Qualitative Comparative Analysis. VOLUME II. FUZZY-SET (fsQCA) Theory and Practice

Abstract

El presente documento, es continuación de la obra, Análisis Cualitativo Comparativo Nítido (csQCA) y su relación con la Innovación. Discusión e interpretación de resultados y tiene por objetivo introducir al investigador en los conceptos y aplicaciones que conlleva el caso del análisis cualitativo comparativo (QCA.Qualitative Comparative Analysis) con el conjunto de datos difusos (fuzzy-sets.fsQCA) a través de demostraciones de su uso con ejemplos varios en la administración de la innovación. Desde fines de los años 80, su precursor, el análisis cualitativo comparativo (QCA.Qualitative Comparative Analysis) ha estado en el centro de atención de la metodología de las ciencias sociales ya que se fundamenta, en el conjunto de relaciones y objetivos establecidos del descubrimiento de condiciones suficientes y necesarias. Cabe señalar, que es común referirse a la versión Booleana original del QCA como csQCA, donde cs (crisp-sets) denota un conjunto de datos nítidos, la versión que permite utilizar las condiciones de múltiples categorías, se denomina como mvQCA, donde mv (multi-value) describe el valor múltiple y para la versión fsQCA donde fs (fuzzy-set) describe al conjunto de datos difuso. El objetivo del análisis de QCA, en general, es dar cuenta de un resultado particular, contra los análisis basados en regresión, que por el contrario, generalmente tienen como objetivo ser herramientas base para explicar los efectos de las causas (Wagemann y Schneider, 2010). Sobre el estado de las ciencias sociales, como base general de la admi- nistración de la innovación, Sartori (1970), llegó a afirmar: “...se aprecia un pésimo estado de la ciencia... oscilando entre dos extremos poco sólidos: pensamiento inconsciente, lo que hace una abrumadora mayoría, y un pensamiento demasiado consciente, hecho por una pequeña minoría...” Llamando a los estudiosos a adquirir capacitación en lógica (primaria): “...para dirigir un curso intermedio entre mal manejo lógico crudo por un lado, y perfeccionismo lógico (y parálisis) por otro lado...” Fue a fines de la década de 1980, cuando el Dr. Charles Ragin trajo el álgebra Booleana y la teoría de conjuntos, para las ciencias sociales con su innovador libro The Comparative Method (Ragin, 1987) que describe a profundidad todo lo relativo a los componentes del QCA. Aún así, el verdadero estímulo en la atención comenzó algunos años después, con el libro Fuzzy-sets Social Science (Ragin, 2000). Por ahora, ya hay acadé- micos que usan los métodos comparativos configuracionales, dada la posi- bilidad en formalizar el análisis orientado a casos y de este modo, ofrecer herramientas para mejorar la investigación comparativa. Estos métodos son particularmente aptos para identificar lo mínimamente necesario y/o mínimamente suficiente (combinaciones de) condiciones que producen un resultado de interés (es decir, evaluar las causas de los efectos), con gran potencial de aplicaciones cuantitativas como en la ingeniería (Mendel y Korjani, 2010; Marks, et al., 2018). Dadas las ventajas que se ofrecen, en discusiones recientes sobre los métodos comparativos configuracionales, los estudiosos sostienen que los enfoques cuantitativos basados en regresiones vs. el QCA, se aplican mejor junto a otro (Ragin, 2008; Schneider y Wagemann 2010; Rihoux, 2006). Sin embargo, existe una advertencia para los entusiastas, de que los acadé- micos no deban convertirse en monomaníacos del QCA (Ragin y Rihoux 2004, p. 6). Por otro lado, se tienen primeros esfuerzos de la aplicación de fsQCA, en el área del emprendimiento y la innovación como el trabajo de Kraus (et al., 2017) donde se hace una recopliación de 77 artículos publicados de 2005 a 2016 con las palabras clave de: fsQCA, administración de negocios, empredimiento e innovación, revelando un incremento paulatino en estos campos para el uso de la fsQCA. Es así, que las ciencias de la adminis- tración orientadas a la innovación, tienen la posibilidad de aprovechar lo realizado en las ciencias sociales a través de las importantes aportaciones del Dr. Ragin, por lo que la presente obra, se compone de once capítulos, los cuales describimos brevemente: CAPÍTULO 4. Análisis Cualitativo Comparativo de Datos Difusos (fsQCA). Este capítulo reporta al lector un tipo de datos muy especial, el de tipo difuso que usa el software fsQCA, revelando conceptos básicos de su uso a través del conocimiento de su naturaleza, la posibilidad de usarlos por niveles y de manera continua. Se presentan operaciones del conjunto de datos difusos, tales como: la negación Booleana, la conjunción (lógica AND), la unión (lógica OR). Incluye modelos y métodos de calibración análisis de condiciones necesarias y suficientes así como de consistencia, cómo realizar tablas de verdad y analizar las esquinas de espacio vectorial. Se aplican catorce ejercicios que demuestran el uso del software fsQCA que confirman el uso de los principales conceptos. CAPÍTULO 5. Evaluación del conjunto de datos fsQCA. El capítulo hace una descrpición de la importancia de lo que se conoce como condi- ciones INUS y SUIN así como de consistencia y cobertura en general. Se presenta el desarrollo manual de cinco casos que confirman el uso de los principales conceptos. CAPÍTULO 6. La calibración y su importancia en fsQCA. Este capí- tulo abre un debate sobre las implicaciones de la calibración antes de iniciar mediciones en alcance y contexto, los pros y contras de utilizar indicadores por parte de la investigación cuantitativa, relacion de SEM vs. fsQCA, la investigación cualitativa y la necesidad de la calibración, los métodos directo e indirecto de calibración. Se presenta el desarrollo manual de cuatro casos que confirman el uso de los principales conceptos. CAPÍTULO 7. Pensamiento configuracional en fsQCA. Este capí- tulo demuestra, la importancia del pensamiento configuracional desde el punto de vista cualitativo y cuantitativo, se discute sobre la evaluación del grado de pertenencia en una configuración así como la comparación de trayectorias causales. CAPÍTULO 8. Efectos netos en fsQCA. El capítulo describe lo que se debe entender por efectos netos, los problemas que se tiene del mismo, se propone un cambio de enfoque a tipos de casos, se hace exposición de comparación de casos de datos difusos y el análisis de configuraciones. CAPÍTULO 9. Efectos netos vs. Configuraciones en fsQCA. A través de dos casos hipotéticos, se realiza el estudio y se desarrollan cada uno de los conceptos vistos explicando por comparación sus resultados, a fin de comprender la naturaleza de los efectos netos de los de configuración por fsQCA. CAPÍTULO 10. Guía de análisis csQCA. Con datos nítidos, de un caso de innovación, se ofrece al lector una guía rápida y visual, a través de screen-shots y 8 ejercicios, cómo resolver un caso a través de realizar: análisis de condiciones necesarias, representar datos en la tabla de verdad, identificar contradictorios y remanentes lógicos, análisis de suficiencia, minimización de la tabla de verdad para ocurrencia y no ocurrencia del fenómeno e interpretación de resultados. CAPÍTULO 11. Guía de análisis fsQCA. Con datos difusos, de un caso de innovación, se ofrece al lector una guía rápida y visual, a través de screen-shots y 9 ejercicios, cómo resolver un caso a través de realizar: acceso al archivo de trabajo, análisis de condiciones necesarias con ocu- rrencia del fenómeno y sus reportes, interpretación de la cobertura y la cobertura, generación de la tabla de verdad, la aplicación de la opción Standard Analyses, interpretación de las soluciones generadas, generación de la tabla de verdad con no ocurrencia del fenómeno, análisis de implicaciones principales, e interpretación del caso. GLOSARIO. Se presenta un glosario de los términos más utilizados al respecto.The present document is a continuation of the work, Crisp-Set Qualitative Comparative Analysis (csQCA) and its Relationship with Innovation: Discussion and Interpretation of Results, and aims to introduce researchers to the concepts and applications involved in the case of Qualitative Comparative Analysis (QCA) with fuzzy-set data (fsQCA) through demonstrations of its use with various examples in the administration of innovation. Since the late 1980s, its precursor, Qualitative Comparative Analysis (QCA), has been at the forefront of social science methodology as it is based on the set of relationships and established objectives for discovering sufficient and necessary conditions. It is worth noting that it is common to refer to the original Boolean version of QCA as csQCA, where cs (crisp-sets) denotes a set of crisp data. The version that allows for the use of multiple-category conditions is called mvQCA, where mv (multi-value) describes the multi-value aspect, and fsQCA where fs (fuzzy-set) describes the fuzzy-set data. The goal of QCA analysis, in general, is to account for a particular outcome, unlike regression-based analyses, which typically aim to be fundamental tools for explaining the effects of causes (Wagemann and Schneider, 2010). Regarding the state of social sciences, as a general basis for the administration of innovation, Sartori (1970) stated: "...the science is in a poor state, oscillating between two weak extremes: unconscious thought, which is predominant, and overly conscious thought, done by a small minority..." Calling on scholars to acquire training in basic logic: "To guide an intermediate course between crude logical mishandling on one side and logical perfectionism (and paralysis) on the other side..." It was in the late 1980s that Dr. Charles Ragin brought Boolean algebra and set theory to social sciences with his innovative book, The Comparative Method (Ragin, 1987), which deeply describes all components of QCA. Even so, real attention began to surge some years later with his book Fuzzy-Sets Social Science (Ragin, 2000). By now, there are scholars who use configurational comparative methods, given the possibility of formalizing case-oriented analysis, thus providing tools to enhance comparative research. These methods are particularly apt for identifying the minimally necessary and/or minimally sufficient (combinations of) conditions that produce an outcome of interest (i.e., evaluating the causes of effects), with great potential for quantitative applications in fields like engineering (Mendel and Korjani, 2010; Marks, et al., 2018). Given the advantages offered, recent discussions on configurational comparative methods suggest that regression-based quantitative approaches and QCA are best applied alongside each other (Ragin, 2008; Schneider and Wagemann, 2010; Rihoux, 2006). However, there is a warning for enthusiasts that scholars should not become QCA monomaniacs (Ragin and Rihoux, 2004, p. 6). On the other hand, initial efforts of applying fsQCA in entrepreneurship and innovation, such as the work by Kraus et al. (2017), compile 77 articles published from 2005 to 2016 with keywords: fsQCA, business administration, entrepreneurship, and innovation, revealing a gradual increase in these fields for using fsQCA. Thus, administrative sciences oriented towards innovation can leverage the advancements in social sciences through Dr. Ragin's significant contributions. Consequently, this work comprises eleven chapters, which we briefly describe: CHAPTER 4. Qualitative Comparative Analysis of Fuzzy-Set Data (fsQCA). This chapter introduces the reader to a very special type of data, the fuzzy type used by fsQCA software, revealing basic concepts through understanding its nature and the possibility of using them at levels and continuously. It presents fuzzy-set data operations such as Boolean negation, conjunction (logical AND), and union (logical OR). It includes models and calibration methods, analysis of necessary and sufficient conditions and consistency, how to create truth tables, and analyze vector space corners. Fourteen exercises demonstrate the use of the fsQCA software, confirming the main concepts. CHAPTER 5. Evaluation of the fsQCA Data Set. This chapter describes the importance of what are known as INUS and SUIN conditions as well as consistency and coverage in general. It presents the manual development of five cases that confirm the main concepts. CHAPTER 6. Calibration and Its Importance in fsQCA. This chapter opens a debate on the implications of calibration before starting measurements in scope and context, the pros and cons of using indicators by quantitative research, SEM vs. fsQCA relationship, qualitative research, and the need for calibration, direct and indirect calibration methods. The manual development of four cases confirms the main concepts. CHAPTER 7. Configurational Thinking in fsQCA. This chapter demonstrates the importance of configurational thinking from both qualitative and quantitative perspectives, discussing the evaluation of the degree of membership in a configuration and comparing causal pathways. CHAPTER 8. Net Effects in fsQCA. This chapter describes what is meant by net effects, the associated problems, a proposed shift to case types, comparison of fuzzy data cases, and configuration analysis. CHAPTER 9. Net Effects vs. Configurations in fsQCA. Through two hypothetical cases, the study develops each of the concepts seen, explaining by comparison their results, to understand the nature of net effects versus configuration effects by fsQCA. CHAPTER 10. csQCA Analysis Guide. With crisp data from an innovation case, this chapter offers the reader a quick and visual guide through screenshots and eight exercises on how to solve a case through necessary condition analysis, representing data in the truth table, identifying contradictory and logical remainders, sufficiency analysis, truth table minimization for occurrence and non-occurrence of the phenomenon, and result interpretation. CHAPTER 11. fsQCA Analysis Guide. With fuzzy data from an innovation case, this chapter offers the reader a quick and visual guide through screenshots and nine exercises on how to solve a case through accessing the work file, necessary condition analysis with phenomenon occurrence and reporting, interpreting coverage, generating the truth table, applying the Standard Analyses option, interpreting generated solutions, generating the truth table with phenomenon non-occurrence, analyzing main implications, and interpreting the case. GLOSSARY. A glossary of the most commonly used terms in this context is provided

Similar works

Full text

thumbnail-image

AMIDI.Biblioteca Digital Repository

redirect
Last time updated on 05/07/2024

This paper was published in AMIDI.Biblioteca Digital Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.