Fabrication of Vertically Aligned Ferroelectric Polyvinylidene Fluoride Mesoscale Rod Arrays

Abstract

We have fabricated vertically aligned ferroelectric PVDF mesoscale rod arrays comprising and phases using a 200 nm diameter anodized aluminum oxide (AAO) as the porous template. We could synthesize the ferroelectric phase in mesoscale rod forms by combining the well-established recipe for crystallizing the phase using dimethyl sulfoxide (DMSO) at low temperature and template-guided infiltration processing for the rods using AAO. We measured the dimensions of the PVDF rods by scanning electron microscopy and identified the polymorph phases by X-ray diffraction and Fourier transform infrared spectroscopy. The length of the rods varied from 3.82 m to 1.09 m and the diameter from 232 nm to 287 nm when the volume ratio between DMSO and acetone changed from 5 : 5 to 10 : 0. We obtained well-defined piezoresponse hysteresis loops for all rods with remnant piezoresponse ranging from 2.12 pm/V to 5.04 pm/V and coercive voltage ranging from 2.29 V to 2.71 V using piezoresponse force microscopy. Our results serve as a processing platform for flexible electronic devices that need high capacitance and piezoelectric functionalities such as flexible memory devices or body energy harvesting devices for intelligent systems. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3842-3848, 2013This research was supported by the Mid-career Researcher Program (No. 2010-0015063) and the Conversion Research Center Program (No. 2011K000674) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) and by a New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (No. 20103020060010) funded by the Ministry of Knowledge Economy, Korea. Work at Argonne National Laboratory (S.H., D.K. and Y.C., data analysis and writing of manuscript) was supported by UChicago Argonne, a US DOE Office of Science Laboratory, operated under Contract No. DE-AC02-06CH11357. J.H. acknowledges Chung-Ang University Research Grants in 2011

Similar works

Full text

thumbnail-image

HANYANG Repository

redirect
Last time updated on 27/07/2018

This paper was published in HANYANG Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.