Fast algorithms for Quantile Regression with Selection

Abstract

The estimation of Quantile Regression with Selection (QRS) requires the estimation of the entire quantile process several times to estimate the parameters that model self-selection. Moreover, closed-form expressions of the asymptotic variance are too cumbersome, making the bootstrap more convenient to perform inference. I propose streamlined algorithms for the QRS estimator that significantly reduce computation time through preprocessing techniques and quantile grid reduction for the estimation of the parameters. I show the optimization enhancements and how they can improve the precision of the estimates without sacrificing computational efficiency with some simulations.This work is part of the I + D + i project Ref. TED2021-131763A-I00 financed by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. I gratefully acknowledge financial support from the Spanish Ministry of Universities and the European Union-NextGenerationEU (RMZ-18)

Similar works

Full text

thumbnail-image

UCrea

redirect
Last time updated on 19/11/2025

This paper was published in UCrea.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.