HOPF ALGEBRA STRUCTURE ON TOPOLOGICAL HOCHSCHILD HOMOLOGY

Abstract

The topological Hochschild homology THH(R) of a commutative S-algebra (E∞ ring spectrum) R naturally has the structure of a Hopf algebra over R, in the homotopy category. We show that under a flatness assumption this makes the Bökstedt spectral sequence converging to the mod p homology of THH(R) into a Hopf algebra spectral sequence. We then apply this additional structure to study some interesting examples, including the commutative S-algebras ku, ko, tmf, ju and j, and to calculate the homotopy groups of THH(ku) and THH(ko) after smashing with suitable finite complexes. This is part of a program to make systematic computations of the algebraic K-theory of S-algebras, using topological cyclic homology

Similar works

Full text

thumbnail-image

NORA - Norwegian Open Research Archives

redirect
Last time updated on 19/04/2016

This paper was published in NORA - Norwegian Open Research Archives.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.