Article thumbnail

Figure S9 from Convergent evolution in <i>Arabidopsis halleri</i> and <i>Arabidopsis arenosa</i> on calamine metalliferous soils

By Veronica Preite (842958), Christian Sailer (260861), Lara Syllwasschy (6583034), Sian Bray (6583037), Hassan Ahmadi (6583040), Ute Krämer (449212) and Levi Yant (251093)

Abstract

It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, <i>Arabidopsis halleri</i> and <i>Arabidopsis arenosa</i>, which co-occur at two calamine metalliferous sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on metalliferous and non-metalliferous soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical SNPs in several <i>A. halleri</i> genes at two independently colonized metalliferous sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine metalliferous soils involves convergent evolution, which will likely be more pervasive across sites purposely chosen for maximal similarity in soil composition.This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’

Topics: Genetics, Evolutionary Biology, Plant Biology, Genomics, convergence, adaptation, evolution, selective sweep, selection
Year: 2019
DOI identifier: 10.6084/m9.figshare.7987277.v1
OAI identifier: oai:figshare.com:article/7987277
Provided by: FigShare
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://figshare.com/articles/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.