Bayesian-Symbolic Integration for Uncertainty-Aware Parking Prediction

Abstract

Accurate parking availability prediction is critical for intelligent transportation systems, but real-world deployments often face data sparsity, noise, and unpredictable changes. Addressing these challenges requires models that are not only accurate but also uncertainty-aware. In this work, we propose a loosely coupled neuro-symbolic framework that integrates Bayesian Neural Networks (BNNs) with symbolic reasoning to enhance robustness in uncertain environments. BNNs quantify predictive uncertainty, while symbolic knowledge—extracted via decision trees and encoded using probabilistic logic programming—is leveraged in two hybrid strategies: (1) using symbolic reasoning as a fallback when BNN confidence is low, and (2) refining output classes based on symbolic constraints before reapplying the BNN. We evaluate both strategies on real-world parking data under full, sparse, and noisy conditions. Results demonstrate that both hybrid methods outperform symbolic reasoning alone, and the context-refinement strategy consistently exceeds the performance of Long Short-Term Memory (LSTM) networks and BNN baselines across all prediction windows. Our findings highlight the potential of modular neuro-symbolic integration in real-world, uncertainty-prone prediction tasks

Similar works

Full text

thumbnail-image

Coventry University Pure Portal

redirect
Last time updated on 07/07/2025

This paper was published in Coventry University Pure Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-nc-nd/4.0/