122,679 research outputs found

    Ontology Construction from Online Ontologies

    No full text
    One of the main hurdles towards a wide endorsement of ontologies is the high cost of constructing them. Reuse of existing ontologies offers a much cheaper alternative than building new ones from scratch, yet tools to support such reuse are still in their infancy. However, more ontologies are becoming available on the web, and online libraries for storing and indexing ontologies are increasing in number and demand. Search engines have also started to appear, to facilitate search and retrieval of online ontologies. This paper presents a fresh view on constructing ontologies automatically, by identifying, ranking, and merging fragments of online ontologies

    Ontology construction from online ontologies

    Get PDF
    One of the main hurdles towards a wide endorsement of ontologies is the high cost of constructing them. Reuse of existing ontologies offers a much cheaper alternative than building new ones from scratch, yet tools to support such reuse are still in their infancy. However, more ontologies are becoming available on the web, and online libraries for storing and indexing ontologies are increasing in number and demand. Search engines have also started to appear, to facilitate search and retrieval of online ontologies. This paper presents a fresh view on constructing ontologies automatically, by identifying, ranking, and merging fragments of online ontologies

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    Towards Desiderata for an Ontology of Diseases for the Annotation of Biological Datasets

    Get PDF
    There is a plethora of disease ontologies available, all potentially useful for the annotation of biological datasets. We define seven desirable features for such ontologies and examine whether or not these features are supported by eleven disease ontologies. The four ontologies most closely aligned with our desiderata are Disease Ontology, SNOMED CT, NCI thesaurus and UMLS

    Content-based ontology ranking

    Get PDF
    Techniques to rank ontologies are crucial to aid and encourage the re-use of publicly available ontologies. This paper presents a system that obtains a list of ontologies from a search engine that contain the terms provided by a knowledge engineer and ranks them. The ranking of these ontologies will be done according to how many of the concept labels in those ontologies match a set of terms extracted from a corpus of documents related to the domain of knowledge identified by the knowledge engineer's original search terms

    Searching and ranking ontologies on the Semantic Web

    Get PDF
    The number of ontologies available online is increasing constantly. Tools that are capable of searching, retrieving, and ranking ontologies are becoming crucial to facilitate ontology search and reuse. In this document, we describe OntoSearch, which is a tool for capturing and searching ontologies on the Semantic web. We also briefly describe AKTiveRank which is used to rank OWL ontologies based on certain ontology-structure analysis.

    Ontology (Science)

    Get PDF
    Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type – the Gene Ontology (GO) being the most conspicuous example – are a _part of science_. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology develop¬ment work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the author¬ing, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists

    Desiderata for an ontology of diseases for the annotation of biological datasets.

    Get PDF
    There is a plethora of disease ontologies available, all potentially useful for the annotation of biological datasets. We define seven desirable features for such ontologies and examine whether or not these features are supported by eleven disease ontologies. The four ontologies most closely aligned with our desiderata are Disease Ontology, SNOMED CT, NCI thesaurus and UMLS

    The Distributed Ontology Language (DOL): Use Cases, Syntax, and Extensibility

    Full text link
    The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper presents the current state of DOL's standardization. It focuses on use cases where distributed ontologies enable interoperability and reusability. We demonstrate relevant features of the DOL syntax and semantics and explain how these integrate into existing knowledge engineering environments.Comment: Terminology and Knowledge Engineering Conference (TKE) 2012-06-20 to 2012-06-21 Madrid, Spai
    corecore