630 research outputs found

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    Optimised determinisation and completion of finite tree automata

    Get PDF
    Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions of the determinised (and possibly completed) automaton are generated in a potentially very compact form called product form, which can reduce the size of the representation dramatically. Furthermore, the representation can often be used directly when manipulating the determinised automaton. The paper contains an experimental evaluation of the algorithm on a large set of tree automata examples

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Compositional nonblocking verificationusing generalised nonblocking abstractions

    Get PDF
    This paper proposes a method for compositional verification of the standard and generalized nonblocking properties of large discrete event systems. The method is efficient as it avoids the explicit construction of the complete state space by considering and simplifying individual subsystems before they are composed further. Simplification is done using a set of abstraction rules preserving generalized nonblocking equivalence, which are shown to be correct and computationally feasible. Experimental results demonstrate the suitability of the method to verify several large-scale discrete event systems models both for standard and generalized nonblocking

    Lazy Probabilistic Model Checking without Determinisation

    Get PDF
    The bottleneck in the quantitative analysis of Markov chains and Markov decision processes against specifications given in LTL or as some form of nondeterministic B\"uchi automata is the inclusion of a determinisation step of the automaton under consideration. In this paper, we show that full determinisation can be avoided: subset and breakpoint constructions suffice. We have implemented our approach---both explicit and symbolic versions---in a prototype tool. Our experiments show that our prototype can compete with mature tools like PRISM.Comment: 38 pages. Updated version for introducing the following changes: - general improvement on paper presentation; - extension of the approach to avoid full determinisation; - added proofs for such an extension; - added case studies; - updated old case studies to reflect the added extensio

    Denotational, Causal, and Operational Determinism in Event Structures

    Get PDF
    Determinism is a theoretically and practically important concept in labelled transition systems and trees. We study its generalisation to event structures. It turns out that the result depends on what characterising property of tree determinism one sets out to generalise. We present three distinct notions of event structure determinism, and show that none of them shares all the pleasant properties of the one concept for trees

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    An Efficient Normalisation Procedure for Linear Temporal Logic and Very Weak Alternating Automata

    Full text link
    In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form i=1nGFφiFGψi\bigwedge_{i=1}^n \mathbf{G}\mathbf{F} \varphi_i \vee \mathbf{F}\mathbf{G} \psi_i, where φi\varphi_i and ψi\psi_i contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalisation procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present a direct and purely syntactic normalisation procedure for LTL yielding a normal form, comparable to the one by Chang, Manna, and Pnueli, that has only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalises the formula, translates it into a special very weak alternating automaton, and applies a simple determinisation procedure, valid only for these special automata.Comment: This is the extended version of the referenced conference paper and contains an appendix with additional materia
    corecore