Synthesis and optical properties of II-O-VI highly mismatched alloys

Abstract

We have synthesized ternary and quaternary diluted II-VI oxides using the combination of O ion implantation and pulsed laser melting. CdO{sub x}Te{sub 1-x} thin films with x up to 0.015, and the energy gap reduced by 150 meV were formed by O{sup +}-implantation in CdTe followed by pulsed laser melting. Quaternary Cd{sub 0.6}Mn{sub 0.4}O{sub x}Te{sub 1-x} and Zn{sub 0.88}Mn{sub 0.12}O{sub x}Te{sub 1-x} with mole fraction of incorporated O as high as 0.03 were also formed. The enhanced O incorporation in Mn-containing alloys is believed to be due to the formation of relatively strong Mn-O bonds. Optical transitions associated with the lower (E{sub -}) and upper (E{sub +}) conduction subbands resulting from the anticrossing interaction between the localized O states and the extended conduction states of the host are clearly observed in these quaternary diluted II-VI oxides. These alloys fulfill the criteria for a multiband semiconductor that has been proposed as a material for making high efficiency, single-junction solar cells

Similar works

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.