Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: A path to ambipolar organic-based materials?
We have carefully investigated the structural and electronic properties of coronene and some of its fluorinated and chlorinated derivatives, including full periphery substitution, as well as the preferred orientation of the non-covalent dimer structures subsequently formed. We have paid particular attention to a set of methodological details, to first obtain single-molecule magnitudes as accurately as possible, including next the use of modern dispersion-corrected methods to tackle the corresponding non-covalently bound dimers. Generally speaking, this class of compounds is expected to self-assembly in neighboring π-stacks with dimer stabilization energies ranging from –20 to –30 kcal mol−1 at close distances around 3.0–3.3 Å. Then, in a further step, we have also calculated hole and electron transfer rates of some suitable candidates for ambipolar materials, and corresponding charge mobility values, which are known to critically depend on the supramolecular organization of the samples. For coronene and per-fluorinated coronene, we have found high values for their hopping rates, although slightly smaller for the latter due to an increase (decrease) of the reorganization energies (electronic couplings).This work is supported by the “Ministerio de Educación y Ciencia” of Spain and the “European Regional Development Fund” through Project No. CTQ2011-27253
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.