Pandemija COVID-19 je poslužila kao katalizator za ubrzani razvoj i primenu iRNK vakcina,
ističući njihovu ključnu ulogu u suzbijanju infektivnih bolesti. Brzina razvoja iRNK vakcina, uz
istovremeno ispunjavanje strogih bezbednosnih standarda, potvrdila je superiornost ove tehnologije
u odgovoru na globalne zdravstvene izazove. U cilju postizanja optimalne efikasnosti, stabilnosti i
bezbednosti, primenjuju se napredne tehnike, uključujući upotrebu modifikovanog uridina i/ili samoreplikujuće iRNK, čime se obezbeđuje adekvatan i dugotrajan imunski odgovor, uz usklađenost sa
regulatornim i kliničkim zahtevima. Takođe, jedna od ključnih prednosti ove vakcinalne platforme je
brzina i fleksibilnost proizvodnje u odnosu na tradicionalne vakcine, pri čemu standarizovani procesi i
modularna priroda omogućavaju jednostavnu adaptaciju na nove varijante patogena, bez potrebe za
značajnim izmenama proizvodnog postupka. Proizvodni postupak počinje dizajniranjem i
proizvodnjom plazmidne DNK, koja se nakon prečišćavanja linearizuje, a zatim koristi kao matrica za
sintezu iRNK molekula u reakciji in vitro transkripcije. Sintetisana iRNK mora proći kroz nekoliko faza
prečišćavanja kako bi se eliminisali kontaminanti poput DNK, proteina i dr. Sledeći i najznačajni korak
za stabilnost je enkapsulaciju iRNK, najčešće pomoću lipidnih nano-čestica (LNP) ili polimernih nanočestica, čime se omogućava efikasna dostava do ciljnih ćelija. Svi koraci proizvodnje su u skladu sa
regulatornim standardima i praćeni strogim testovima kontrole kvaliteta, kako bi se osigurala
bezbednost, efikasnost i konzistentnost vakcine. Trenutno su u kliničkim ispitivanjima iRNK vakcine
protiv različitih virusnih i bakterijskih infekcija. Osim toga, iRNK tehnologija pokazuje veliki potencijal
za personalizovanu terapiju, uključujući lečenje retkih genetskih i autoimunih bolesti, kao i razvoj
individualizovanih onkoloških terapija.The rapid development of mRNA vaccines, while simultaneously meeting safety standards, has
confirmed the superiority of this technology in responding to global health challenges, especially
during the COVID-19 pandemic. To achieve optimal efficacy, stability, and safety of mRNA vaccines,
advanced techniques such as the use of modified uridine and/or self-amplifying mRNA are employed,
ensuring a robust and durable immune response while maintaining compliance with regulatory and
clinical requirements. Additionally, one of the key advantages of mRNA vaccine platform is the speed
and flexibility of production compared to traditional vaccines. Standardized processes and the
modular nature of mRNA technology allow for easy adaptation to new pathogen variants without
significant modifications to the manufacturing process. The production process begins with the design
and synthesis of plasmid DNA, which is linearized and then used as a template for synthesizing mRNA
molecules via in vitro transcription. The synthesized mRNA undergoes multiple purification steps to
remove contaminants such as residual DNA, proteins, and other impurities. The next and most crucial
step for stability is mRNA encapsulation, typically using lipid nanoparticles (LNPs) or polymeric
nanoparticles, enabling efficient delivery to target cells. All manufacturing steps comply with
regulatory standards and are accompanied by rigorous quality control testing to ensure the safety,
efficacy, and consistency of the vaccine. Currently, mRNA vaccines are undergoing clinical trials for
various viral and bacterial infections. Furthermore, mRNA technology holds great potential for
personalized therapies, including the treatment of rare genetic and autoimmune diseases, as well as
the development of individualized cancer therapies
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.