Stability of freeze-dried pH-responsive dextrin nanogels containing doxorubicin

Abstract

Induction of non-specific toxicities by doxorubicin (DOX) has restricted conventional DOX-based chemotherapy. pH-responsive dextrin nanogels (DNGs) have been fabricated in order to incorporate and deliver DOX to specific (targeted) sites. However, adequate stability studies of DOX-loaded DNGs are required for selection of storage conditions. The aim of this study was therefore to evaluate the accelerated (25 °C/60% RH) and long-term (5 °C) stability of DNGs prepared with formaldehyde (FDNGs) and glyoxal (GDNGs) as cross-linker by determining the change in their physicochemical properties. The mean diameter decreased with time during long-term storage. The drug content between freshly prepared (initial day) and after storage at 5 °C for 180 days of DOX-loaded FDNGs and DOX-loaded GDNGs was not significantly different (p > 0.05), but decreased after storage under the accelerated condition. The release of DOX from all DNGs was pH-dependent. However, DNGs kept under the accelerated condition showed higher amount of DOX release than those stored at 5 °C and the freshly prepared ones. The results indicate that the stability of DNGs could be improved by their storage at 5 °C

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.