LD (above). 100 µg of protein from nuclear lysates were probed with CO, FK and H3. 

955 CO signal was quantified as phosphorylated (upper form) and non-phosphorylated 

956 (lower form), compared to control in three independent experiments and plotted 

957 (below, left). Ratio of phosphorylated (upper form) and non-phosphorylated (lower 

958 form) was quantified and compared to control in three independent experiments and 

959 plotted (below, right). (b) Immunoblot showing FT in total soluble fractions of Col-0, 

960 fk12-1 and 35S:FK plants 15 DAG (ZT4) LD (left). 70 µg protein were loaded per lane and 

961 probed with FT. FT signal was quantified compared to control in three independent 

962 experiments and plotted (right). (c) Comparison of flowering time (above) and rosette 

963 and cauline leaves (middle) in Col-0, 35S:FK, fk12-1 and fk12-5 plants under LD 

964 conditions. Graphic bar showing flowering time of Col-0, 35S:FK, fk12-1 and fk12-5 

965 plants in LD (below). Black bars, rosette leaves; grey bars, cauline leaves. Error bars 

966 indicate s.d. of at least 50 plants. Asterisks indicate statistically significant differences 

967 with Col-0: * P<0.05, ** P<0.01, *** P<0.001.

968

969 Figure 4. CO is stabilized by FKBP12. (a) immunoblot (left) and quantification of CO levels 

970 (right) expressed alone (H·CO) and co-expressed with FKBP12 (H·CO S·FK) in bacteria. 30 

971 µg protein were loaded per lane and probed with CO and FK. Nonspecific bands were 

972 used as loading controls (CONT). Right, bar graphs representing the means of protein 

973 amounts (± s.d.) from at least three independent experiments. (b) immunoblot using 

974 CO and FK showing column elution of H·CO (left pannels) and H·CO S·FK (middle 

975 panels) extracts after rapamycin (Rap) and FK506 treatments. Nonspecific bands were 

976 used as loading controls (CONT). Right, bar graphic showing CO amount quantification 

977 in the experiments left, representing the means (± s.d.) of at least three independent 

978 experiments. (c) Y2H analysis of the interaction between FKBP12 (FK) and different 

979 domains of CO (BBOX, MIDdle and CCT). Left, interactions are shown by blue dye (X-Gal, 
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980 lower panel) and growth on selective media (-Leu, middle panel). Growth on normal 

981 media is also shown (CONT, upper panel). Yeast transformed with empty plasmid 

982 pEG202:pJG4-5 (-) was used as negative control. Pictures show 3-day-old colonies. Right, 

983 quantification of B-Gal activity (B-gal units x 104).  (d) Confocal images of BiFC analysis 

984 in Nicotiana epithelial cells showing protein-protein interactions between different 

985 domains of CO (BBOX, MIDdle and CCT). The white bars represent 26 m. Asterisks 

986 indicate statistically significant differences: ** P<0.01, *** P<0.001. 

987 Figure 5. FKBP12-CO interaction is destabilized by CO mutation in VP pairs. (a) 

988 immunoblot analysis (above) and bar graphic showing the quantification (below) of 

989 H·CO and H·CO* levels co-expressed with S·FK in bacterial soluble fractions and total cell 

990 crude lysates. 30 µg of protein were probed with CO and FK. Extracts from bacteria 

991 carrying empty plasmids were used as negative controls (-). Nonspecific bands were 

992 used as loading control (CONT). Bar graphics represent the means (± s.d.) of at least 

993 three independent experiments. White bars: CO amount (R.U.). Grey bars: FKBP12 

994 amount (R.U.). (b) Confocal images of BiFC analysis in Nicotiana epithelial cells showing 

995 protein-protein interactions between NYFP:CO and CYFP:FK (above) and NYFP:CO* and 

996 CYFP:FK (below). The white bars represent 10 µm.

997 Figure 6. FKBP12 is conserved in the photosynthetic linage. (a) Subcellular localization 

998 of Chlamydomonas FKBP12 (CrFKBP12). Confocal images of CW15 cells expressing 

999 CrFKBP12:YFP (below) and CW15 cells transformed with empty plasmid (Above) as 

1000 negative control. SYTO Blue 45 staining was used as nuclear marker. Bar represents 10 

1001 µm.  (b) Confocal images of BiFC analysis in N. benthamiana epithelial cells showing 

1002 protein-protein interactions between NYFP:CrCO-CYFP:CrFKBP12 (left), NYFP:AtCO-

1003 CYFP:CrFKBP12 (middle) and NYFP:CrCO-CYFP:AtFKBP12 (right). Bar represents 26 µm 

1004 (left and middle) and 14 µm (right). 

1005

1006

1007 Figure 7. Molecular mechanism for CO-FKBP12 interaction. FKBP12 interacts with CO 

1008 and stabilizes the phosphorylated form in the nucleus, promoting FT expression and the 
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37

1009 flowering signal (black arrows). The model suggests that FKBP12-CO interaction 

1010 stabilizes the phosphorylated form by preventing CO-COP1 interaction and the following 

1011 CO degradation by the proteasome (grey arrows).

1012
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FIGURE 6 
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FIGURE 7 
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SIGNIFICANCE STATEMENT

Posttranscriptional regulation of CONSTANS (CO) protein is essential to promote 

photoperiodic flowering in Arabidopsis thaliana, and here we show that the interaction 

with the immunophilin FKBP12 promotes CO stabilization and activity, so that fkbp12 

mutants are late flowering, while overexpression promotes early flowering. The 

conserved interaction between algal and plant CrCO-CrFKBP12 orthologues reflects the 

evolutionary importance of this interaction.
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Figure S1
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Figure S2
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Figure S5
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Figure S6
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Figure S7
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Figure S9
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Figure S10

FK

CCT

CONT

- Leu

X-Gal

FK

CCT*

(a)

Page 55 of 55 The Plant Journal


