Figure S9 from Convergent evolution in <i>Arabidopsis halleri</i> and <i>Arabidopsis arenosa</i> on calamine metalliferous soils

Abstract

It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on metalliferous and non-metalliferous soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical SNPs in several A. halleri genes at two independently colonized metalliferous sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine metalliferous soils involves convergent evolution, which will likely be more pervasive across sites purposely chosen for maximal similarity in soil composition.This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 30/05/2019

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.