Location of Repository

Algorithmes de localisation distribués en intérieur pour les réseaux sans fil avec la technologie IEEE 802.15.4

By N'deye Amy DIENG

Abstract

The Internet of Things is finally blooming through diverse applications, from home automation and monitoring to health tracking and quantified-self movement. Consumers deploy more and more low-rate and low-power connected devices that provide complex services. In this scenario, positioning these intelligent objects in their environment is necessary to provide geo-localized services, as well as to optimize the network operation. However, indoor positioning of devices using only their radio interface is still very imprecise. Indoor wireless localization techniques often deduce from the Radio frequency (RF) signal attenuation the distances that separate a mobile node from a set of reference points called landmarks. The received signal strength indicator (RSSI), which reflects this attenuation, is known in the literature to be inaccurate and unreliable when it comes to distance estimation, due to the complexity of indoor radio propagation (shadowing, multi-path fading). However, it is the only metric that will certainly be available in small and inexpensive smart objects. In this thesis, we therefore seek algorithmic solutions to the following problem: is it possible to achieve a fair localization using only the RSSI readings provided by low-quality hardware? To this extent, we first study the behavior of the RSSI, as reported by real hardware like IEEE 802.15.4 sensor nodes, in several indoor environments with different sizes and configurations , including a large scale wireless sensor network. Such experimental results confirm that the relationship between RSSI and distance depends on many factors; even the battery pack attached to the devices increases attenuation. In a second step, we demonstrate that the classical log-normal shadowing propagation model is not well adapted in indoor case, because of the RSSI values dispersion and its lack of obvious correlation with distance. We propose to correct the observed inconsistencies by developing algorithms to filter irrelevant samples. Such correction is performed by biasing the classical log-normal shadowing model to take into account the effects of multipath propagation. These heuristics significantly improved RSSI-based indoor localization accuracy results. We also introduce an RSSI-based positioning approach that uses a maximum likelihood estimator conjointly with a statistical model based on machine learning. In a third step, we propose an accurate distributed and cooperative RSSI-based localization algorithm that refines the set of positions estimated by a wireless node. This algorithm is composed of two on-line steps: a local update of position¿s set based on stochastic gradient descent on each new RSSI measurement at each sensor node. Then an asynchronous communication step allowing each sensor node to merge their common local estimates and obtain the agreement of the refined estimated positions. Such consensus approach is based on both a distributed local gradient step and a pairwise gossip protocol. This enables each sensor node to refine its initial estimated position as well as to build a local map of itself and its neighboring nodes. The proposed algorithm is compared to multilateration, Multi Dimensional Scaling (i.e. MDS) with modern majorization problem and classical MDS. Simulation as well as experimental results obtained on real testbeds lead to a centimeter-level accuracy. Both landmarks and blind nodes communicate in the way that the data processing and computation are performed by each sensor node without any central computation point, tedious calibration or intervention from a human.L¿internet des objets se développe à travers diverses applications telles que la domotique, la surveillance à domicile, etc. Les consommateurs s¿intéressent à ces applications dont les objets interagissent avec des dispositifs de plus en plus petits et connectés. La localisation est une information clé pour plusieurs services ainsi que pour l¿optimisation du fonctionnement du réseau. En environnement intérieur ou confiné, elle a fait l¿objet de nombreuses études. Cependant, l¿obtention d¿une bonne précision de localisation demeure une question difficile, non résolue. Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux sans fil avec l¿utilisation unique de l¿atténuation du signal. L¿atténuation est mesurée par l¿indicateur de l¿intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant imprécis et peu fiable en ce qui concerne l¿estimation de la distance, du fait de la complexité de la propagation radio en intérieur : il s¿agit des multiples trajets, le shadowing, le fading. Cependant, il est la seule métrique directement mesurable par les petits objets communicants et intelligents. Dans nos travaux, nous avons amélioré la précision des mesures du RSSI pour les rendre applicables à l¿environnement interne dans le but d¿obtenir une meilleure localisation. Nous nous sommes également intéressés à l¿implémentation et au déploiement de solutions algorithmiques relatifs au problème suivant : est-il possible d¿obtenir une meilleure précision de la localisation en utilisant uniquement les mesures de RSSI fournies par les n¿uds capteurs sans fil IEEE 802.15.4 ? Dans cette perspective, nous avons d¿abord étudié le comportement du RSSI dans plusieurs environnements intérieurs de différentes tailles et selon plusieurs configurations , y compris un réseau de capteurs sans fil à grande échelle (SensLAB). Pour expliquer les résultats des mesures, nous avons caractérisé les objets communicants que nous utilisons, les n¿uds capteurs Moteiv TMote Sky, par une série d¿expériences en chambre anéchoïque. Les résultats expérimentaux confirment que la relation entre le RSSI et la distance dépend de nombreux facteurs même si la batterie intégrée à chaque n¿ud capteur produit une atténuation. Ensuite, nous avons démontré que le modèle de propagation log-normal shadowing n¿est pas adapté en intérieur, en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont pas toujours dépendantes de la distance. Ces valeurs devraient être considérées séparément en fonction de l¿emplacement de chaque n¿ud capteur émetteur. Nous avons proposé des heuristiques pour corriger ces incohérences observées à savoir les effets de la propagation par trajets multiples et les valeurs aberrantes. Nos résultats expérimentaux ont confirmé que nos algorithmes améliorent significativement la précision de localisation en intérieur avec l¿utilisation unique du RSSI. Enfin, nous avons étudié et proposé un algorithme de localisation distribué, précis et coopératif qui passe à l¿échelle et peu consommateur en termes de temps de calcul. Cet algorithme d¿approximation stochastique utilise la technique du RSSI tout en respectant les caractéristiques de l¿informatique embarquée des réseaux de capteurs sans fil. Il affine l¿ensemble des positions estimées par un n¿ud capteur sans fil. Notre approche a été comparée à d¿autres algorithmes distribués de l¿état de l¿art. Les résultats issus des simulations et des expériences en environnements internes réels ont révélé une meilleure précision de la localisation de notre algorithme distribué. L¿erreur de localisation est de l¿ordre du centimètre sans aucun n¿ud ou unité centrale de traitement, ni de calibration fastidieuse ni d¿intervention humaine

Topics: Simulations, Experiments, Indoor Localization, Distributed Localization, Wireless Sensor Network, RSSI, Log-normal Shadowing, IEEE 802.15.4, Expérimentation, Réseau de capteur sans fil, Localisation distribuée, Localisation environnement interne, [ INFO.INFO-NI ] Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Publisher: HAL CCSD
Year: 2014
OAI identifier: oai:HAL:tel-01217512v1
Provided by: Thèses en Ligne

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.