The use of simulation models based on potential flow is widespread in the wind industry for the simulation of floating wind turbines. However, these analytical models have shortcomings in correctly representing the behavior of Floating Offshore Wind Turbines (FOWTs) under extreme wind and wave conditions. High fidelity Computational Fluid Dynamics (CFD) simulations aim to develop models where the fluid-structure interaction is more accurately modeled, allowing to correctly predict the behavior of wind turbines and thus to redesign structural components and save costs. In this paper, two different CFD simulation models are developed and compared, including different turbulence models (Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES)), numerical methodologies (Navier-Stokes and Lattice-Boltzmann method) and mooring models (Quasi-Static and Dynamic). Different free decay Load Cases (LC) are performed in XFlow and OpenFOAM, and the damping ratio and natural period of the system are analyzed with different mooring arrangements (Multi-Point Mooring (MPM) and Single-Point Mooring (SPM)), comparing all results with respect to a potential flow model (HydroDyn). A maximum error of 3.3 % in natural period and 1.6 % error in damping factor is obtained, small enough to validate the results of CFD models. Vorticity is also analyzed to understand the differences between both CFD models. Finally, the stress of the mooring lines is computed, which allows validating the mooring system model implemented in XFlow by means of external functions.The authors acknowledge the support given by the Government of Navarre (Research project: PC042-043 COSTA)
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.