Silicon (Si) has been proven to be the most potential anode material for the next-generation lithium-ion batteries (LIBs) because of its superior theoretical capacity (similar to 4200 mAh g-1). However, the huge volume changes, unstable solid-state interphase (SEI) layers, and large internal stresses upon the lithiation process severely limit the practical application for commercial LIBs anodes. Herein, we fabricate the carbon-coated Si/FeSi2 nanoparticles (Si/FeSi2 @C NPs) with volume control effect by fluidized bed chemical vapor de-position (FBCVD) method to solve the above-mentioned problems. These 15 min-Si/FeSi2 @C NPs and 30 min-Si/FeSi2 @C NPs show excellent Li+ storage capacity in the first cycle (2705.9/3039.1 mAh g-1 and 2645.9/2984.2 mAh g-1) with high Initial Coulombic Efficiency (ICE) of similar to 89.0% and 88.7%. In-situ TEM characterization demonstrates that the carbon coating layer and inert FeSi2 phase enable a small volume variation, only similar to 37.8%, revealing the effective volume expansion control effect, and generating thin SEI layers. Besides, the perfect structure of Si/FeSi2 @C NPs makes this material a great improvement in rate performance.(c) 2022 Elsevier B.V. All rights reserved
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.