research article text

Approximate Problems for Finite Transducers

Abstract

Finite (word) state transducers extend finite state automata by defining a binary relation over finite words, called rational relation. If the rational relation is the graph of a function, this function is said to be rational. The class of sequential functions is a strict subclass of rational functions, defined as the functions recognised by input-deterministic finite state transducers. The class membership problems between those classes are known to be decidable. We consider approximate versions of these problems and show they are decidable as well. This includes the approximate functionality problem, which asks whether given a rational relation (by a transducer), is it close to a rational function, and the approximate determinisation problem, which asks whether a given rational function is close to a sequential function. We prove decidability results for several classical distances, including Hamming and Levenshtein edit distance. Finally, we investigate the approximate uniformisation problem, which asks, given a rational relation R, whether there exists a sequential function that is close to some function uniformising R. As its exact version, we prove that this problem is undecidable

Similar works

Full text

thumbnail-image

DROPS Dagstuhl Research Online Publication Server

redirect
Last time updated on 27/07/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0/legalcode