[Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT-
0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.