161,809 research outputs found

    Desiderata for an ontology of diseases for the annotation of biological datasets.

    Get PDF
    There is a plethora of disease ontologies available, all potentially useful for the annotation of biological datasets. We define seven desirable features for such ontologies and examine whether or not these features are supported by eleven disease ontologies. The four ontologies most closely aligned with our desiderata are Disease Ontology, SNOMED CT, NCI thesaurus and UMLS

    Semantic Network Analysis of Ontologies

    Get PDF
    A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures currently receive high attention in the Semantic Web community, there are only very few SNA applications, and virtually none for analyzing the structure of ontologies. We illustrate the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size

    The Form of Organization for Small Business

    Get PDF
    Matching and integrating ontologies has been a desirable technique in areas such as data fusion, knowledge integration, the Semantic Web and the development of advanced services in distributed system. Unfortunately, the heterogeneities of ontologies cause big obstacles in the development of this technique. This licentiate thesis describes an approach to tackle the problem of ontology integration using description logics and production rules, both on a syntactic level and on a semantic level. Concepts in ontologies are matched and integrated to generate ontology intersections. Context is extracted and rules for handling heterogeneous ontology reasoning with contexts are developed. Ontologies are integrated by two processes. The first integration is to generate an ontology intersection from two OWL ontologies. The result is an ontology intersection, which is an independent ontology containing non-contradictory assertions based on the original ontologies. The second integration is carried out by rules that extract context, such as ontology content and ontology description data, e.g. time and ontology creator. The integration is designed for conceptual ontology integration. The information of instances isn't considered, neither in the integrating process nor in the integrating results. An ontology reasoner is used in the integration process for non-violation check of two OWL ontologies and a rule engine for handling conflicts according to production rules. The ontology reasoner checks the satisfiability of concepts with the help of anchors, i.e. synonyms and string-identical entities; production rules are applied to integrate ontologies, with the constraint that the original ontologies should not be violated. The second integration process is carried out with production rules with context data of the ontologies. Ontology reasoning, in a repository, is conducted within the boundary of each ontology. Nonetheless, with context rules, reasoning is carried out across ontologies. The contents of an ontology provide context for its defined entities and are extracted to provide context with the help of an ontology reasoner. Metadata of ontologies are criteria that are useful for describing ontologies. Rules using context, also called context rules, are developed and in-built in the repository. New rules can also be added. The scientific contribution of the thesis is the suggested approach applying semantic based techniques to provide a complementary method for ontology matching and integrating semantically. With the illustration of the ontology integration process and the context rules and a few manually integrated ontology results, the approach shows the potential to help to develop advanced knowledge-based services.QC 20130201</p

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    Ontology (Science)

    Get PDF
    Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type &#x2013; the Gene Ontology (GO) being the most conspicuous example &#x2013; are a _part of science_. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology develop&#xac;ment work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the author&#xac;ing, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists

    Searching and ranking ontologies on the Semantic Web

    Get PDF
    The number of ontologies available online is increasing constantly. Tools that are capable of searching, retrieving, and ranking ontologies are becoming crucial to facilitate ontology search and reuse. In this document, we describe OntoSearch, which is a tool for capturing and searching ontologies on the Semantic web. We also briefly describe AKTiveRank which is used to rank OWL ontologies based on certain ontology-structure analysis.

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Ontology ranking based on the analysis of concept structures

    Get PDF
    In view of the need to provide tools to facilitate the reuse of existing knowledge structures such as ontologies, we present in this paper a system, AKTiveRank, for the ranking of ontologies. AKTiveRank uses as input the search terms provided by a knowledge engineer and, using the output of an ontology search engine, ranks the ontologies. We apply a number of classical metrics in an attempt to investigate their appropriateness for ranking ontologies, and compare the results with a questionnaire-based human study. Our results show that AKTiveRank will have great utility although there is potential for improvement
    corecore