2,412 research outputs found
Heave and pitch motions in shallow water including the effect of forward speed
The problem of small heave and pitch motions of a slender ship in shallow water including the effect of forward speed is analysed using the method of matched asymptotic expansions. Formulae valid to first order in slenderness are given for the added-mass and damping coefficients in terms of the frequency and subcritical Froude number
Using Multiple Fidelity Numerical Models for Floating Offshore Wind Turbine Advanced Control Design
This paper summarises the tuning process of the Aerodynamic Platform Stabiliser control loop and its performance with Floating Offshore Wind Turbine model. Simplified Low-Order Wind turbine numerical models have been used for the system identification and control tuning process. Denmark Technical University's 10 MW wind turbine model mounted on the TripleSpar platform concept was used for this study. Time-domain simulations were carried out in a fully coupled non-linear aero-hydro-elastic simulation tool FAST, in which wind and wave disturbances were modelled. This testing yielded significant improvements in the overall Floating Offshore Wind Turbine performance and load reduction, validating the control technique presented in this work.This work was partially funded by the Spanish Ministry of Economy and Competitiveness through the research project DPI2017-82930-C2-2-R
Transport properties of droplet clusters in gravity-free fields
Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion
Scale-adaptive simulation of unsteady cavitation around a naca66 hydrofoil
Distances between consecutive aftershocks are analysed by means of mono- and multifractal theory with the aim of quantifying the complexity of the physical mechanism governing them, as well as their predictability and predictive instability. Hausdorff, Ha, and Hurst, H, exponents are determined by semivariograms and rescaled analysis, respectively. The exponent ß of the power law describing power spectral contents is also quantified. These three parameters permit a generation of fractional Gaussian noise, fGn, simulating distances. The complexity and predictive instability of physical mechanism generating the series of distances is quantified by means of the correlation dimension, µ*, the Kolmogorov entropy, ¿, and the Lyapunov exponents, ¿i, which are based on the reconstruction theorem formulation. Additionally, the multifractal detrended fluctuation analysis, MF-DFA, contributes with a different point of view to quantify the complexity of the series, in terms of fractal spectral width, W, spectral asymmetry, B, and the critical Hölder exponent, a0. By one hand, the MF-DFA is applied to the complete set of distances characterising the whole aftershock process. By the other hand, the MF-DFA is applied to segments of the series of distances with the aim of determining the evolution of the complexity since the mainshock up to the end of the stress relaxation process. Finally, an ARIMA multilinear regression process is applied to obtain some improvements, in comparison with fGn simulations, on the prediction of distances. The database for this analysis is obtained from the Southern California Seismic Network (SCSN) catalogue. Three series of aftershocks equalling to or exceeding magnitudes of 2.0, assuring seismic catalogue completeness, and associated with Landers (06/28/1992), Northridge (01/17/1994) and Hector Mine (10/16/1999) mainshocks are obtained. It is worth mentioning that common mono-multifractal behaviour for the three aftershocks series is not detected, whatever aftershock periods or segments of them are considered.Postprint (published version
On motion analysis and elastic response of floating offshore wind turbines
Wind energy industry is expanded to offshore and deep water sites, primarily due to the stronger and more consistent wind fields. Floating offshore wind turbine (FOWT) concepts involve new engineering and scientific challenges. A combination of waves, current, and wind loads impact the structures. Often under extreme cases, and sometimes in operational conditions, magnitudes of these loads are comparable with each other. The loads and responses may be large, and simultaneous consideration of the combined environmental loads on the response of the structure is essential. Moreover, FOWTs are often large structures and the load frequencies are comparable to the structural frequencies. This requires a fluid–structure–fluid elastic analysis which adds to the complexity of the problem. Here, we present a critical review of the existing approaches that are used to (i) estimate the hydrodynamic and aerodynamic loads on FOWTs, and (ii) to determine the structures’ motion and elastic responses due to the combined loads. Particular attention is given to the coupling of the loads and responses, assumptions made under each of the existing solution approaches, their limitations, and restrictions, where possible, suggestions are provided on areas where further studies are required
Critical sound attenuation in a diluted Ising system
The field-theoretic description of dynamical critical effects of the
influence of disorder on acoustic anomalies near the temperature of the
second-order phase transition is considered for three-dimensional Ising-like
systems. Calculations of the sound attenuation in pure and dilute Ising-like
systems near the critical point are presented. The dynamical scaling function
for the critical attenuation coefficient is calculated. The influence of
quenched disorder on the asymptotic behaviour of the critical ultrasonic
anomalies is discussed.Comment: 12 RevTeX pages, 4 figure
Nonlinear relaxation field in charged systems under high electric fields
The influence of an external electric field on the current in charged systems
is investigated. The results from the classical hierarchy of density matrices
are compared with the results from the quantum kinetic theory. The kinetic
theory yields a systematic treatment of the nonlinear current beyond linear
response. To this end the dynamically screened and field-dependent
Lenard-Balescu equation is integrated analytically and the nonlinear relaxation
field is calculated. The classical linear response result known as Debye -
Onsager relaxation effect is only obtained if asymmetric screening is assumed.
Considering the kinetic equation of one specie the other species have to be
screened dynamically while the screening with the same specie itself has to be
performed statically. Different other approximations are discussed and
compared.Comment: language correction
Control of convection by dfferent buoyancy forces
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Thermal convection in vertical concentric cylinders under the influence of di erent buoyancy force fields is the focus
of the experimental project ’CiC’(Convection in Cylinders). The objectives are to investigate thermal convective flow in natural gravity with axial buoyancy and in micro-gravity environment of a parabolic flight with radial buoyancy, and additionally also the superposition of both buoyancy force fields. The radial buoyancy is forced by the dielectrophoretic effect due to applying a high-voltage potential Vapp between the two cylinders. The experiment contains two separately fully automated experiment cells, which differ only in their radius ratio η = b/a. The convective flow is observed with tracer particles and laser light sheet illumination. For the case of natural convection, there exists a stable single convective cell over the whole Rayleigh number domain with Ra ~ ΔT with increasing the temperature difference between the inner and outer cylindrical boundaries. For the case of a pure dielectrophoretic driven convection in micro-gravity environment, stratification effects are described with RaE ~ Vapp with increasing the high voltage potential. The superposition of both buoyancy forces indicates the disturbance of the single convective cell and therewith the onset of instabilities at very low Ra for the smaller η. The presented results demonstrate that the dielectrophoretic effect can be used for flow control and enhancement of heat transfer applications in space as well as on Earth.The “Convection in Cylinders (CiC)” project is funded by the German Aerospace Center DLR within the “GeoFlow” project (grant no. 50 WM 0122 and 50 WM 0822). The authors would also like to thank ESA (grant no. AO-99-049) for funding “GeoFlow” and the “GeoFlow” Topical Team (grant no. 18950/05/NL/VJ)
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
A hydrodynamics computer module was developed to evaluate the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The new formulation allows linear and nonlinear loads on floating bodies to be computed in the time domain. It also avoids the computationally intensive evaluation of temporal and spatial gradients of the velocity potential in the Bernoulli equation and the discretization of the nonlinear free surface. The new hydrodynamics module computes linear and nonlinear loads — including hydrostatic, Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause ringing, springing, and slow-drift loads — directly in the time domain.
The time-domain Green function is used to solve the linear and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently.
Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.United States. Department of Energy (National Renewable Energy Laboratory. Contract DE-AC36-08GO28308)United States. Department of Energy. Office of Energy Efficiency and Renewable Energy. Wind and Water Power Technologies OfficeMassachusetts Clean Energy Cente
- …
